
J. Lindskov Knudsen (Ed.): ECOOP 2001, LNCS 2072, pp. 381-401, 2001.
 Springer-Verlag Berlin Heidelberg 2001

Selecting an Efficient OO Integration Testing Strategy:
An Experimental Comparison of Actual Strategies

Vu Le Hanh 1, Kamel Akif 2, Yves Le Traon 1, Jean-Marc Jézéquel 1

1: IRISA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France.
{Hanh.Vu_Le, Yves.Le_Traon, Jean-Marc.Jezequel}@ irisa.fr
2: LAN/DTL/FT R&D Lannion, 2 av. Pierre Marzin, 22307 Lannion Cedex, France.

Abstract: The normalization of semi-formal modeling methods, such as the
UML, leads to re-visit the problem of early OO integration test planning.
Integration is often conducted under some incremental steps. Integration test
planning aims at ordering the components to be integrated and tested in
relationships with the already tested part of the system. This paper presents a
modeling of the test integration problem from a UML design, then details
existing integration strategies and proposes two integration strategies: a
deterministic one called Triskell and an original semi-random one, based on
genetic algorithms called Genetic. Strategies are compared in detail
(algorithmic cost and optimization choices) and a large part of the paper is
dedicated to an experimental comparison of each strategy on 6 real-world case
studies of various complexities (from a �small� telecommunication software to
the Swing Java library). Results show that a good modeling of this optimization
problem associated with well-chosen algorithms induce a significant gain in
terms of testing effort and duration.

Key word: Software Testing, Object-Oriented Modeling, UML, Test Economics,
Test Cost, Integration Testing, Graph Algorithms, Stub Minimization.

1 Introduction

Design-for-testability aims at integrating design and testing in the same process, and
includes the problem of test planning from early design stages. In the case of object-
orientation, due to inheritance and dynamic binding, the control is no more
centralized in the main encapsulation unit, namely the class. However, the testing task
remains unchanged but must deal with the whole architecture to determine subtle
errors. The particular problem tackled to testers by OO architectures (class and
package diagrams) is the strong connectivity between their components. While
integration testing is performed to find errors in component interfaces when they
communicate with each others, the complexity of these architectures makes the
classical integration strategies useless.
To efficiently pinpoint the errors, it is preferable to avoid the �big-bang� integration
methods [1, 2]. Instead, an incremental strategy is appropriate: the more classical
integration strategies are �bottom-up� and �top-down� ones. They are based on a
graph representation of the system under integration that is assumed to be acyclic.

382 Vu Le Hanh et al.

Bottom-up methods begin by testing leafs of the graph and then tests the upper levels
step by step, while top-down methods begin by the top level and descends in the
graph hierarchy step by step [2]. In the first case, only test drivers have to be
implemented, while the top-down also needs �stubs� for simulating the lower non-
integrated components. These strategies are meaningless for most OO systems, where
cycles of dependencies between components often exist, as it will be shown in the
case studies. The integration problem must be re-thought for OO systems. A model
must be defined and strategies proposed to take into account the highly connected
structure of most OO designs.
This paper focuses firstly on the problem of bridging this gap between the actual
design architecture, expressed by UML class and package diagrams, and an abstract
modeling of the integration test problem (in terms of test dependence graph). Then,
we concentrate on the algorithmic problem of producing the best integration test plan
for delay-driven projects. The main difficulties for a cost/duration-efficient
integration is the minimization of the number of "stubs" to be written (cost) and the
number of steps needed to achieve the integration (duration). A stub is a dummy
simulator used to simulate the behavior of a real component not yet integrated. In the
paper, the performance of a strategy is thus related to the number of generated stubs
and the number of integration steps.
Among the many existing proposals [4, 6, 9, 10, 11, 13] that deal with this problem,
we concentrate on those of David C. Kung and al. [10] and Kuo Chung Tai & Fonda
J. Daniels [4] since they both detail effective and feasible algorithms. A large part of
the paper is thus devoted to an experimental comparison between the performances of
these approaches with respect to two original strategies (one deterministic and one
genetic based algorithm). This comparison is based on the complexity of the
algorithm, the number of stubs needed as well as the number of integration steps. Six
real-world case studies of various scales serve as the comparison benchmark. Since
the theoretical problem is NP-complete, no optimal feasible solution is existing.
However, for the chosen comparison criteria, the results reveal that the various
approaches are not equivalent and that the proposed algorithms are very promising.
This paper is organized as follows. In Section 2, the two-dimensional (effort/duration)
problem of integration testing is detailed. Section 3 opens with some definitions about
structural test dependencies and outlines the mapping from UML to a test dependence
graph (with a more complete set of modeling rules than the one presented in [12]).
Then, four algorithms to compute an integration test plan by minimization of the
number of stubs are outlined (Section 4): the Triskell and Genetic ones correspond to
the main contributions of this paper with the experimental results presented in Section
5. One of the difficulties for such comparison is to exhibit significant criteria of
cost/duration performances: our assumptions and their limitations are detailed. The
experimental comparison between the performances of each strategy is presented at
the end of the fifth section.

