

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

Active Media Technology: 6th International Computer Science Conference, ATM
2001 Hong Kong, China, December 18–20, 2001. Proceedings. Lecture Notes

in Computer Science, Volumen 2252. Springer, 2001. 268-278.

DOI: http://dx.doi.org/10.1007/3-540-45336-9_31

Copyright: © 2001 Springer-Verlag

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1007/3-540-45336-9_31

An Authoring Tool for Building Adaptive Learning
Guidance Systems on the Web

José A. Macías and Pablo Castells

E.T.S. Informática, Universidad Autónoma de Madrid. Campus de Cantoblanco,
28049 Madrid, Spain.

{j.macias,pablo.castells}@uam.es

Abstract. In the field of guided learning on the Internet we present, in this
paper, an interactive tool for designing intelligent tutoring systems on the web.
Our tool makes easier the creation of an ontology describing the content model
for a given course. Such ontology contains information about classes and
instances, reflecting the structure and components for the later creation of an
adaptive course, using our web-based runtime course manager system. Our
authoring tool generates XML code to improve course understanding as well as
transportability and processing by our runtime system, which means that the
generated code will reflect, in an easier way, the course structure and contents,
being readable for most of users and course designers.

1 Introduction

The rapid development of the Internet in the last decade has given rise to new
research in web-based educational technology for the creation of Intelligent Tutoring
Systems (ITS) that support user adaptation and guidance. ITS’s are computer-based
instructional systems that have separate data bases, or knowledge bases, for
instructional content (specifying what to teach), and for teaching strategies
(specifying how to teach), and attempt to use inferences about a student’s mastery of
topics to dynamically adapt instruction [9]. Most of the efforts in this field are focused
on providing intelligence on the web by means of Adaptive Hypermedia Systems
(AHS). An Adaptive Hypermedia System or engine may change the content and
presentation of hypermedia nodes and may alter the link structure or annotate links,
based on a user model [5].

On the other hand, creating and manipulating web applications is, in general terms,
an awkward task for non-expert users. In fact, nowadays there is a growing need for
ITS authoring tools [10]. However few approaches exist for evaluation and
generalisation because they are very difficult and expensive to build. The
development of these tools is always driven by pragmatics and usability issues. In this
direction, some authoring tools try to make easier the way of coding and processing
course and educational information on the web, using an ontology for structuring
contents and presentation. An ontology is an explicit specification of a shared
conceptualisation. Its usefulness for information presentation, information integration
and system development has been demonstrated recently [12].

The main goal of our work is to provide an authoring tool, called PERSEUS, used
to defined an ontological representation of course domain and model. Such tool
allows the designer to create adaptive educational applications based on PEGASUS
(Presentation modelling Environment for Generic Adaptive hypermedia Support
Systems), our generic runtime system for developing adaptive hypermedia
presentations in the Internet. The objective of PEGASUS is to provide course
designers with a simple specification paradigm for defining non-trivial aspects of
adaptive presentation independently from contents [6,7]. PERSEUS provides an
object-oriented user interface for PEGASUS, improving generality and usability for
building courses in different domains.

2 Related Work

The development of web-based strategies for creating adaptive software has yield
considerable advancements in the adaptive hypermedia context over the last few
years, with systems like DCG [14,15], ELM-ART [16], Interbook [1] and TANGOW
[2]. ELM-ART and DCG use an explicit representation of domain concepts,
interrelated in a prerequisite graph. DCG includes a planner that guides the student
along a path to reach goal concepts starting from already-known concepts. ELM-ART
uses a sophisticated system to estimate the knowledge acquired by the user in relation
to a concept map of the course, according to which the system dynamically proposes
the student a path to follow at each moment. While in ELM-ART and DCG the
structure of courses is fixed, being the student itinerary what varies, TANGOW
generates the course structure at runtime. TANGOW models student activity in the
form of a hierarchy of tasks that represent didactic units that the student can perform.
ATLAS [8] allows the fully interactive construction of courses that adapt
automatically to the student’s characteristics and her/his behaviour while taking the
course. The designer interacts with the tool by using an intuitive visual language
based on the direct manipulation of elements involved in the course. The tool takes
care of the transition between a teacher’s understanding of the course and the
representation model of the underlying system.

