
K.R. Dittrich, A. Geppert, M.C. Norrie (Eds.): CAiSE 2001, LNCS 2068, pp. 473–476, 2001. 
© Springer-Verlag Berlin Heidelberg 2001 

A Method Engineering Language for the Description 
of Systems Development Methods 

(Extended Abstract) 

Sjaak Brinkkemper1, Motoshi Saeki2, and Frank Harmsen3

1 Baan R&D, P.O. Box 143, 3770 AC Barneveld, Netherlands 
SBrinkkemper@Baan.nl

2 Department of Computer Science, Tokyo Institute of Technology,  
Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8552, Japan 

saeki@cs.titech.ac.jp
3 Cap Gemini Ernst & Young Management Consultants 
P.O. Box 3101, 3502 GC Utrecht, the Netherlands 

nlharms4@nl.cgeyc.com

Abstract. We propose a Method Engineering Language, called MEL, as a 
formal representation language for the description of method fragments, i.e. the 
development processes, and the products and deliverables of a systems 
development method. The language allows representing the structures of 
method fragments, the applicable consistency rules, and a variety of method 
assembly operators, all of which the semantics are formally defined. The MEL 
language is illustrated by a simple example of a Sequence Diagram of UML. 

1 Introduction 

Systems development methods have always been described in an informal and ad-hoc 
manner. Interpretation and application of these methods is therefore subject to 
personal and circumstantial factors. In order to reason or manipulate with methods in 
an unbiased, neutral way a universal language for the representation of methods and 
tools is required and some languages have been developed and applied [1] [5]. In this 
paper we will introduce a dedicated language for the description and manipulation of 
methods. We have called this language simply MEL: Method Engineering Language.

In general, a specification language requires the expressive power to model the 
application domain in an effective manner, and should be practical to apply with 
respect to convenience, efficiency, and learnability [4]. For systems development 
methods in particular, the language should be able to support the representation and 
manipulation of 1) method fragments, i.e. method processes and method products, 2) 
development and project management aspects of methods, 3) conceptual definition 
and the supportive technical (i.e., tools) aspects of methods, and 4) constraints and 
rules concerning method fragments. 

MEL (Method Engineering Language), which we have developed, is intended to 
strike a balance between formal meta-modelling languages and graphical techniques 
used for method modelling. The language is able to represent in an integrated manner 



474      Sjaak Brinkkemper, Motoshi Saeki, and Frank Harmsen 

IS development methods both from the product perspective and the process 
perspective, as well as on various levels of decomposition and granularity. Moreover, 
MEL offers facilities to anchor method descriptions in an ontology, which is 
especially useful in the context of Situational Method Engineering. MEL provides 
operations to insert and remove fragments in and from the method base, to retrieve 
method fragments, and to assemble them into a situational method [2]. In the 
following sections the various constructs of MEL will be introduced. 

2 Description Example in MEL 

Methods and method fragments consist of product and process aspects. The product 
aspect specifies what products the developers should construct during a development 
process, while the process aspect navigates the developers to construct the products. 
The process descriptions suggest what activities and in what order are performed by 
the developers. 

Let's consider an example of the simplified version of Sequence diagram of UML 
[6, p. 3-97]. Figure 1 depicts the descriptions of the product of Sequence diagram and 
the process for constructing a Sequence Diagram. Figure 1-(a) shows the former 
meta-modelled in a Class Diagram of UML, while the latter in Figure 1 (b) is 
modelled in a Flow Chart.  

Fig. 1. Method fragment of sequence diagram 

As shown in Figure 1 (a), the objects that are in the system or in the external 
environments send and/or receive messages and the diagram depicts the timing of 
message passing, i.e. a chain of messages based on timing order. The association next
denotes the timing order of the messages. To construct a Sequence Diagram, we begin 
with identifying objects. The second step is to pick up a scenario for achieving a 
function of the system. The scenario is refined and structured in the third step.  

The MEL description of the Sequence Diagram method fragment is given 
underneath. Descriptions that begin with the reserved word PRODUCT are product 
fragments. LAYER denotes the abstraction layer (granularity) of product fragments 
and, according to [4], there are four granularity levels defined: Concept, Diagram, 
Model, and Method. Association between concepts is enabled through 
ASSOCIATION, along with its cardinality and its roles. PART OF and IS_A specify 
aggregation and generalization relationships on method fragments respectively. We 
can express rules and constraints regarding method fragments with the RULE



A Method Engineering Language      475 

construct, which does not appear in the example, as well as with the CARDINALITY
property type. Rules are first order logic formulas and only address the static aspects 
of product fragments.  