2 Stub Minimization and Testing Resource Allocation

Integration testing is defined here as the way in which testing is conducted to
integrate components into the system. A �component� is a stable part of the software

 Selecting an Efficient OO Integration Testing Strategy 383

with a well-defined interface described wit e.g. a UML model: for sake of clarity, a
component will be restricted either to a class or to its specific method in the detailed
design. One of the main difficulties for a cost-efficient integration is to minimize the
number of stubs to be written. Integration testing duration also depends on the number
of testing resources available for performing the integration.
The problem of integration planning is a two dimensional one. One dimension of the
problem is the allocation of the available testing resources (or testers) to the
integration tasks, the second dimension concerns the minimization of the effort to
create the stubs. For sake of clarity, we consider in this paper that the number of stubs
to be created is a good indicator of the testing effort: we just mention that the nature
of the stub and its complexity could be taken into account by ad-hoc adaptations of
the presented algorithms. To deal with this two-dimensional problem, each strategy
focus on one of these aspects first (both dimensions are NP-complete). Depending on
the analysis of the problem, the integration strategies may either be allocation-first or
stub-minimization-first guided.

2.1 Stub Minimization

Let us to define what is a stub: if a component C1 uses one or more service(s) of
another component C2, we say C1 "depends" on C2. During the incremental
integration process, when C1 is integrated, if C2 has not already been integrated, we
have to simulate the services of C2. Such a simulator is usually called a "stub".
In this paper, we model two types of stubs: specific stubs and realistic ones (see
Figure 1).
− A specific stub simulates the services for the use of a given client only. This

kind of stub forces the caller component to used a predefined calling
sequences since the stub provides "canned" outcomes for its processing. In
that case, the stub is specific to a particular caller component, and as many
specific stubs have to be created as they are caller components.

− A realistic stub simulates all services that the original class can provide. In
that case, the stub works whatever the caller component is using it.

Note that realistic stubs can be obsolete (but reliable) implementations of stubbed
components (see Figure 1) as well as an available library that would be replaced by a
dedicated component later.
A stub is not a real component and will not be used in the final product. Thus, we
have to minimize the effort to create stubs. In particular, if we assume that every stub
requires the same effort to be created, then the minimization of stub creation effort is
synonymous with the minimization of the stub number. This assumption could be
easily relaxed by associating complexity values to stubs, corresponding to their
creation effort. No stub is needed when the dependencies between components in the
system generate no cycles: integration strategies will thus differ mainly by the way
they detect cycles and the criterion used to break them.

384 Vu Le Hanh et al.

A
C

B

C

A

B

A
C

B

A

B

C2

C1

Specific stub

Realistic stub

Test-dependent on Service simulation

Figure 1. Realistic/specific stubs

2.2 Testing Resource Allocation

Let us define a "tester" as a testing team of a given fixed size. It represents a given
unit of testing effort that can be allocated to a testing task. Let us make the following
assumption to help presenting the test repartition strategy: a �tester� needs one time
unit or �step� to integrate a component to the system and test it. This notion of step
can easily be adapted by giving a weight to each component corresponding to its
estimated testability. In terms of time measurement, the integration is a discrete
process and not a continuous one: that is the reason why step notion is close to the
real integration activity. However, the mapping of a �step� into a real-time
measurement is not studied here since we only try to capture the following
information: being given a system, which strategy requires the less time for achieving
integration?
By another way, the question of testing resources allocation is: being given n testers,
what is the best way to allocate integration testing tasks to minimize the number of
steps of the integration?
Both problems, testing resource allocation and stub minimization, always go together.
When we allocate a component to a �tester�, the tester may have to create a stub,
especially in the object-oriented paradigm where components can depend, directly or
indirectly, on each other and vice-versa. Depending on the analysis of the problem,
the integration strategies may either be allocation-first guided or stub-minimization-
first guided. In the literature, David C. Kung and al. [10], Kuo Chung Tai and Fonda
J. Daniels [4] proposed strategies to allocate the testing resources first but they did not
explicitly deal with the dimension of stub minimization.
The third (Triskell [12]) and fourth (Genetic) ones correspond to our propositions. We
argue that the best way to deal with this two-dimensional problem (both dimensions
are NP-complete) is to first guide integration by minimizing stubs and then allocating
resources.

 Selecting an Efficient OO Integration Testing Strategy 385

3 From UML to Test Dependence Graph (TDG)

In this section, we recall the notion of test dependencies and its associated model
called Test Dependence Graph (TDG). This model has been introduced in [7, 12] but
the part of model concerning regression testing is simplified here. Indeed,
implementation parts from specification/contractual ones are not distinguished in the
context of integration testing. The presented model has also been extended to capture
the polymorphic dependencies (through transitive relationships) as well as the nature
of the dependence (Aggregation, Association, Inheritance or Implementation). We
then obtain a general model on which all the published integration strategies can be
implemented: Kung�s ORD model (that is also the underlying model used by Tai &
Daniels) is a particular case of the TDG. This common basis for modeling makes
comparison possible.

Definitions
− Test Dependence Graph (TDG): It is a directed graph whose vertices represent

components (classes and/or included methods, depending on the detail level of
the design) and directed edges represent test dependencies. In a TDG, loops may
occur because components may be directly or indirectly test dependent from each
other.

− Test dependence levels: Depending on the level of detail in the design, we may
define test dependencies between classes or between methods of classes (in case
of high detail level). We distinguish three levels of test dependencies:
1. Class-to-class: It is the dependence level that can be induced from a design

model, as soon as a stable class diagram is available. A vertex in a TDG
models a class. An edge of TDG links these vertices.

2. Method-to-class: If a method m has an object of a class C declared in its
signature, a method-to-class dependence exists between this method and this
class. In TDG, we model this method and class by vertices. These vertices
are linked with an edge.

3. Method-to-method: This dependence can be inferred only by analyzing the
implementation body of a method. If method m1 calls method m2, a method-
to-method dependence exists between these methods. In the TDG, we model
these methods by two vertices and directed edges connecting m1 to m2 and
all redefinitions of m2 in subclasses of class containing m2 (dynamic
binding).

