
K.R. Dittrich, A. Geppert, M.C. Norrie (Eds.): CAiSE 2001, LNCS 2068, pp. 219–233, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Consistency Management
of Financial XML Documents

Andrea Zisman1 and Adamantia Athanasopoulou2

1 City University, Department of Computing, Northampton Square,
London EC1V 0HB, UK

a.zisman@soi.city.ac.uk
2 Singular International SA, R&D Department, 31 Polytechneiou St.,

Thessaloniki 54626, Greece
aath@si.gr

Abstract. In the financial domain a large number of inconsistent documents are
produced every day. Up to now, many of the consistency management activities are
executed manually, generating significant expense and operational risks. In this
paper we present an approach for consistency management of financial XML
documents. The approach includes the activities of consistency checking and
consistency handling. It is based on consistency rules, used to express relationships
among elements and documents, and resolution actions, used to restore the
documents to a consistent manner. A prototype tool has been developed to
demonstrate and evaluate the approach.

1 Introduction

A large number of financial documents are produced every day, either as a result of
financial transactions involving multiple actors with different views and opinions, or
as a result of accessing and manipulating data in trading systems. These systems are
generally created and administered independently, differing physically and logically.
The heterogeneity of these systems are exhibited in the use of different programming
languages, the availability of different platforms and operating systems, and the
various ways of storing, manipulating and exchanging data. Inevitably, the produced
documents are often inconsistent.

It is important to manage these inconsistencies to allow interoperability and
integration of front-, middle- and back-offices, and to support tasks like trade
confirmation, trade settlement, and trade collateral matching. Up to now, many of the
consistency management activities are executed manually, generating significant
expense and operational risks.

For example, consider a trade confirmation process, where each party produces a
document with its own view of a trade that has been agreed to over the phone. In a
normal scenario, the parties exchange these documents via fax or electronically in
order to check inconsistencies of the documents' content, such as settlement date, rate,
amount, name of the parties. The parties produce consistent versions by checking

220 Andrea Zisman and Adamantia Athanasopoulou

documents manually and discussing changes via phone and fax before executing the
settlement.

With the development of the Internet and eXtensible Markup Language (XML) [4],
new standard data interchange mechanisms for the financial domain have been
proposed. Examples of these standards are the Financial product Markup Language
(FpML) [15], Financial Information Exchange Protocol Markup Language (FIXML)
[16], Network Trade Model (NTM) [19], and Open Trading Protocol (OTP) [22].
These standards have been extensively used to support many financial activities,
ranging from Internet-based electronic dealing and confirmation of trades, to
interchange data between front-, middle-, and back-office services. The result is the
creation of various documents representing instances of the standards, generated by
different applications and person everyday. However, consistency management of
these documents is still an open question.

In this paper we propose an approach for consistency management of financial
XML documents. Our approach is simple, lightweight, and concentrates on
inconsistencies in the documents’ instance level. It is based on consistency rules, used
to express relationships among elements, and resolution actions, used to restore the
documents to a consistent state. When dealing with financial documents the resolution
of inconsistencies is necessary and important to avoid mismanagement of data.

The proposed approach tackles the activities of consistency checking and
consistency handling, in the consistency management process [31]. Consistency
checking is concerned with the tasks of specifying consistency rules and identifying
inconsistent elements, by checking for violations of the consistency rules.
Consistency handling is related to the tasks of specifying resolution actions for
dealing with inconsistencies, selecting the resolution actions to be executed, and
restoring the documents to a consistent format by applying the resolution actions1.

The work presented in this paper extends previous work for consistency
management proposed in [10][34]. In the previous work the authors proposed an
approach to allow identification and detection of inconsistencies in distributed XML
documents, based on consistency rules, where the related elements are associated
through hyperlinks named consistency links. The approach presented in this paper
complements this former work by describing a way of handling inconsistencies, and
applying the whole approach in a specific domain, i.e. finance.