The systems mentioned above lack an authoring tool that provides design support,
except TANGOW, which uses ATLAS as an authoring tool for course design.
ATLAS works over a fixed ontology (the TANGOW model), while PERSEUS, as a
continuation of our previous work in ATLAS, allows the designer to build his/her
own ontologies. In PERSEUS, course construction is achieved by defining a content
model, by means of an intuitive user interface that allows the course designer to build
general objects and class ontologies as basic tools for the design of the educational
system.

Some systems, like KA2 [12], and Eon ITS [11], are focused on ontology
engineering. KA2 has been conceived for semantic knowledge retrieval from the web,
building on knowledge created in the knowledge-acquisition community. To structure
knowledge, an ontology has been built in an international collaboration of researchers.
The ontology constitutes the basis to annotate WWW documents of the knowledge
acquisition community in order to enable intelligent access to these documents and to

infer implicit knowledge from explicitly stated facts and rules from the ontology. the
EON ITS uses an ontology to define the types of topics and topic links allowed in a
semantic net representation of the tutor’s knowledge called the “Topic Network”.
Here, the ontologies are not specific to the domain, but appropriate for a class of
domains. The ontologies specify a number of other things, such as topic properties
(e.g. difficulty, importance), and allowed values in the student model. Knowledge is
structured in EON using several mechanisms. The first is the hierarchy of basic
objects: Lessons, Topics, Topic Levels, and Presentations. The second method
consists of allowing arbitrary classifications of Topics and Topic links in the topic
network. Given the right ontology, all the hierarchies, lattices and networks can be
represented with topic networks. The third mechanism is the Topic Levels
themselves. In PERSEUS, the underlying knowledge presentation is similar in many
respects to EON. Our tool has only a few fixed classes previously defined. This way,
each designer completes or builds his/her own class hierarchy depending on the
content model of the course, or presentation, to be designed.

3 PERSEUS as a Design Tool

Fig. 1. A general view of our adaptive educational system, where PERSEUS is integrated as an
authoring tool for developing course contents. Both the domain model and the presentation
model will be provided to PEGASUS for generating the appropriate course feedback to the
final user

PERSEUS (Presentation ontology buildER for cuStom lEarning sUpport Systems) is
an interactive tool for designing web-based adaptive courses. The PERSEUS interface
allows designers to model courses by defining and creating an ontology of objects that
are used to build adaptive presentations for the educational context (Figure 1).

This tool can generate XML code from ontologies created by the designer in the
PERSEUS environment. Such XML code will be processed by PEGASUS, our
runtime management system used to execute the right sequence of steps in order for
any given course to be presented to the final user.

The steps needed for creating a content model are, to begin with, the creation of a
class hierarchy, and, in the second place, the creation of objects that are instances of
the previously defined classes. To achieve this, we just have to provide the right
values for attributes and relations used to specify a certain course [6,7].

3.1 Creating a Knowledge Ontology

We can create any class hierarchy by just opening the class edition windows.
PERSEUS provides a few predefined classes: DomainObject, Topic, Fragment and
AtomicFragment. New classes can be defined by providing a class name, and the
parent class from which the relevant attributes and relations are inherited. This way,
we can build a whole hierarchy for a given domain. For each class, we can create
class attributes, by just giving a name and an attribute type (string, number, or
boolean). Later, a presentation model can be defined by associating a presentation to
each class of the hierarchy.