From a UML class diagram, only class-to-class and method-to-class test dependencies
can be inferred to build a TDG. Using information available in the UML dynamic
diagrams, some method-to-method test dependencies can be inferred. If source code is
available, then all test dependencies can easily be extracted to build a TDG.
Concerning only the most general class-to-class test dependencies, the TDG can be
extracted from a design model such as a UML description of an OO system. The way
the TDG is build is a (safe) over-estimation of the actual dependencies. In the TDG,
an arrow from B to A means that �B is test dependent on A�. If it is possible, A
should be tested before B. When more detailed information is available on a system
(through a detailed model or extracted from the code) we can produce a more accurate

386 Vu Le Hanh et al.

TDG at the granularity of methods as explained in [12]. Since the actual strategies �
except for Triskell one � do not take into account this level of detail, this part of the
model is not used for comparison
Three main rules are used to map the UML model into a TDG as presented in Figure
2. Being given two components: A and B:
− If B inherits (derives from) A, A is test-dependent on B by an inheritance

dependence. The edge that connects vertex A to vertex B is labeled �I� in the
TDG.

− If A is a composite (an aggregate) of B, A is test-dependent on B by an
aggregation dependence. The A to B edge is labeled �Ag� in the TDG.

− If A is associated or depends on B, A is test-dependent on B by an association
dependence. The A to B edge is labeled �As� in the TDG.

Ag

B

A

Composition
with or without

navigability

B

A

Aggregation
with or without

navigability

B

A

Association
with or without

navigability

A

x(): B

B

A

x: B

B

Dependency

A

B

As

B

A

B

A

I

Inheritance

A

B

Figure 2. UML to TDG: Class-to-class edges: Main transformations

To deal with polymorphism dependencies (the rules (a) and (b) in the left part of
Figure 3), we choose to add extra edges to the TDG. If a component A is test-
dependent on a component B by an aggregation dependence or by an association
dependence, A is test-dependent by an aggregation dependence or by an association
dependence (respectively) on all components derived from B.
In the right part of Figure 3, we take into account abstract components and interface
ones that cannot be instantiated. In the figure, rules (c) and (d) must be applied first,
and then the third rule (e) for deleting the vertex corresponding to the abstract class B.

 Selecting an Efficient OO Integration Testing Strategy 387

A

Implementation

B
<<abstract>>

A

Ag

C

A
and Ag

C

B

Implementation

B
<<abstract>>

A

As

C

A
and As

C

B

Implementation

B
<<abstract>>

A

c

d

e

C

I

A

B

As

Asand

B

A

As

A

C

I

C

I

A

B

Ag

Agand

B

A

Ag

A

C

I

b

a

Figure 3. Polymorphic and abstract classes transformations rules

4 Integration Strategies

In this section, we present three deterministic strategies (Kung's, Tai-Daniels' and
Triskell) and one semi-random strategy based on genetic algorithms (Genetic by Akif
Kamel). All solutions presented here are based on a TDG. If a set of components is
included into a cycle of dependencies, we say these components belong to the same
Strongly Connected Component or SCC. The main difference between the various
strategies lies in the way that cycles are detected and then broken.
To illustrate these strategies, we use a small example of TDG (see Figure 4). The
outcome of each strategy will be presented step by step. Even if some algorithms may
appear complex and not intuitive, we choose to detail the application of each strategy
precisely on this small example to make the experiments repeatable and the paper
self-contained.
Several points have to be noticed:
− Each strategy is presented in three parts, (i) a stub choice step, (ii) a resource

allocation step and (iii) its illustration with the TDG of Figure 4.
− Since a stub is a dummy component, when a component A needs a stub for a

component B during its integration, the integration will not be achieved until the
component A has been tested with the real component B. In the result of our
example, we underline this step of testing with the real component B by putting it
in (parenthesis).

388 Vu Le Hanh et al.

D

A B C

E F

I

As As

G H

As

Ag

IAg

As

As

As

As

As
AgAs Ag

Ag

Figure 4. An example of TDG

− The result of an integration test strategy is a partial order tree, each vertex
representing a component. For sake of conciseness, this partial order tree has
been flattened as follows: when a choice between equivalent vertices is done, we
use the ASCII code order of the vertex labels. For example, between vertices C
and E, we will firstly choose C (topological sort).

− Stubs are needed because of the existing SCCs. Each strategy applies a proper
criterion to remove some edges and break the SCC. Any successor from a
removed edge is stubbed. Dotted arrows represent such edges and gray
background boxes represent stubs

4.1 Kung and al.�s Strategy [10]

To choose a stub, Kung argues that an association relationship always exists inside a
cycle and this kind of relationship is the weakest of three kinds: Inheritance,
Aggregation and Association. To break a cycle, one of its association relationships is
removed. The testing resource allocation procedure is based on the �height� of
vertices in the TDG, i.e. the maximum number of vertices included in paths from the
considered vertex to a leaf vertex. Then a leaf vertex has a height value of 1.
Although Kung gives a way to choose a stub, the problem of stub minimization is not
explicitly taken into account since the strategy is first allocation-guided. This
algorithm is illustrated in Figure 5.
 (i) Stub choice:
− Search all SCCs using transitive closure.
− Assign a height for each SCC. This height is called "major level".
− For each SCC, recursively remove association edges until there are no more

cycles.
− Successors of removed association edges are stubbed. They are specific stubs.

