Constructing Libraries of Typical Plans

Antonio L. Furtado and Angelo E.M. Ciarlini*

Departamento de Informatica - Pontificia Universidade Catdlica do R.J.
22.453-900 Rio de Janeiro, Brazil
{furtado,angelo}@inf.puc-rio.br

Abstract. Databases able to represent, not only facts, but also events in the
mini-world of the underlying information system can be seen as repositories of
narratives about the agents and objects involved. The events treated in our ap-
proach are those attributed to executions of predefined application-oriented op-
erations. This work addresses the identification of rypical plans adopted by
agents, by analysing a Log registering the occurrence of events, as represented
by executions of such operations. The analysis is done by applying a previously
formulated set of goal-inference rules to sequences of interrelated events, called
plots, taken from the Log. The obtained Library of Typical Plans, together with
the goal-inference rules, constitute the behavioural level of our proposed three-
level conceptual schemas for the specification of information systems. A proto-
type Prolog implementation of the method for extracting typical plans is opera-
tional. A simple example is used to illustrate the discussion.

1. Introduction

The initial emphasis of the database approach to the conceptual specification of in-
formation systems was mostly on the static description of objects and their properties.
At a later stage, however, attention was also given to functional characteristics [1].
Theoretical and practical work at these two complementary levels has led to entity-
relationship schemes, object-oriented classes, and workflows, among other important
contributions. The use of observed instances for building such specifications has been
taken into consideration by recent research on workflow/process mining [10]. More
recently, there has been a growing realization that the specification of an information
system must also consider the agents [17,18,13] which will eventually put it to use.
What agents do is not fortuitous; they organize plans in an attempt to reach specific
goals. In turn, goals arise when certain situations occur. Besides adding to the defini-
tion of objects a characterization of their functional aspects, a third stage of specifica-
tion is therefore needed, where agents and their expected interactions are modelled.
Informally speaking, agents cause the occurrence of events affecting the existence and
various properties of entities in the mini-world of a given information system. And
what they make happen in this mini-world, which as a consequence of their actions
traverses a series of intermediate states, can be viewed, borrowing from traditional
literary terminology, as narratives.

* The work of the second author was supported by FAPERJ - Fundagdo de Amparo a Pesquisa
do Estado do Rio de Janeiro, Brazil

K.R. Dittrich, A. Geppert, M.C. Norrie (Eds.): CAiSE 2001, LNCS 2068, pp. 124-139, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Constructing Libraries of Typical Plans 125

Accordingly, we specify schemas at three successive levels. The first is the static
level, where the types of facts about entities to be stored in the database are declared,
according to the Entity-Relationship model extended with is-a hierarchies for entity
types. Secondly, application-oriented operations are defined, in a STRIPS-like for-
malism [5], to provide the dynamic level. A third level, the behavioural level, is
added, in order to model the reason why operations are executed and the way they are
typically combined and performed. The behavioural level is composed of goal-
inference rules and a Library of Typical Plans. Each goal-inference rule declares, for
an agent or class of agents, that the occurrence of a certain situation tends to motivate
the agent to pursue a given goal. Typical plans, consisting of partially ordered sets of
one or more executions of the application-oriented operations, represent the expected
patterns of database usage by the various agents, towards their goals.

The availability of a Library of Typical Plans enormously increases the under-
standing of strategies and policies habitually adopted by agents. The automatic con-
struction of such a library is therefore useful for the specification of a system that
models such agents. If a good plan is identified and generalized, it can be automated
and reused in many similar situations. If a bad plan is identified, it means that wrong
policies have probably been adopted and should then be corrected. At the final stage
of system implementation, typical plans can be used by plan-recognition algorithms to
simulate and evaluate the behaviour of the system. In [2], we describe a tool in which
plan-recognition and plan-generation are combined in order to simulate both typical
and non-typical interactions of database agents. Finally, when the system is fully
operational, the Library can be used by plan-recognition algorithms to detect, by
matching observed actions of an agent against the Library, whether such actions fit in
some known plan or plans. As soon as a plan is detected, the system may be able to
infer how to help or block such a plan, depending on the interest of the corporation.

Our three-level specification approach is especially useful if the database imple-
mented provides the two following features: (a) updates can only be performed
through the execution of the application-oriented operations introduced at the dy-
namic level; and (b) each execution of an operation triggers the insertion in a Log of a
record containing the name and arguments of the operation executed, together with a
time-stamp indicating the moment of execution.