The rest of this paper is organized as follows. Section 2 describes the approach
being proposed. Section 3 presents a formalism to express the consistency rules, a
classification for the different types of rules, and examples of these various types.
Section 4 describes a formalism to express the resolution actions and one example of
these actions. Section 5 addresses the implementation of XRule tool to support the
approach. Section 6 discusses related work. Finally, section 7 summarizes the
approach and suggests directions for future work.

1 As outlined in [31], in a consistency management process the consistency handling actions

depend on the type of inconsistencies and can be of various types. Examples are actions that
modify documents, restore or ameliorate inconsistencies, notify users about inconsistencies,
and perform analysis. In this paper we concentrate our work on actions that restore the
documents, called hereafter as resolution actions.

Consistency Management of Financial XML Documents 221

2 The Approach

Our approach is based on XML and related technologies such as XPath [7] and XSLT
[6]. Fig. 1 presents an overview of the approach. The main component of our
approach is called XRule and is composed of a consistency checker and a consistency
handler.

Fig. 1. An overview of the approach

The consistency checker is responsible for identifying inconsistencies in the
participating XML documents. It receives as input financial XML documents (e.g.
FpML instance documents) and consistency rules previously defined. The consistency
rules describe the relationship that should hold between the participating documents.
In the next step, the consistency checker verifies for violation of the consistency rules
in the XML documents, i.e. the relationships that do not hold. In cases where
inconsistencies are detected, the consistency checker generates resolution actions
related to these inconsistencies and a XSLT stylesheet document.

The resolution actions specify the parts inside the XML documents that are
inconsistent and to which value they should be changed in order to eliminate
inconsistencies. The XSLT stylesheet describes how to transform one XML document
into another XML document. The stylesheet and resolution actions are used by the
consistency handler to restore the XML documents into a consistent state. The
restoration of the documents is supported by XSLT processor, which transforms
inconsistent XML documents into ‘new’ consistent XML documents2.

The resolution actions and stylesheets are dynamically created during the
consistency management process. This is due to the fact that it is not possible to know
which parts of the participating documents are inconsistent before executing the
consistency checks. In addition, depending on the type of inconsistency and on the
inconsistent element, the user needs to interact with the system to specify a ‘new
value’ to which the inconsistent element should be modified.

2 A detailed description of XSLT [6] is beyond the scope of this paper.

Consistency Checker

XSLT
Processor

FpML
Documents

Consistency
Rules

Resolution
Actions

Stylesheet

Consistent
FpML

Documents

Consistency Handler

 XRule

222 Andrea Zisman and Adamantia Athanasopoulou

3 Consistency Rules

In this section we present the syntax used to express the consistency rules and the
different types of consistency rules that we can express using the syntax. The
consistency rule syntax is similar to the formalism proposed in [34]. However, it
involves logical quantifiers (forall, exists) and is described in terms of XML [4] and
XPath [7] syntax. The reasons for using XML and XPath are (a) to provide an open
and standard way of expressing the rules; (b) to facilitate and standardise the
construction and execution of a consistency rule interpreter; (c) to aid generation of
resolution action; and (d) to facilitate access to and modification of XML documents.

A consistency rule is composed of two parts. Part 1 is related to relevant sets of
elements in various documents to which the rule has to be verified. Part 2 is
concerned with conditions expressing the relationships between the elements in part 1
that have to be tested.

Fig. 2 illustrates the Document Type Definition [4] for the consistency rule syntax.
It contains a root element called ConsistencyRule composed of six element contents
and one attribute id. Attribute id uniquely identifies the consistency rule. The element
contents are described below.

Description – it contains a natural language description of the consistency rule;
Source & Destination – they contain XPath expressions for identifying sets of
elements to be checked against the consistency rule. It is possible to have more
than one type of Destination elements to be checked against the same type of
Source elements. This occurs when a consistency rule refers to more than two
types of element sets in the participating documents. Thus, for each type of
Destination element set in a rule there is a unique identification represented by
attribute dest_id, which is referenced as an attribute in element Condition;
Condition – it is composed of six attributes:

• expsourcequant - a quantifier that can have value “forall” or “exist”, which is
used to specify if the condition has to be satisfied for all elements, or at least one
element, respectively, in the Source element set;
• expsource - an expression related to the Source element set;
• op - an operator associating expsource with expdest, which can have the

following values: equal, not_equal, greater_than, less_than, less_equal,
greater_equal, and sum;
• dest_ref - a reference to the unique identification of a Destination set;
• expdestquant - a quantifier that can have value “forall” or “exist”, which is used

to specify if the condition has to be satisfied for all elements, or at least one element,
respectively, in the Destination element set;
• expdest - an expression related to the Destination element set.