 Selecting an Efficient OO Integration Testing Strategy 389

(ii) Resource allocation:
− Without taking into account the edges removed in step 1, a height value called

"minor level" is assigned to each vertex of each SCC. This value allows defining
a partial order into a SCC.

− The vertices allocation is based on the �pair (major level, minor level)� that
defines a partial order:

smaller: (x1,y1) < (x2, y2) ⇔ (x1 < x2) ∨ (x1 = x2 ∧ y1 < y2)
− The vertex with smaller pair (major level, minor level) will be allocated earlier. If

two vertices have a same pair (major level, minor level), choose any one to stub.

D

A B C

E F

I

As As

G H

As

Ag

IAg

As

As

As

As

As
AgAs Ag

Ag

1

2

1

3

1

1 4 2

3

Figure 5. Kung and al.�s strategy

(iii) Illustration:
Table 1 and 2 present the application of Kung and al.�s strategy on the TDG of Figure
4. Table 1 underlines the SCC order and corresponding stub choice: the strategy
requires 4 specific stubs (dotted arrows) and 3 realistic stubs (gray background
boxes).

Table 1. The SCC and the edges to remove

SCC Major Level Edge to remove
{A} 1 ∅

{B D E F H} 2 {BD, DE, EF, FE}
{C} 1 ∅
{G} 3 ∅

Table 2 shows the pairs (major level, minor level) of all vertices in Figure 4 and their
integration order. The order in parenthesis concerns the re-allocation step: stub
replacement by the real component for final integration and testing. The number of
integration steps is 11 (the maximum order).

390 Vu Le Hanh et al.

Table 2. Major level, minor level and integration order

Vertex Major
level

Minor
Level

Integration
order

Vertex Major
Level

Minor
level

Integration
order

A 1 1 1 E 2 4 8
B 2 1 3, (5) F 2 2 6, (10)
C 1 1 2 G 3 1 11
D 2 1 4, (9) H 2 3 7

4.2 Tai-Daniels� Strategy [4]

To choose a stub, Tai and Daniels adapt their strategy from Kung�s argument
concerning association priority in the allocation step. To break a given cycle, some
association relationships are removed. For the resource allocation procedure height of
vertices in the TDG is used to define an order. This algorithm is illustrated in Figure
6.

3rd major level

2nd major level

1st major level

D

A B C

E F
As As

G H

As

As

As

As

As

1 2 1

2

12

12

I Ag

IAg

AgAg

Ag As

As

Figure 6. Tai-Daniels� strategy

(i) Stub choice:
− Assign a height for each vertex, using a depth-first algorithm, without taking into

account the association relationships. This height is called �major level�.
− All successors of association edges from smaller major level to greater major

level are stubbed.
− Successors of removed association edges are stubbed. They are specific stubs.
− In each major level, association edges are removed if they are in a cycle and their

successor is a stub.
− If there is still a cycle, a weight is assigned to each edge of this cycle. The weight

of edge �e� is calculated:
weight (e) = (number of existing edges, incoming to predecessor of e, from other
vertices in the same major level with predecessor of e) +

 Selecting an Efficient OO Integration Testing Strategy 391

(number of existing edges, outgoing from successor of e, to other vertices in the
same major level with successor of e).

− Remove successively edges with respect to their priority weights until there are
no more cycles.

(ii) Resource allocation:
− Do not take into account the edges removed in the first part, assign a local height

for each component in each major level using a depth-first algorithm. This
number is called "minor level".

− Allocate vertices according to the order given by pairs (major level, minor level).
The vertex with smaller pair (major level, minor level) will be firstly allocated. If
two vertices have same priority, choose any one to allocate first.

(iii) Illustration:
Table 3 and Table 4 present the result of Tai-Daniels�s strategy applied to Figure 4.

Table 3. Major level and inter-level edges removed

Major Level Vertices Edge to remove
1 A, B, C BD
2 D, E, F EH
3 G, H

Tai-Daniels� strategy requires 2 specific stubs (dotted arrows) and 2 realistic stubs
(gray background boxes) for inter-level dependencies. The number of integration
steps is 11 (the maximum order).

Remarks:
The edge FD in 2nd major level participates in the cycle (D E F) and D is a stub for
upper major level (1st major level). So, to break this cycle, we remove this edge (3rd

specific stubs). In 2nd major level, there is still a cycle (E F) and no E, neither F is
ready a stub. Hence, to break this cycle, we have to use the edge weight.
The weight (EF) = 2 + 1 = 3, weight (FE) = 1 + 1 = 2. Between two edges, EF and
FE, weight (EF) > weight (FE) and we choose to remove the edge EF (4th specific
stubs). The successor of this edge is stubbed. F is the 3rd realistic stub.

Table 4. Major level, minor level and integration order

Vertex Major
level

Minor
level

Integration
order

Vertex Major
level

Minor
level

Integration
order

A 1 1 1 E 2 1 4, (8), (10)
B 1 2 3, (6) F 2 2 7
C 1 1 2 G 3 2 11
D 2 2 5 H 3 1 9

392 Vu Le Hanh et al.

4.3 Triskell Strategy

Triskell strategy is a two-part strategy: the first part corresponds to the stub
minimization problem while the second focus on testing resource allocation. The
method does not take into account the type of relationship between components as a
priority. To break a cycle, the vertex that participates in as many cycles as possible is
stubbed. The underlying argument is that the nature of the relationship is less
important than the effort to stub any relationship. So the algorithm is first stub-
minimization guided. The nature of the relationship (association, inheritance,
aggregation) is also taken into account only as a second priority, using Kung�s
argument (association first). The testing resource allocation procedure is based on the
depth of vertices in TDG, i.e. the maximum number of vertices included in paths from
the considered vertex to a root vertex. Then a root vertex has a depth value of 1. This
algorithm is illustrated in Figure 7.