 Fig. 2. Class ontology for creating a lesson about Dijkstra’s Algorithm

In order to relate a class to others, we can create class relations. A class relation has
a name, a given type (corresponding to the related class type), a relation title, and a
boolean value to indicate whether the relation is multi-valued or not. In addition,

relations can have attributes that are defined interactively by clicking on the
appropriate table cell (see Figure 2) and filling-in text fields in a pop-up dialog, where
we specify the attribute name, type (string, number, or boolean), and a default value
for each attribute.

The result of creating classes is a personalised tree-view of the hierarchy (right
panel in Figure 2), where we can navigate by clicking on every node and deleting, if
we want, the selected information. We show on Figure 2 a real example of a class
ontology for creating a lesson about Dijkstra’s Algorithm. In this Figure, we can see
how some kinds of classes: Algorithm, Course, Question, and so forth, have been
defined, starting from the default hierarchy mentioned previously. This ontology will
be used for instantiating a course about graph theory, as we describe next.

3.2 Creating a Knowledge Network

Once a class hierarchy has been defined, specific objects or class instances can be
created. The interface to achieve this task is shown in Figure 3, where the user can
create objects from a specific class hierarchy.

Fig. 3. User interface for the creation of class instances

In Figure 3, one can see an example of three instantiated objects, using the class
hierarchy previously mentioned. Dijkstra, Graphs, and th1, are instances of
Algorithm, Course, and Theorem, respectively, that will be used for creating a course
about graph algorithms. As showed, each object has its own relations, based on the
previously created class hierarchy. If we look at the procedure relation defined for the
Dijkstra object (from the Algorithm class), we can see that an atomic fragment has
been defined (right window of Figure 3), containing the algorithm pseudocode written

in HTML. This way, we can create objects and relate them to each other in order to
build different structures for a given lesson or a complete course.

3.3 Generating XML Code

After creating class instances and relations between them, the next step is to generate
XML code from the complete design. By clicking on the Generate XML Code menu
command, PERSEUS automatically generates and saves into a file the XML
information about the design. In Figure 4 we can see the XML code generated for the
previously created Dijkstra's Algorithm object.

Fig. 4. Window showing the generated XML code for the Dijkstra´s Algorithm course object

Since the design information is directly generated in XML, the course information
is highly portable. In particular, this makes it easy for any kind of user to read and
understand, in a very simple way, the objects and the relations between them.

3.4 Post-processing of XML Code in PEGASUS

Finally, PEGASUS will create dynamically all course pages after reading the XML
code from PERSEUS. This will be the last step for completing the final presentation.

 PEGASUS allows associating a presentation model to ontology classes. The
PEGASUS presentation model consists of presentation templates and presentation
rules. Presentation templates define what parts (attributes and relations) of a
knowledge item must be included in its presentation and in what order, their visual
appearance and layout. Presentation rules are responsible for generating adaptive
presentation constructs, involving relations between domain objects from very
succinct high-level descriptions given in templates.

 PEGASUS templates are defined by using an extension of HTML based on
JavaServer PagesTM (JSP) [13], that allows inserting control statements (between <%
and %>) and Java expressions (between <%= and %>) in the HTML code. In these
templates, the designer can use all the presentation constructs of the HTML language
(lists, tables, frames, links, forms, etc.), and insert, using very simple Java
expressions, the domain items to be presented. For instance, a very simple template
for class Algorithm could be as follows:

<h2> <%= title %> </h2>

<h3> Previous concepts </h3>

<%= prerequisites %>

<h3> Procedure </h3>

<%= procedure %>

<h3> Examples </h3>

<%= examples %>

<h3> Proof of Correction </h3>

<%= correction %>

 In these templates the presentation author only needs to refer to attributes and
relations of the presented class (shown in bold in the example). The presentation
system takes care internally of aspects like automatically handling lists (multivalued
relations like the examples of an algorithm), or recursively applying templates to
referenced objects according to their class (e.g. the proof-of-correction Theorem’s of
an algorithm). The resulting page for Dijkstra’s algorithm with this presentation
template can be seen in Figure 5, where HTML elements surrounding the algorithm
presentation (frame structure with contextual index on the left and Previous / Next
buttons at the bottom) come from the presentation template for the root class
KnowledgeUnit.