Operator – this element is related to the situation in which the rule is composed
of more than one condition. It contains an attribute value, which can have the
Boolean content “AND” or “OR”.

The proposed consistency rule syntax allows the representation of different types
of consistency rules. We classify these types based on the facts that (a) the
consistency management process is executed by comparing the participating
documents and the elements composing the Source and Destination sets pair wise;

Consistency Management of Financial XML Documents 223

and (b) in XML documents data can be represented either as elements or attributes3.
Therefore, the different types for consistency rules that can be represented by using
the syntax shown in Fig. 2 are related to the comparison of documents, elements, and
mixture of documents and elements.

Fig. 2. Consistency rule syntax

Table 1 summarizes a general classification for the consistency rules. In the table
the names in the rows and columns are related to the different types of components
being compared: the Source element set and Destination element set, respectively.
The Source and Destination sets reference participating documents and XML
elements. The content of each position in the table refers to different consistency rules
described below.

This general classification can be refined to a more specific classification where we
consider the cardinality of the Source and Destination sets. Table 2 presents a
specialized classification for the consistency rules, based on the fact that either all
elements or at least one element, and either all documents or at least one document in
the Source and Destination sets are compared.

In order to illustrate, we present examples of some of the different types of
consistency rules related to finance. The rules are specified in XML, based on the
DTD syntax of Fig. 2. For the examples we assume documents related to FpML
standard [15].

3 XML has no rules related to when data should be represented as element or attribute. For

instance, in the XML Metadata Interchange (XMI) standard [21] all components of a UML
model are represented as elements. In this text we use the term element meaning both XML
elements and attributes.

<!ELEMENT ConsistencyRule (Description, Source,
Destination+, Condition, (Operator, Condition)*)>

<!ATTLIST ConsistencyRule id ID #REQUIRED>
<!ELEMENT Description (#PCDATA)>
<!ELEMENT Source (XPath)>
<!ELEMENT Destination (XPath)>
<!ATTLIST Destination dest_id ID #REQUIRED>
<!ELEMENT Xpath (#PCDATA)>
<!ELEMENT Condition EMPTY>
<!ATTLIST Condition

expsourcequant CDATA #REQUIRED
expsource CDATA #REQUIRED
op CDATA #REQUIRED
dest_ref CDATA #REQUIRED
expdestquant CDATA #REQUIRED
expdest CDATA #REQUIRED>

<!ELEMENT Operator EMPTY>
<!ATTLIST Operator value (AND|OR) “AND” >

224 Andrea Zisman and Adamantia Athanasopoulou

Table 1. General classification of consistency rules

Table 2. Specialised classification of consistency rules

Type 1: Existence of related elements
This type of rule is related to the existence of related elements in different documents
or in the same document.
Example: (Type 1.2) - For every two Foreign Exchange (FX) swap trade documents
F1 and F2, the party references in F1 has to be the same as the party references in F2.

Type 2: Existence of elements due to the existence of documents
This type of rule is related to the situation in which the existence of one or more
documents requires the existence of elements in another document.