D

A B C

E F

I

As As

G H

As

Ag

IAg

As

As

As

As

As
AgAs Ag

Ag

6

4

31

2

57

6

Figure 7. Triskell strategy

(i) Stub choice:
− Progressively stub the vertices, which participate in as many cycles as possible,

using Tarjan's algorithm [15, 12]. Let vertex_2_cycles (vertex) be the function
that results in the set of cycles to which the vertex belongs. When a vertex v is
stubbed, each cycle of the vertex_2_cycles (v) set is broken and the incoming
edge of v in this cycle is removed to create a specific stub. For a given vertex,
there are as many specific stubs as the number of independent cycles traversing
this vertex.

− When two vertices belong to the same number of cycles, according to Kung�s
argument, we stub the vertex which its incoming association edges belong to
more cycles than the other. In case of equality, the next criterion consists of
selecting the vertex with the lower incoming degree in the SCC. This criterion
minimizes the number of specific stubs. Finally, if needed, an arbitrary order is
taken, e.g. the vertex identifier ASCII code order

 Selecting an Efficient OO Integration Testing Strategy 393

(ii) Resource allocation:
− Do not take into account the removed edges in the first part, assign a depth for

each vertex
− Allocate vertices with priority of maximum vertex depth: bigger depth, earlier

allocation. If two vertices have the same depth, we choose the vertex with smaller
identification.

(iii) Illustration:
Table 5 shows all cycles to which each vertex belongs. The vertex E is traversed by
the maximum number of cycles. This vertex is chosen to be stubbed (1st realistic
stub). The incoming edges of E in these cycles are DE and FE. They are broken to
create 2 specific stubs. Table 6 presents the depth of each vertex and its integration
order. The number of integration step is 10.

Table 5. vertex_2_cycles results

Vertex vertex_2_cycles (vertex) |vertex_2_cycles (vertex)|
A - 0
B (B D E), (B D E F),

(B D E H F)
3

C - 0
D (B D E), (B D E F),

(B D E H F), (D E F)
4

E (B D E), (B D E F), (B D E H F),
(D E F), (D E H F), (E F), (E H F)

7

F (B D E F), (B D E H F),
(D E F), (D E H F), (E F), (E H F)

6

G - 0
H (B D E H F), (D E H F), (E H F) 3

Table 6. Depth and Test Order

Vertex Depth Test Order Vertex Depth Test Order
A 7 1 E 2 7
B 5 4 F 4 5, (8)
C 6 2 G 1 10
D 6 3, (7) H 3 6

4.4 Using Genetic Algorithms for Stub Minimization

Since the question of integration planning is a two-dimensional NP-complete
problem, semi-random optimization algorithms have been studied. We present here an
original application of genetic algorithms to this problem. On one hand, genetic
algorithms (GAs) [5, 14] are applied to reduce the search space and direct it to reach a
good solution. On the other hand, they allow escaping routes out of local
optimization. They are widely used in many areas for problem optimization and are

394 Vu Le Hanh et al.

efficient for solving NP-complete problems. In our study we use them to search the
first dimension of integration problem, the minimization of stub number.
GAs are iterative non-deterministic algorithms, one important characteristic of these
algorithms is their generality and the ease of implementation. They require a fitness
function, a mechanism to traverse the search space (via crossover and mutation
operations) and a suitable solution representation (by individual and population).
In our strategy, the fitness function is the number of stubs, each individual is an
integration order and the population is a set of integration orders. Our strategy
consists of:

(i) Stub Choice:
Choose a maximum number of iterations.
For each SCC:
− Randomly generate some initial individuals (i.e. integration order) for the initial

population P (0).
− Compute the fitness function (stub number) for each individual in the current

population P (t).
− Choose two individuals with the best result of the fitness function.
− Generate P (t+1) from two chosen individuals via genetic operators: crossover

and mutation.
− Repeat from the 2nd step to the end until the maximum number of iterations is

reached.

(ii) Resource allocation:
Similar to Triskell algorithm.

(iii) Illustration:
We use two genetic operators:
− The mutation operator MU (x, y, individual): it exchanges the x-th element and

the y-th element of individual.

D

A B C

E F

I

As As

G H

As

Ag

IAg

As

As

As

As

As
AgAs Ag

Ag

Figure 8. The SCC

 Selecting an Efficient OO Integration Testing Strategy 395

− The crossover operator CR (x, individual1, individual2): we use the partially
mapped crossover PMX [14]. The new generated individual I1 contains ordering
information partially determined from its parents individual1 and 2. A random
cut point x is chosen in both parents, the entire right part of individual2 is copied
in the new individual I1. If an element of the left part of individual1 is not present
in I1 then it is added to I1. If this element exists in I1, then its position in I1 is
determined and the element from individual1 corresponding to this position is
copied in I1.

Both operators use one random function to define the position cut point. The number
of iterations and the order for executing the genetic operations is also randomly
chosen. Another operation STOP (Population) chooses the best individual in
Population and stops the procedure. In case of equality, the individual which i-th
element has smaller ASCII code.
Table 7 shows a manipulation of the SCC {B D E F H} with the initial integration
orders are I0 = {F E H D B} and I1 = {E B D F H}. After 3 steps, we obtain the
integration order (D, B, H, F, E). We stop and the integration order for whole TDG in
Figure 4 is {A, C, D, B, H, F, (H), E, (D), (F), G}. The number of step is 11. The
number of realistic stubs is 2 (E and F) and of specific stubs is 3 (DE, HF and EF).