A time-stamp-ordered sequence of records of executions of interrelated operations,
extracted from the Log, clearly corresponds to a sequence of events, which justifies
calling one such sequence a plot [2,21]. We mentioned above the notion of narratives
happening in the context of an information system. Plots can then be interpreted as
summaries of such narratives. As demonstrated in a companion paper [8], if a text-
generator is available, plots can be interpreted to produce natural language answers to
queries like: "What happened to Mary between time instants tl and t2?". But the
thrust of the present paper is how to use plots to help formulating the behavioural
level of conceptual specifications. As a first step towards this objective, we assume
that the goal-inference rules have been introduced at a preliminary stage. How to
discover the rules is, of course, a difficult knowledge-discovery task [14,12], which
we are investigating separately. Once the static and dynamic levels have been speci-
fied, and the goal-inference rules are available, we proceed to a trial phase, where the
prospective agents are called to operate on a prototype implementation of the infor-
mation system, thereby allowing the Log to grow to a size estimated large enough to
constitute a sample. Our tool, called BLIB, analyses then a series of plots taken from
the Log, on the basis of the goal-inference rules, in order to identify typical plans

126 Antonio L. Furtado and Angelo E.M. Ciarlini

toward such goals and, with the designer's participation, to build a Library of Typical
Plans.

The paper is organized as follows. Section 2 presents the three-level modelling
concepts, emphasizing the visualization of plots as the result of plans of the various
agents. Section 3 describes the method for obtaining typical plans from plots taken
from the Log. Section 4 contains concluding remarks, pointing out aspects where
certain tentative decisions adopted in the implemented prototype may be revised, by
considering different alternatives. A small example is used throughout the paper to
illustrate how the process works. For a more formal treatment of our modelling ap-
proach see [3]; other related formalisms can be found in [4,15,16].

2. Three-Level Specifications

The concepts used at each level will be introduced with the help of the very simple
example of a Company Alpha's database. Schemas are specified, at each level, in a
notation compatible with logic programming.

2.1. The Static Level

At the static level, facts are classified according to the Entity-Relationship model.
Thus, a fact may refer either to the existence of an entity instance, or to the values of
its attributes, or to its relationships with other entity instances. Entity classes may
form an is-a hierarchy. Entities must have one privileged attribute, which identifies
each instance at all levels of the is-a hierarchy. Moreover, we shall restrict ourselves
to single-valued attributes and binary relationships without attributes. All kinds of
facts are denoted by predicates.

% COMPANY ALPHA EXAMPLE

dbowner('Company Alpha').

entity(person, name).

entity(employee). is_a(employee, person). attribute(employee, level).
entity(company, denomination).

entity(client). is_a(client,company). attribute(client, account_status).

entity(course, title).

relationship(serving, [employee, client]).
relationship(dissatisfied_with, [client, employee]).
relationship(taking, [employee, course]).

Fig. 1. Static sub-schema

The example static schema — given in Fig. 1 — includes, among the entity
classes, person, company, and course; in addition, class employee is a specialization
of person, and client a specialization of company. The identifying attributes are name
(for person, and consequently also for employee), denomination (company and client)
and title (course). For the attribute level (of employee) there are only two possible
values: 1 and 2. Account_status is an attribute of client, referring to the status of the

Constructing Libraries of Typical Plans 127

client's account, whose only value that will concern us here, because of its criticality,
is inactive. Relationships serving and dissatisfied_with are defined between employ-
ees and clients; employees and courses are related by faking. With respect to onomas-
tic criteria, notice that nouns are used to name entity classes (e.g. person) and attrib-
utes (e.g. level). For relationships, we favour past or present participles (e.g. serving).
Examples of predicate instances representing facts are: (a) entity instance: per-
son('Mary'); (b) attribute of entity: level('Mary',1); (c) relationship: serv-
ing('Mary','Beta’). The set of all predicate instances of all types holding at a given
instant constitutes a state. In temporal database environments [19], one can ask
whether or not some fact F holds at a state S associated with a time instant t.

2.2. The Dynamic Level

The dynamic level covers the events happening in the mini-world of interest. A real
world event is perceived in a temporal database environment as a transition between
database states. Our dynamic level schemas (Fig. 2, for the current example) specify a
fixed repertoire of operations, whose execution provides the only kind of admissible
events, i.e. the only way to cause state transitions [9]. Accordingly, from now on we
shall equate the notion of event with the execution of one of these operations.