Fig. 5. Generated web page for a topic of type Algorithm

The template definition language supports the introduction of adaptive elements by
using conditionals. For instance, in the preceding example, the presented information
could be conditioned to the student’s level of expertise, including all available
examples when the student is a beginner, and a single example for more advanced
students, showing the proof of correction only if it is relevant and not too difficult for
the student:

<% if (user.expertise < 0.5) { %> <%= examples %> <% }
%>

<% else { %> <%= examples.upto(1) %> <% } %>

<% if (correction.relevant && correction.difficulty <
user.expertise) { %>

<h3> Proof of Correction </h3> <%= correction %> <% }
%>

The expression language for templates includes other facilities that allow, for
instance, cutting down, filtering or sorting lists according to an arbitrary comparison
function, generating trees and linked lists by traversing a relation, or forcing the
generation of hypermedia links. The basic template language allows the specification
of a wide set of non-trivial presentations by using a very simple syntax. However the
designer can write arbitrarily complex Java code inside the templates themselves.

4 Putting all Together into HADES

As we described previously, the main goal of our work is to build a complete adaptive
system in which any given course can be presented to the final user. Up to now we
have described different parts of the technology used to build adaptive presentations,
however a certain mechanism is required to integrate the PERSEUS design tool and
the PEGASUS runtime system for creating and managing available courses.

For this purpose, we have developed HADES (Hypermedia ADaptive Educational
Server), a main WEB portal providing users with an easy and fast WEB interface in
order for any given course to be created or presented to the final user (see Figure 6).

Fig. 6. Two snapshots of HADES showing the login page (left) and the course creation page
(right)

Users are registered into HADES by completing an initial form. Once the user is
registered and logged to HADES, the system automatically captures the main
characteristics of the user platform (e.g. language, screen resolution, navigator type
and version, and so on). Moreover, each user can have one o more specific roles in the
system (student, course designer, or administrator). HADES stores and reads all this
information from a distributed data base management system, and it updates the user
model in response to actions performed by the user in the system. HADES also has
specific administration options for advanced users in order to manage users, roles and
general system configuration.

To add a new course, the designer has to create a ZIP file, containing all the files
required for the course construction (the XML domain file built with PERSEUS as
described in previous sections, HTML fragments, JPG images, presentation templates
and rules, etc.). Then the system will store and organise automatically all courseware
elements, updating the HADES database of available courses for later delivery (see
Figure 7).

HADES integrates PEGASUS as a runtime system for running all courses and
presentations requested by any connected user. An overview of the global architecture
of the system can be seen in Figure 7, where we can see PERSEUS, PEGASUS and
the HADES portal resulting in a complete system for the generation and support of
WEB presentations.

Fig. 7. Overall system architecture

5 Conclusions

In the context of web-based adaptive learning, PERSEUS, an interactive authoring
tool for building adaptive tutoring systems, has been introduced. Our tool allows the
course designer to model course information under an object-oriented paradigm,
creating an appropriated ontology to define courses. Course information is translated
into XML code, which makes easier the course post-processing and portability to
other runtime systems like PEGASUS, our adaptive course management system.
PEGASUS generates the course presentation from a presentation model defined using
templates coded using JSP technology.

In addition to a tool like PERSEUS to build domain models for representing course
contents, another kind of tool for creating PEGASUS presentation models is needed.
The main idea of a presentation design tool is to be able, for course designers, to
specify the way that the course information generated by PERSEUS will be showed to
the final user. In this direction, we are currently working on a tool that infers changes
to how course pages are generated, by allowing users to edit system-supplied pages
directly with a basic tool like Netscape Composer. This means making it possible to
infer changes, in a automatic way, on course presentation. Since such tool operates as
an automatic inference system, it will get information from user actions, a modified
course page in this case, and will produce adaptive changes on saved course

information. The tool will be based on the programming by example paradigm [3,4]
and will be integrated into HADES.