Table 7. Apply of Genetic Algorithm with Figure 4

Iteration Population Stub number
(fitness function)

Genetic
operation

Result

0 I0 = {F E H D B}
I1 = {E B D F H}

4
4

MU (1, 5, I1) I2 = {H B D F E}

1 I0, I2 4, 2 CR (3, I0, I2) I3 = {D B H F E}
I4 = {H E F D B}

2 I2, I3 2, 2 STOP (P2) I3 = {D B H F E}

5 Case Studies

We choose to present six real-world case studies. One is from the telecommunication
field and five others are in the domain of software technology (1).
1. A Telecommunication Switching System: Switched Multimegabits Data Service

(SMDS) is a connectionless, packet-switched data transport service running on
top of connected networks such as the Broadband Integrated Service Digital
Network (B-ISDN), which is based on the Asynchronous Transfer Mode (ATM).
A detailed description of an SMDS server design and implementation (totaling
22KLOC) can be found in [12]. The class-diagram studied here is composed of
37 classes implementing the core of the switch, with 72 connects.

2. Part of an Object-Oriented Compiler: The GNU Eiffel Compiler is a free open-
source Eiffel compiler distributed under the terms of the GNU General Public

1 All the benchmark input TDGs can be downloaded from
http://www.irisa.fr/testobjets/testbenchmark

396 Vu Le Hanh et al.

License as published by the Free Software Foundation. It is available for a wide
range of platforms. The current distribution (available from
http://SmallEiffel.loria.fr) includes an Eiffel to C compiler, an Eiffel to Java
bytecode compiler, a documentation tool, a pretty printer and various other tools,
with their sources (all in all, around 70KLOC). Its UML class diagram is
available in MDL, PDF or Postcript format at
http://www.irisa.fr/pampa/UMLAUT/smalleiffel.[mdl|pdf|ps]). The total size of
this compiler is more than 300 classes but we dealt with its core only, totaling
104 classes with 140 connects.

3. InterViews graphic library: This case study is from Kung's article [10]. Its size is
146 classes and 419 connects.

4. Pylon library (http://www.eiffel-forum.org/archive/arnaud/pylon.htm). It is an
Eiffel library for data structures and other basic features that can be used as a
foundation library by more ambitious or specialized Eiffel libraries. Its size is 50
classes with 133 connects.

5. Base classes of Java 2 Platform Standard Edition Version 1.3
(http://java.sun.com/j2se/1.3/docs/api/index.html). Its size is 588 connected
classes by 1935 connects.

6. Package "Swing" of Java 2 Platform Standard Edition Version 1.3
(http://java.sun.com/j2se/1.3/docs/api/index.html). Its size is 694 classes with
3819 connects.

Difficulties of the Study and Experimental Environment

Several remarks must be done to understand the scope and limitations of the study,
and provide a stable basis for replication. The validity of the experiments depends
mainly on the approximation of the cost of stubs construction. Ideally, the strategies
should be compared not only in terms of stub number, but also in terms of stub
complexity. Kung�s classical approach argues that the complexity of the stubs
depends on the nature of the stubbed relationship, since "association relation
represents the weakest coupling between the two related classes� while �the other two
relations, namely, inheritance and aggregation, involve not only control coupling, but
also code dependence and data coupling" (see [10], p. 34). However, the complexity
of the integration also depends on the complexity of the functionality to be simulated,
e.g. number and complexity of methods of the stubbed class. Stubbing an inherited
�empty� class (e.g. containing only attributes) may be much more easier than
stubbing a provider class involving many possible complex method calls. In
contradiction with Kung�s argument, the practice show that cycles may occur with
only inheritance and aggregation relationships. In conclusion, since there is no
consensual basis, we choose to consider that nothing can be decided at class level. In
the case studies, Triskell strategy mainly select association edges: 1 aggregation is
stubbed for Pylon case study, 4 aggregations for java library and 2 aggregations and
one inheritance for Swing. For the others, only association edges are selected.
Building the TDG for SMDS, Pylon and Small Eiffel cases studies was not
automated, while we have implemented a builder program to extract from the Java
and Swing libraries the dependencies. This little tool uses the introspection Java
mechanism.

 Selecting an Efficient OO Integration Testing Strategy 397

Results
We only display the detailed results for two case studies (InterViews and Swing) in
Table 8 and Table 9. The first columns of the tables list the number of testers (from 1
to 10). The other columns list the number of steps needed to integrate all the
components for each strategy. A gray background marks the best value. In addition,
the last line of the tables gives the number of stubs we have to create to break cycles
in the TDG. This number of stubs is not dependent on the number of testers for the
presented strategies.
Based on the table results, we display in Figure 9 the relative efficiency (in terms of
percentage) in comparison with the result of Triskell strategy. In these figures, the �%
of step number� values correspond to the ratio of the number of steps required for the
strategy under consideration and the result of Triskell strategy.