 Destination Set Element Document
Source Set

Element Type 1 Type 3

Document Type 2 Type 4

<ConsistencyRule id=”R1.2”>
<Description> For every two FX swap trade documents representing a trade, the party
references in each of the documents have to be the same </Description>
<Source> <XPath> /fpml:FpML/fpml:Trade/fpml:tradeIDs/fpml:TradeIDs/tid:TradeID/

tid:partyReference </XPath> </Source>
<Destination dest_id=”pR”> <XPath> /fpml:FpML/fpml:Trade/fpml:tradeIDs/

fpml:TradeIDs/tid:TradeID/tid:partyReference </XPath> </Destination>
<Condition expsourcequant=”forall”

expsource=”.”
op=”equal”
dest_ref=”pR”
expdestquant=”exists”
expdest=”.” /> </ConsistencyRule>

Consistency Management of Financial XML Documents 225

Example: (Type 2.4) - For every Foreign Exchange (FX) swap trade documents F1

and F2, related to a trade involving two parties, the names of the parties must exist in
the documents.

Type 3: Existence of documents due to the existence of elements
This type of rule is related to the situation in which the existence of one or more
elements requires the existence of a document.
Example: (Type 3.2) - For every exchange rate in a FX swap trade document F1,
there must exist a document F2 with all the existing exchange rates.

<ConsistencyRule id=”R2.4”>
<Description> For every FX swap trade documents, related to a trade involving two parties, the
names of the parties must exist in the documents.
</Description>
<Source> <XPath> /fpml:FpML/fpml:Trade </XPath> </Source>
<Destination dest_id=”pR”> <XPath> /fpml:FpML/fpml:Trade </XPath> </Destination>
<Condition expsourcequant=”exists”

expsource=”./fpml:tradeIDs/fpml:TradeIDs/tid:TradeID[1]/tid:partyReference”
op=”equal”
dest_ref=”pR”
expdestquant=”exists”
expdest=”./fpml:tradeIDs/fpml:TradeIDs/tid:TradeID[1]/tid:partyReference”/>

<Operator value=”OR”/>
<Condition expsourcequant=”exists”

expsource=”./fpml:tradeIDs/fpml:TradeIDs/tid:TradeID[1]/tid:partyReference”
op=”equal”
dest_ref=”pR”
expdestquant=”exists”
expdest=”./fpml:tradeIDs/fpml:TradeIDs/tid:TradeID[2]/tid:partyReference”/>

<Operator value=”AND”/>
<Condition expsourcequant=”exists”

expsource=”./fpml:tradeIDs/fpml:TradeIDs/tid:TradeID[2]/tid:partyReference”
op=”equal”
dest_ref=”pR”
expdestquant=”exists”
expdest=”./fpml:tradeIDs/fpml:TradeIDs/tid:TradeID[1]/tid:partyReference”/>

<Operator value=”OR”/>
<Condition expsourcequant=”exists”

expsource=”./fpml:tradeIDs/fpml:TradeIDs/tid:TradeID[2]/tid:partyReference”
op=”equal”
dest_ref=”pR”
expdestquant=”exists”
expdest=”./fpml:tradeIDs/fpml:TradeIDs/tid:TradeID[2]/tid:partyReference”/>

</ConsistencyRule>

226 Andrea Zisman and Adamantia Athanasopoulou

Type 4: Existence of related documents
This type of rule is related to the situation in which the existence of a document
requires the existence of another document.
Example: (Type 4.2) - For every FX swap trade document F1 referencing two parties
pR1 and pR2, and produced by party pR1, there must exist a FX swap trade document
F2, produced by party pR2, with the same party reference name.

With the proposed syntax it is also possible to represent consistency rules that
check for the existence of unrelated documents or elements. Due to limitation of
space we do not present here examples of these types of consistency rules.

<ConsistencyRule id=”R4.2”>
<Description> For every FX swap trade document referencing two parties and produced by one
party, there must exist a FX swap trade document produced by the other party, with the same
party reference names </Description>
<Source> <XPath> /fpml:FpML/fpml:Trade </XPath> </Source>
<Destination dest_id=”ST”> <XPath> /fpml:FpML/fpml:Trade </XPath> </Destination>
<Condition expsourcequant=”forall”

expsource=”./fpml:tradeIDs/fpml:TradeIDs/tid:TradeID[1]/tid:partyReference”
op=”equal”
dest_ref=”ST”
expdestquant=”exists”
expdest=”./fpml:tradeIDs/fpml:TradeIDs/ tid:TradeID/tid:partyReference”/>