As in the STRIPS formalism [5], each operation is defined through its signature,
pre-conditions, and post-conditions or effects. Both pre-conditions and effects are
expressed in terms of facts, thus establishing a connection with the static level. Pre-
conditions are conjunctions of positive (or negated) facts, which should hold (or not
hold) before the execution, whereas effects consist of facts added and/or deleted by
the operation. When defining the signature of an operation, we declare the type of
each parameter (which implicitly imposes a preliminary pre-condition to the execu-
tion of the operation) and its semantic role, borrowing from Fillmore's case grammars
[6], a major contribution from the field of Linguistics. From the cases proposed by
Fillmore, we retained agent (denoted by the letter "a") and object ("o"); we found
convenient to denote the other cases (e.g. beneficiary, instrument, etc.) by some
preposition able to suggest the role when used as prefix. The agent is, of course, who-
ever is in charge of executing the operation. In our example, operation complain is the
only one whose definition indicates the agent explicitly. If none of the parameters is
indicated as playing the role of agent, the database owner is assumed by default to
have the initiative. Thus the clause

oper(replace(E1,E2,C), [employee/o, employee/by, client/for])
allows us to interpret the event replace('Mary','Leonard’,'Beta’) unambiguously as
"Company Alpha replaces employee Mary by employee Leonard for client Beta".

The other clauses defining the operation (cf. Fig. 2) give its preconditions and ef-
fects. As a consequence of these clauses, as the reader can verify, this particular re-
place event will indeed produce the state transition below, whose net effect is that, in
state Sj, Leonard, instead of Mary, is serving Beta:

Si Si
employee('Mary'). employee('Mary')
employee('Leonard’) — employee('Leonard’)
client('Beta’). client('Beta’).

serving('Mary','Beta’). serving('Leonard','Beta').

128 Antonio L. Furtado and Angelo E.M. Ciarlini

The other operations make it possible for Company Alpha to sign a contract with a
company (so as to make it one of its clients), to hire a person as employee with initial
level 1, to assign an employee to the service of a client, to enroll an employee in a
training course, to promote an employee by raising the level to 2, and to fire an em-
ployee. To clients it is allowed to formally complain about the service rendered by the
assigned employee, with the contractual effect of suspending all business transactions
(account_status = inactive).

% Operations
oper(sign_contract(C), [company/ with]).
added(sign_contract(C), client(C)).

oper(hire(E), [person/ o]).
added(hire(E), (employee(E), level(E, 1))).

oper(assign(E,C), [employee/ o, client/ to]).
added(assign(E,C), serving(E,C)).
precond(assign(E,C), ((not serving(E,C1)), (not serving(El, C)))).

oper(enroll(E,T), [employee/ o, course/ in]).

added(enroll(E,T), taking(E,T)).

deleted(enroll(E,T), (dissatisfied_with(C,E), account_status(C,inactive))).
precond(enroll(E,T), (serving(E,C), not taking(E,T1))).

oper(promote(E), [employee/ o]).

added(promote(E), level(E,2)).

deleted(promote(E), level(E,1)).

precond(promote(E), (serving(E,C), not dissatisfied_with(C,E), level(E,1))).

oper(replace(E1,E2,C), [employee/ o, employee/ by, client/ for]).
added(replace(E1,E2,C), serving(E2,C)).
deleted(replace(E1,E2,C), serving(E1,C)).
precond(replace(E1,E2,C), (serving(E1,C), not serving(E2,C1))).

oper(fire(E), [employee/ 0]).
deleted(fire(E), (employee(E), level(E,N), dissatisfied_with(C,E), account_status(C,inactive))).
precond(fire(E), (not serving(E,C))).

oper(complain(C,E), [client/ a, employee/ about]).
added(complain(C,E), (dissatisfied_with(C,E), account_status(C,inactive))).
precond(complain(C,E), serving(E,C)).

Fig. 2. Dynamic sub-schema

Pre-conditions and effects are usually tuned in a combined fashion, aiming at the
enforcement of integrity constraints. It can be shown that the integrity constraints
below, among others, will be preserved if, in consonance with the abstract data type
discipline, the initial database is consistent and these pre-defined operations are the
only way to cause database transitions: (a) an employee can serve at most one client
and a client can be served by at most one employee(i.e. serving is a 1-1 relationship);
(b) an employee can only be fired if currently not serving any client; and (c) to have a
level raise, an employee must be serving a client whose account is not inactive.