As shown in the MEL specification, the process descriptions of method fragments 
are similar to those of conventional procedural programs. However, unlike to 
procedural programming languages, parallelism and non-determinism of development 
activities needs to be described. MEL has syntactic constructs to compose a complex 
process from activities, such as sequential execution, conditional branch, iteration, 
parallel execution and non-deterministic choice. In the example, the occurrences of 
hyphen ( - ) before activity names indicate sequential activities. Formally speaking, 
we have precedence relationship on activities specifying the execution order. Process 
fragments can be hierarchically decomposed into smaller ones in order to describe 
complex fragments in a comprehensive way. The construct PART OF relates a child 
process to a parent fragment in the hierarchical structure. The correlation of process 
and product fragments is established through the REQUIRED and DELIVERABLES
section. 

PRODUCT Sequence Diagram:
ID Sequence Diagram;

IS_A Diagram;
LAYER Diagram;
SOURCE UML;
PART OF

Analysis Model, Dynamic Model;
CREATED BY

Construct a Sequence Diagram.

PRODUCT Sequence Diagram:
LAYER Diagram;
PART OF Use Case Model;
NAME TEXT;

PRODUCT Object:
LAYER Concept;
PART OF Use Case Model;
SYMBOL Rectangle;
NAME TEXT;
ASSOCIATED WITH
{(send,), (receive,)}.

PRODUCT Message:
LAYER Concept;
PART OF Use Case Model;
SYMBOL Arrow;
NAME TEXT;
ASSOCIATED WITH

{(send,), (receive,), (next,)}.

ASSOCIATION send:

ASSOCIATES (Object, Message);
CARDINALITY (1..1, 1..1).

ASSOCIATION receive:
ASSOCIATES (Object, Message);
CARDINALITY (1..1,1..1).

ASSOCIATION next:
ASSOCIATES
(Message, Message);
CARDINALITY (0..1, 0..1).

PROCESS
Construct a Sequence Diagram:

LAYER Diagram;
TYPE Creation;
PART OF

Create an Analysis Model;
REQUIRED {Interview results};
REQUIRED OPTIONAL

Current Information system;
( - Identify Objects ;
- Pick up

a Scenario of a Function ;
- Refine the Scenario as

an interaction sequences
)
DELIVERABLES
{Sequence Diagram}.



476      Sjaak Brinkkemper, Motoshi Saeki, and Frank Harmsen 

3 Operational Constructs of MEL 

The MEL operations for situational method engineering and method adaptation are 
the following: 
1. Insertion and maintenance of fragments of methods and tools in the method base 

by a methods administration function, e.g. inserting and removing method 
fragments to and from the method base; 

2. Selection of the method fragments for the project based on a characterisation of 
the project from a method base; 

3. Adaptation of method fragments to suit the aims of the method engineer, e.g. the 
operations for including a method fragment into another one; 

4. Assembly of the selected method fragments into a situational method, e.g. the 
operations for assembling two product fragments into a new product fragment by 
specifying the association or associations through which they should be 
connected, and the operations for creating a precedence relationship between two 
process fragments or between a process fragment and a set of process fragments. 
Since the method assembly process is considered as a procedure consisting of a 
sequence of MEL operations, it can be described as a process fragment. 

A discussion and an extensive example of assembly operators can be found in [3]. 

4 Conclusion and Future Work 

Departing from a set of requirements and purposes for method engineering languages, 
we have shown a part of MEL by using a simple example. It may be clear that the 
current textual format is not suitable as an end-user interface for a method engineer. 
Due to the complete formalisation of syntax and formal operational semantics of 
MEL [4], the language is unambiguous and suited to be serve as the underlying 
formalism for a Computer Aided Method Engineering (CAME) tool. This 
implementation has resulted in the MEL interpreter and editor contained in the 
Decamerone tool [3] environment for support of Situational Method Engineering.  

References

1. Brinkkemper, S., and S.M.M. Joosten (Eds.), Method Engineering and Meta-Modelling. 
Special Issue. Information and Software Technology, vol. 38, nr. 2, pp. 259-305, 1996. 

2. Brinkkemper, S., M. Saeki, and F. Harmsen, Meta-Modelling Based Assembly 
Techniques for Situational Method Engineering. Information Systems, vol. 24, No. 3, pp. 
209-228, 1999. 

3. Brinkkemper, S., M. Saeki, and F. Harmsen, A Method Engineering Language for the 
Description of Systems Development Methods. Baan R&D Report, November 2000. 

4. Harmsen, F., Situational Method Engineering, Moret Ernst & Young, 1997. 
5. Rolland, C., S. Nurcan, G. Grosz, A Decision Making Pattern for Guiding the Enterprise 

Knowledge Development Process. Journal of Information and Software Technology,
Elsevier, 42(2000), p. 313-331. 

6. The Unified Modeling Language Specification Ver 1.3, http://www.rational.com, 1999. 


	1 Introduction
	2 Description Example in MEL
	3 Operational Constructs of MEL
	4 Conclusion and Future Work
	References