<Operatorvalue=”AND”/>
<Condition expsourcequant=”forall”

expsource=”./fpml:tradeIDs/fpml:TradeIDs/tid:TradeID[2]/tid:partyReference”
op=”equal”
dest_ref=”ST”
expdestquant=”exists”
expdest=”./fpml:tradeIDs/fpml:TradeIDs/tid:TradeID/tid:partyReference”/>

</ConsistencyRule>

Consistency Management of Financial XML Documents 227

4 Resolution Actions

In this section we present the syntax used to express the resolution actions. Similar to
the consistency rules, and for the same reasons, the syntax to express the resolution
action is also described in terms of XML [4] and XPath [7] syntax.

A resolution is composed of two parts. Part 1 is related to fragment parts of the
participating documents that are inconsistent. Part 2 is concerned with values that
should be replaced in the fragment parts of part 1, to convert the document to a
consistent state.

Fig. 3 illustrates the Document Type Definition [4] for the resolution action syntax.
It contains a root element called Action composed of two element contents. The two
element contents are described below. Fig. 4 presents an example of a resolution
action for consistency rule R4.2 (Type 4) shown in section 3

DocumentFragment - it contains XPath expressions identifying the part of the
document where inconsistency was detected;
NewValue – it contains the ‘new’ value to which the fragment part has to be
modified to restore the document to a consistent mode.

Fig. 3. Resolution action syntax

Fig. 4. Example of a resolution action

Based on the action a stylesheet is created to support the restoration of an
inconsistent document. Fig. 5 presents an example of a XSLT stylesheet related to
the resolution action shown in Fig. 4. The stylesheet is composed of two template
rules. The first template rule matches all the attributes and nodes in the original XML
document (source tree), and creates a new XML document (result tree) by copying
these attributes and nodes. The second template rule is related to the content of the
resolution action. It matches the nodes related to the inconsistent part of the
document, and replaces them with the ‘new value’ specified in the resolution action.

<!ELEMENT Action (DocumentFragment, NewValue)>
<!ELEMENT DocumentFragment (XPath)>
<!ELEMENT NewValue (#PCDATA)>
<!ELEMENT XPath (#PCDATA)>

<Action>
<DocumentFragment> <XPath>

fpml:FpML/fpml:Trade/fpml:tradeIDs/fpml:TradeIDs/tid:TradeID[1]/
tid:partyReference </Xpath> </DocumentFragment>

<NewValue>ABC Trust
</NewValue>
</Action>

228 Andrea Zisman and Adamantia Athanasopoulou

Fig. 5. An example of the XSLT stylesheet

5 The XRule Tool

In order to evaluate our approach, we developed a prototype tool called XRule, which
supports the consistency management process. The tool was implemented as proof of
concept and developed in JDK 1.1.6. It uses Apache [1] Xerces Java Parser 1.1.2, for
parsing XML documents, and Apache Xalan Java XSLT Processor 1.1, as the XSLT
processor.

The prototype contains the implementation of essential features that enable us to
evaluate and prove the feasibility of our approach. The main goals of our tool are to
perform consistency checks and restore the documents to a consistent state. The
document restoration is based on interaction with the user. This interaction is
necessary to identify the correct instance value of the inconsistent document part.

Fig. 6 presents the initial screen of the XRule tool. It contains a list of all available
consistency rules. For the prototype we have implemented ten different types of rules.
We grouped these rules into two categories: single document rules, for the rules
related to only one document, and pair of document rules, for the rules related to two
or more documents.

After selecting a consistency rule, the documents to be checked for consistency are
specified by the user. These documents can be located in the same machine where
XRule tool is being used or accessed over the Web. The result of the consistency
checking process is presented to the user, as shown in Fig. 7. For the example we
consider the execution of only one trade on 26/05/1999. Therefore, there are only two
documents checked for consistency rule 7 in Fig. 6. The first document (Source) is
related to the trade summary; the second document (Destination) is related to the trade
itself.