Table 8. Results with InterViews graphic library case study

testers number Kung Tai-Daniels Genetic Algorithm Triskell
1 155 204 157 152
2 84 105 79 76
3 61 72 53 51
4 49 55 40 38
5 44 46 32 31
6 39 41 27 26
7 37 36 23 24
8 35 31 21 22
9 35 28 20 21

10 32 27 19 21
stub number 13 22 8 6

90

110

130

150

170

1 2 3 4 5 6 7 8 9 10

tester number

%
 o

f s
te

p
nu

m
be

r

Kung's strategy: 13 stubs

Tal-Daniels' strategy: 22 stubs
Genetic strategy: 8 stubs
Triskell's strategy: 6 stubs

90

100

110

120

130

1 2 3 4 5 6 7 8 9 10

te ster num ber

%
 o

f s
te

p
nu

m
be

r

Kung's strategy: 16 stubs
Tal-Daniels ' s trategy: 61 stubs
Genetic strategy: 17 stubs
Triskell's s trategy: 14 stubs

Figure 9. Relative results with InterViews (left) and Java Swing (right)

398 Vu Le Hanh et al.

Table 9. Results with Java Swing library case study

testers number Kung Tai-Daniels Genetic Algorithm Triskell
1 740 826 715 717
2 373 418 358 359
3 255 282 239 239
4 197 215 179 180
5 162 171 143 144
6 137 146 120 120
7 119 126 103 103
8 107 111 90 90
9 97 102 80 80

10 90 91 72 72
stub number 16 61 17 14

The algorithms perform quite differently over the various case studies but main trends
appear that will be discussed. Table 10 and Table 11 summarize the whole set of
results obtained with five testers. The first table lists the number of stubs for each case
study that was found by each strategy. The second table lists the number of steps for
five testers, depending on strategy and case study. A gray background marks the best
result in each line of the table.

Comparison of Algorithms and Comments

In [10], Kung et al. wrote that, according to their strategy, 8 stubs are required for the
InterViews graphic library. Here, we get 13 stubs since Kung�s algorithm does not
specify the order of removed association relationships in the SCC. Here, we took the
ASCII code order of the vertices. With another order we get 7 stubs, that is a better
result than Kung with the same algorithm: due to this unspecified part, the algorithm
results are not stable (in that case between 7 and 13 stubs). This remark reveals that
the chosen order is very important and highly modifies the stub minimization
efficiency.

Table 10. Stub number for each case study

Case studies Kung Tai-Daniels Genetic Triskell
SMDS, 37 classes, 72 connects 11 14 13 9

SmallEiffel, 104 classes, 140 connects 4 10 6 1
InterViews, 146 classes, 419 connects 13 22 8 6

Pylon, 50 classes, 133 connects 6 9 3 3
Java, 588 classes, 1935 connects 9 55 8 7

Swing, 694 classes, 3819 connects 16 61 17 14

 Selecting an Efficient OO Integration Testing Strategy 399

Table 11. Step number for each case study (allocate for five testers)

Case studies Kung Tai-Daniels Genetic Triskell
SMDS, 37 classes, 72 connects 17 17 13 13

SmallEiffel, 104 classes, 140 connects 29 28 23 22
InterViews, 146 classes, 419 connects 44 46 32 31

Pylon, 50 classes, 133 connects 17 23 12 12
Java, 588 classes, 1935 connects 152 199 124 123

Swing, 694 classes, 3819 connects 162 171 143 144

Kung used a transitive closure to compute the SCCs. The complexity of this algorithm
is O(n3) with n is the number of components. It requires much more time in
comparison to other strategies that are based on depth-first algorithms: it can neither
be used in a realistic large industry project nor for small systems at a detailed level of
analysis (method level). On the contrary, Triskell is based on an adaptation of
Bourdoncle�s algorithm [3]. This algorithm itself is based on Tarjan�s algorithm [15]
(linear with the number of vertices). Then, the global algorithmic complexity is close
to O(n) � the pathological unrealistic graph where there are as many SCCs as they are
vertices may lead to a O(n2) complexity.
Clearly, Tai-Daniels' strategy is the less efficient one both for stub minimization and
integration duration. The reason of this disappointing behavior can be illustrated with
the simple example given in Figure 10: the test order is (A, B, C, D, A) with one stub
(D). In Kung's strategy and in our approaches, no stub is needed and the best order (B,
D, A, C) is obtained. The difference between Kung and Triskell strategies is mainly
due to the fact that Kung�s strategy criterion is local (association first) while Triskell
algorithm globally aims at reducing the number of stubs. We already discussed the
reason we cannot compare the complexity of stubs at a class level of detail: all
algorithms can be adapted to take into account this inherent complexity, but no
objective comparison basis would have been available in that last case.

C D

A B
1.1 1.1

2.1 2.1

I As Ag

Figure 10. With Tai and Daniels' strategy, D is stubbed to test A

The behavior of the genetic algorithm is promising, but seems to be less efficient than
the deterministic optimized Triskell algorithm. Detailed results in annex show that it
obtains sometimes a better result than Triskell. The main advantage of the Genetic
strategy is that it can more easily be adapted to take into account the complexity of
components, without extra computational cost. To conclude, Kung strategy behaves

400 Vu Le Hanh et al.

well but the computational cost is prohibitive for real projects. Tai-Daniels analysis of
the problem is really pertinent but the strategy results are disappointing. Triskell is
close to Kung but doesn�t make any difference between stub types for determining a
better result and Genetic fitness function should maybe be improved to be more
efficient.
As qualitative result, we may say that integration strategies are mature enough to be
really applied to large-scale projects for saving time and cost. An interesting viable,
alternative to stub minimization, consist of performing big-bang integration only on
the SCCs in all the cases in which their cardinality is small. The argument is that a
little SCC identifies a coherent set of classes that can be tested in one time (big bang).
Ideally, such a solution would let the decision of breaking a SCC to the tester. In the
best case, no stub would be needed.
The assertion that cycles very rarely occur in an OO design is an opinion that is
contradicted by all of ours experiments: most OO systems are highly connected and
even well-written ones1 include some of hard-to-test cycles. For instance, the Java
library generates about 8.000 cycles that are broken with 7 stubs. A correlated
consequence of our studies would be to pinpoint large cycles of dependencies global
to several packages (since cycles into a package are acceptable).