PERSEUS, PEGASUS and HADES, are being developed in JavaTM (JDK 1.3),
using XLM/JDOM. PEGASUS and HADES use JavaServer PagesTM [13] for
dynamic page generation. A version of PERSEUS is available from
http://astreo.ii.uam.es/~atlas/perseus/perseus.html. HADES can be accessed at
http://astreo.ii.uam.es:8081.

Acknowledgements

The work reported in this paper is being partially supported by the Spanish
Interdepartmental Commission of Science and Technology (CICYT), project number
TEL1999-0181.

References

1. Brusilovsky, P., Eklund, J., Schwarz, E.: Web-based Education for all: a Tool for the
Development of Adaptive Courseware. Computer Networks and ISDN Systems, 30, pp. 1-7,
1998.

2. Carro, R.M., Pulido, E., Rodríguez, P.: Dynamic generation of adaptive Internet-based
courses. Journal of Network and Computer Applications, v. 22, pp. 249-257, 1999.

3.. Castells, P. and Szekely, P.: Presentation Models by Example. In Design, Specification and
Verification of Interactive Systems '99, D.J. Duke and A. Puerta (eds.), pp. 100-116.
Springer-Verlag, Viena 1999.

4. Cypher, A. (ed.): Watch What I Do: Programming by Demonstration. The MIT Press, 1993.
5.. De Bra, Paul.: Design Issues in Adaptive Web-Site Development. Proceedings of the

Second Workshop on Adaptive Systems and User Modeling on the World Wide Web. pp.
29-39 Toronto 1999.

6. Macías. J.A. and Castells, P..: Adaptive Hypermedia Presentation Modeling for Domain
Ontologies. To appear in Proceedings of 10th International Conference on Human-
Computer Interaction (HCII ’2001). New Orleans (Louisiana), August 2001.

7. Macías, J.A. and Castells, P.: A Generic Presentation Modeling System for Adaptive Web-
based Instructional Applications. To appear in Proceedings of ACM Conference on Human
Factors in Computing Systems (CHI’2001), Extended Abstracts. Seattle (Washington), April
2001.

8. Macías, J.A. and Castells, P..: Interactive Design of Adaptive Courses. 2º Simposio
Internacional de Informática Educativa (SIIE'2000). Puertollano (Ciudad Real), 2000.

9. Murray, T. : Authoring Intelligent Tutoring Systems: An analysis of the state of the art.
International Journal of Artificial Intelligence in Education, Vol. 10, pp. 89-129, 1999.

10.Murray, T.: Authoring Knowledge Based Tutors: Tools for Content, Instructional Strategy,
Student Model, and Interface Design. Journal of the Learning Sciences, Vol. 7, No. 1, pp. 5-
64, 1998.

11.Murray, T.: Special Purpose Ontologies and the Representation of Pedagogical Knowledge.
In Proceedings of International Conference for the Learning Sciences (ICLS-96), Evanston,
IL, 1996. AACE: Charlottesville, VA. 1996.

12.Staab, S. et all. Semantic Community Web Portals. Proceedings of the Ninth International
World Wide Web Conference. Amsterdam, May 15-19, 2000.

13.Sun Microsystems, Inc.: Java Server PagesTM Technology. http://java.sun.com/products/jsp.
14.Vassileva, J.: Dynamic Courseware Generation: at the Cross Point of CAL, ITS and

Authoring. Proceedings of International Conference on Computers in Education (ICCE'95).
Singapoore, pp. 290-297. 1995

15.Vassileva, J.: Dynamic Courseware Generation on the WWW. Proceedings 8th World
Conference of the AIED Society. Kobe, pp. 498-505, Japan, 1997.

16.Weber, G. and Specht, M.: User modeling and Adaptive Navigation Support in WWW-
based Tutoring Systems. Proceedings 6th International Conference on User Modeling
(UM97). Sardinia, Italy, 1997.