When an inconsistency is found, the application presents the fragment parts that
are inconsistent in both documents, with their respective values, as shown on the top

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=http://WWW.w3.org/1999/XSL/Transform>
<xsl:output method=”xml”/>

<xsl:template match=”@*|node()”/>
<xsl:copy>

<xsl:apply-templates select=”@*|node()”/>
</xsl:copy>

</xsl:template>

<xsl:template match=”fpml:FpML/fpml:Trade/fpml:tradeIDs/tid:TradeIDs/tid:TradeID[1]/
tid:partyReference”/>

ABC Trust
</xsl:template>
</xsl:stylesheet>

Consistency Management of Financial XML Documents 229

of Fig. 7. The two participating documents are also displayed on the screen to allow
the user to browse the documents, if necessary.

In the case where the user wants to execute the consistency handling process, s/he
selects to “proceed”. The application presents to the user the screen shown in Fig. 8
with the condition in the related consistency rule that does not hold for the
participating documents. After selecting the condition the application automatically
displays the related inconsistent values in the fragment of the participating
documents. The user specifies which document is inconsistent, by selecting either the
Source or Destination value, and specifies the ‘new value’ that should replace the
inconsistent one. For our example the user assumes that the Destination document is
inconsistent, i.e. the document related to the trade executed on 26/05/1999.

Based on the information specified by the user, XRule generates the resolution
action document and the XSLT stylesheet document. The tool executes the restoration
process, and a consistent document is generated and presented to the user.

6 Related Work

Many approaches have been proposed for consistency management. In particular,
approaches for software engineering documents and specifications. A complete and
up to date survey can be found in [31].

Fig. 6. Consistency rules

230 Andrea Zisman and Adamantia Athanasopoulou

Fig. 7. Result of the consistency checking process

Fig. 8. Consistency handling process

In [8][9][13] inconsistency is seen as a logical concept and the authors proposed a
first-order logic-based approach to consistency management in the ViewPoints
framework. However, this approach has not been implemented in a distributed setting.

Spanoudakis and Finkelstein [27][28] suggested a method called reconciliation to
allow detection and verification of overlaps and certain types of inconsistencies

Consistency Management of Financial XML Documents 231

between specifications expressed in an object-oriented framework. When managing
inconsistency, overlap detection is an activity that precedes consistency rule
construction [14]. We are investigating the use of reconciliation method to check
consistency of meta-level XML documents, i.e. XML Schema documents [12].

In [8][13][18][29][33] the authors proposed logic-based approaches for consistency
checking, where some formal inference technique is used to detect inconsistencies in
software models expressed in formal modeling languages. Our work complements
the work in [10], where the authors developed a technique for detecting
inconsistencies in distributed documents with overlapping content, based on XML
and related technologies.

The strategies proposed for consistency handling can be divided into two groups.
One group is related to the approaches that use actions, which modify the documents
by repairing or ameliorating the inconsistencies [8][9][20][23][33]. The other group is
concerned to approaches that notify the stakeholders about inconsistencies and
perform analysis that would safe further reasoning from documents [3][13][18].

Van Lamsweerde et al. [32][33] proposed a formal framework for various types of
inconsistencies that can occur during requirements engineering process. The idea is to
manage conflicts at the goal level in the context of the KAOS requirements
engineering methodology. This is achieved by introducing new goals or by
transforming specifications of goals into new specifications free of conflicts.

In addition, methods for consistency tracking have been proposed in [11][13]. On
the other hand, specification and application of consistency management policies are
presented in [11][13][24][28].

Identification and resolution of semantic and syntactic conflicts are also issues in
the multidatabase system domain. Many approaches have been proposed in the
literature [5][17][25][26]. A survey of different approaches to detect and resolve
conflicts can be found in [2].

Although the existing approaches have contributed to a better understanding of the
consistency management problem, an approach which deals with consistency
management of distributed financial documents have not yet been proposed.

7 Conclusion and Future Work

In this paper we presented an approach to consistency management of XML financial
documents. The approach supports the activities of consistency checking and
consistency handling. It uses XML and related technologies to allow Internet-scale
distribution, standardisation of the consistency management process, and access to
XML documents.