6 Conclusion

The paper has dealt with an important issue in testing of object-oriented systems: the
definition of a cost-effective integration testing process. The two-dimensional aspect
of the problem of integration planning has been presented (stub minimization and
testing resource allocation) as well as a model adapted to a comparison of four
possible strategies. The rules for building this model from the UML have been given
and the algorithms explained in detail. We have presented an empirical comparison of
the performance of these algorithms to compute an integration test plan. This
comparison was conducted on six real-world case studies. Both theoretical
considerations (on algorithmic complexity and stub selection criteria) and
experimental results allow us to differentiate these strategies. A lesson learnt from this
comparison is that Triskell and Kung�s strategies (the latter using Tarjan�s algorithm
to determine SCCs) are directly applicable on real industrial projects. The next
qualitative step for improving integration testing would concern criteria to distinguish
the cost of a stub. Other future work concerns on interactive strategies that combine
big-bang and incremental integration. The creation of stubs could be reduced when
the set of strongly connected classes corresponds to a well-defined subset of system
functionality that can be reasonably tested in one block.

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful and
constructive comments.

1 Java Swing is often highly pointed for its very elegant OO designs

 Selecting an Efficient OO Integration Testing Strategy 401

References

1. B. Beizer, "Software testing techniques," Van Norstrand Reinhold, 1990. ISBN 0-442-
20672-0.

2. Robert V. Binder, �Testing Object-Oriented Systems, Models, Parterns and Tools�,
Addison Wesley, First printing, October, 1999, ISBN 0-201-80938-9

3. F. Bourdoncle, "Efficient Chaotic Iteration Strategies with Widenings", Proc. of the
International Conference on Formal Methods in Programming and their Applications,
Lecture Notes in Computer Science 735, Springer-Verlag (1993), 128-141, ISSN 0302-
9743.

4. Kuo Chung Tai and Fonda J. Daniels, "Interclass Test Order for Object-Oriented
Software," Journal of Object-Oriented Programming (JOOP), v 12, n 4, July-August 1999,
18-35, ISSN: 0896-8438.

5. D. E. Goldberg, � Genetic Algorithms in Search, Optimization and Machine Learning�,
Addison Wesley, 1989. ISBN: 0-201-15767-5

6. Mary Jean Harrold, John D. McGregor, and Kevin J. Fitzpatrick, "Incremental Testing of
Object-oriented Class Structures," Proceedings, 14th International Conference on Software
Engineering, May 1992. IEEE Computer Society Press, Los Alamitos, California. 68-80.
ISBN 0-7695-0915-0.

7. Thierry Jéron, Jean-Marc Jézéquel, Yves Le Traon and Pierre Morel, "Efficient Strategies
for Integration and Regression Testing of OO Systems", In proc. of the 10th International
Symposium on Software Reliability Engineering (ISSRE'99), November 1999, Boca raton
(Florida), 260-269, ISBN 0-7695-0807-3.

8. Jean-Marc Jézéquel, "Object Oriented Software Engineering with Eiffel," Addison-
Wesley, mar 1996. ISBN 1-201-63381-7.

9. Paul C. Jorgensen and Carl Erickson, "Object-Oriented Integration Testing"
Communications of the ACM, v 37, n 9, September 1994, 30-38, ISSN: 0001-0782.

10. David C. Kung, Gao, Jerry, Chen, Cris., "On Regression Testing of Object-Oriented
Programs," The Journal of Systems and Software. v 32 n 1, Jan 1996, ISSN: 0164-1212.

11. Y. Labiche, P. Thévenod-Fosse, H Waeselynck and M.H. Durand, "Testing Levels for
Object-Oriented Software". In proc of ICSE' 2000, June 2000, Limerick (Ireland) 138-145,
ISBN 1-5811-3074-0.

12. Yves Le Traon, Thierry Jéron, Jean-Marc Jézéquel and Pierre Morel, "Efficient OO
Integration and Regression Testing", IEEE Transactions on Reliability, v.49, n 1, March
2000, 12-25. ISSN 0018-9529.

13. John D. McGregor and Tim Korson, "Integrating Object-Oriented Testing and
Development Processes," Communications of the ACM, v 37, n 9, September 1994, 59-
77, ISSN: 0001-0782.

14. S.M. Sait, H.Youssef, �Iterative Computer Algorithms with Applications in Engineering
Solving Combinatorial Optimization Problems�, IEEE COMPUTER SOCIETY 1999.

15. R. Tarjan, "Depth-first search and linear graph algorithms", SIAM J. Comput., v.1, n 2,
June 1972, 146-160, ISSN 1064-8275.

16. James Rumbaugh and Ivar Jacobson and Grady Booch,"The Unified Modeling Language
Reference Guide",Addison-Wesley, 1998, ISBN 0-201-3099-8.

	Introduction
	Stub Minimization and Testing Resource Allocation
	Stub Minimization
	Testing Resource Allocation

	From UML to Test Dependence Graph (TDG)
	Integration Strategies
	Kung and al.’s Strategy [10]
	Tai-Daniels’ Strategy [4]
	Triskell Strategy
	Using Genetic Algorithms for Stub Minimization

	Case Studies
	Comparison of Algorithms and Comments

	Conclusion