We proposed the use of consistency rules and resolution actions to support the
management process. We developed a prototype tool as proof of concept to evaluate
the ideas of the work and demonstrate the feasibility and applicability of the
approach.

Although the approach has been proposed for dealing with inconsistencies in the
financial domain, it can be deployed in other settings where consistency management
is necessary and important. Examples are found in the health care domain, scientific
domain, and business domains, among others.

232 Andrea Zisman and Adamantia Athanasopoulou

Before large-scale experimentation and use, we are expanding the prototype to
allow consistency management of heterogeneous financial documents such as FIXML
[16], FpML [15], and OTP [22], for meta-level (XML Schema) and instance
documents. We are also extending our work to allow different types of consistency
rules and resolution actions. In particular, rules and actions involving complex
financial calculations like derivative models, and semantic aspects of the data. In [31]
we proposed an approach for monitoring financial information where we present a
syntax to describe complex financial calculations. We also plan to expand the
approach to support other important activities of the consistency management process,
such as consistency tracking, consistency diagnosis, and consistency policy [31].

References

[1] Apache. http://xml.apache.org/index.html.
[2] C. Batini, M. Lenzerini, and S.B. Navathe. A Comparative Analysis of Methodologies

for Database Schema Integration. ACM Computer Surveys, 18(4), pages 323-364,
December 1986.

[3] B. Boehm and H. In. Identifying Quality Requirements Conflicts. IEEE Software, pp.
25-35, March 1996.

[4] T. Bray, J. paoli, C.M. Sperberg-McQueen, E. Maler. Extensible Markup Language
(XML) 1.0. W3C Recommendation, http://www.w3.org/TR/2000/REC-xml-20001006,
World Wide Web Consortium.

[5] M.W. Bright, A.R. Hurson, and S. Pakzard. Automated Resolution of Semantic
Heterogeneity in Multidatabases. ACM Transaction on Database Systems, 19(12), pages
212-253, June 1994.

[6] J. Clark. XSL Transformations (XSLT) Version 1.0. Recommendation
http://www.w3.org/TR/1999/REC-xslt-19991116, World Wide Web Consortium.

[7] J. Clark and S. DeRose. XML Path Language (XPath). Recommendation
http://www.w3.org/TR/1999/REC-xpath-19991116, World Wide Web Consortium.

[8] S. Easterbrook, A. Finkelstein, J. Kramer, and B. Nuseibeh. Co- ordinating Distributed
ViewPoints: the anatonomy of a consistency check. In Concurrent Engineering
Research & Applications, CERA Institute, USA 1994.

[9] S. Easterbrook and B. Nuseibeh. Using ViewPoints for Inconsistency Management. IEE
Software Engineering Journal, November 1995.

[10] E.Ellmer, W. Emmerich, A. Finkelstein, D. Smolko, and A. Zisman. Consistency
Management of Distributed Documents using XML and Related Technologies. UCL-CS
Research Note 99/94, 1999. Submitted for publication.

[11] W. Emmerich, A. Finkelstein, C. Montangero, S. Antonelli, and S. Armitage. Managing
Standards Compliance. IEEE Transactions on Software Engineering, 25(6), 1999.

[12] D.C. Fallside. XML Schema Part 0: Primer. Working Draft
http://www.w3.org/TR/2000/WD-xmlschema-0-20000407, World Wide Web
Consortium.

[13] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Inconsistency
Handling in Multi-Perspective Specifications. IEEE Transactions on Software
Engineering, 20(8), pages 569-578, August 1994.

[14] A. Finkelstein, G. Spanoudakis, and D. Till. Managing Interference. Joint Proceedings
of the SIGSOFT’96 Workshops – Viewpoints’96: An International Workshop on
Multiple Perspectives on Software Development, San Francisco, ACM Press, pages 172-
174, October 1996.

Consistency Management of Financial XML Documents 233

[15] FpML. Financial product Markup Language. http://www.fpml.org.
[16] FIXML. Financial International Exchange Markup Language. http://www. fix.org.
[17] J. Hammer and D. McLeod. An Approach to Resolving Semantic Heterogeneity in a

Federation of Autonomous, Heterogeneous Database Systems. International Journal of
Intelligent and Cooperative Information Systems, 2(1), pages 51-83, 1993.

[18] A. Hunter and B. Nuseibeh. Managing Inconsistent Specifications: Reasoning, Analysis
and Action. ACM Transactions on Software Engineering and Methodology, 7(4), pp.
335-367, 1998.

[19] Infinity. Infinity Network Trade Model. http://www.infinity.com/ntm.
[20] B. Nuseibeh and A. Russo. Using Abduction to Evolve Inconsistent Requirements

Specifications. Australian Journal of Information Systems, 7(1), Special Issue on
Requirements Engineering, ISSN: 1039-7841, 1999.

[21] OMG (1998). XML Metadata Interchange (XMI) - Proposal to the OMG OA&DTF RFP
3: Stream-based Model Interchange Format (SMIF). Technical Report AD Document
AD/98-10-05, Object Management Group,m 492 Old Connecticut Path, Framingham,
MA 01701, USA.

[22] OTP. Open Trading protocol. http://www.otp.org.
[23] W. Robinson and S. Fickas. Supporting Multiple Perspective Requirements Engineering.

In Proceedings of the 1st International Conference on Requirements Engineering (ICRE
94), IEEE CS Press, pp. 206-215, 1994.

[24] W. Robinson and S. Pawlowski. Managing Requirements Inconsistency with
Development Goal Monitors. IEEE Transactions on Software Engineer, 25(6), 1999.

[25] E.Sciore, M. Siegel, and A. Rosenthal. Using Semantic Values to Facilitate
Interoperability Among Heterogeneous Information Systems. ACM Transactions on
Database Systems, 19(2), pages 254-290, June 1994.

[26] M. Siegel and S.E. Madnick. A Metadata Approach to Resolving Semantic Conflicts. In
proceedings of the 17th International Conference on Very Large DataBases, pages 133-
145, Barcelona, Spain, 1991.

[27] G. Spanoudakis and A. Finkelstein. Reconciliation: Managing Interference in Software
Development. In Proceedings of the ECAI '96 Workshop on Modelling Conlicts in AI,
Budapest, Hungary, 1996.

[28] G. Spanoudakis and A. Finkelstein. A Semi-automatic Process of Identifying Overlaps
and Inconsistencies between Requirements Specifications. In Proceedings of the 5th
International Conference on Object-Oriented Information Systems (OOIS 98), pages
405-425, 1998.

[29] G. Spanoudakis, A. Finkelstein, and D. Till. Overlaps in Requirements Engineering.
Automated Software Engineering Journal, vol. 6, pp. 171-198, 1999.

[30] G. Spanoudakis and A. Zisman. Information Monitors: An Architecture Based on XML.
In Proceedings of 6th International Conference on Object Oriented Information Systems
– OOIS 2000, London, December 2000.

[31] G. Spanoudakis and A. Zisman. Inconsistency Management in Software Engineering:
Survey and Open Research Issues. Handbook of Software Engineering and Knowledge
Engineering, 2000. (To appear).

[32] A. van Lamsweerde. Divergent Views in Goal-Driven Requirements Engineering. In
Proceedings of the ACM SIGSOFT Workshop on Viewpoints in Software Development,
San Francisco, pages 252-256. October 1996.

[33] A. van Lamsweerde, R. Darimont, and E. Letier. Managing Conflicts in Goal-Driven
Requirements Engineering. IEEE Transaction on Software Engineering. November
1998.

[34] A. Zisman, W. Emmerich, and A. Finkelstein. Using XML to Specify Consistency Rules
for Distributed Documents, In Proceedings of the 10th International Workshop on
Software Specification and Design (IWWSD-10), Shelter Island, San Diego, California,
November, 2000.

	1 Introduction
	2 The Approach
	3 Consistency Rules
	4 Resolution Actions
	5 The XRule Tool
	6 Related Work
	7 Conclusion and Future Work
	References