Verbs are employed to name the operations, possibly with trailing prepositions or
other words or particles, separated by underscore.

Constructing Libraries of Typical Plans 129

2.3. The Behavioural Level

Carefully designed application-oriented operations enable the various agents to handle
the database in a consistent way. The question remains of whether they will coexist
well with a system supporting such operations, and, if so, what actual usage patterns
will emerge. Ideally, the designers of an information system should try to predict how
agents will behave within the scope of the system, so as to ensure that the specifica-
tion at the two preceding levels is adequate from a pragmatic viewpoint. The ability
to make predictions about behaviour is also crucial for decision-making based on
simulations of future events.

To model the reactions of prospective agents, our behavioural sub-schema for the
Company Alpha example — given in Fig. 3 — contains a few illustrative goal-
inference rules, plus some typical plans (represented as complex operations).

% Goal-inference rules and typical plans

gi_rule('company Alpha', (employee(E), not serving(E,C)), not employee(E)).

gi_rule('company Alpha', (serving(E,C), account_status(C,inactive)), not account_status(C,inactive)).
gi_rule(employee(E1), (level(E1,1),level(E2,2)), level(E1,2)).

op_complex(renovate_assistance(C,E2,E1),[client/ to, person/ with, employee/ 'in the position of']).
components(renovate_assistance(C,E2,E1), [f1: hire(E2), f2: replace(E1,E2,C), f3: fire(E1)], [f1-f2, f2-f3]).

op_complex(advance_the_career(E), [employee/ of]).
components(advance_the_career(E), [f1: enroll(E,C), f2: promote(E)], [f1-2]).

op_complex(improve_service(C), [client/ for]).
is_a(enroll(E,T), improve_service(C): serving(E,C)).
is_a(renovate_assistance(C,E2,E1), improve_service(C)).

Fig. 3. Behavioural sub-schema

A goal-inference rule has, as antecedent, some situation which, if observed at a da-
tabase state, will arouse in a given agent the impulse to act in order to reach some
goal. Two rules refer to Company Alpha, the database owner. The first one indicates
that, if employee E is not currently serving any client, Alpha will want that E cease to
be an employee. The goal in the second rule is that Alpha will do an effort to placate
any client C who, being dissatisfied with the employee assigned to its service, has
assumed an inactive status. (Notice, incidentally, that "keeping a client happy" is, in
the terminology of [17], a soft goal, i.e. an imprecisely defined objective; in our ex-
ample, it assumes a more firm aspect through its dependence on the concrete consid-
eration of the account_status attribute). A goal is indicated for employees: if EI has
merely level 1, whilst some other employee E2 has been raised to level 2, then, pre-
sumably moved by emulation, E/ will want to reach this higher level.

The specification of behaviour is complemented by a Library of Typical Plans. A
typical plan is a description of how an agent (or class of agents) usually proceeds
towards some goal. It consists of either a set of partially ordered operations or plans,
or of a set of specialized alternative plans able to achieve the goal. Plans of both kinds
are expressed in the Library as complex operations. Let us call the operations intro-
duced in the previous section basic operations. Then, a complex operation can be
defined from the repertoire of basic operations (or from other complex operations,
recursively) by either composition (part-of hierarchy), giving origin to composite

130 Antonio L. Furtado and Angelo E.M. Ciarlini

operations, or by generalization (is-a hierarchy), yielding generic operations. In case
of composition, the definition must specify the component operations and the order-
ing requirements, if any (noting that we allow plans to be partially-ordered). In case
of generalization, the specialized operations must be specified.

In our example, complex operation renovate_assistance is composed of basic op-
erations hire, replace and fire. In turn, complex operation improve_service general-
izes basic operation enroll and complex operation renovate_assistance. (A minor
technical detail: the fact serving(E,C), introduced by ":" in the first is_a clause is needed
to identify E, which is not in the parameter list of improve_service). Notice that the
two (specialized) forms of improve_service have, among others, the effect of remov-
ing the undesired de-activation of a client's account. Both can be regarded as reflect-
ing customary strategies (typical plans) of Company Alpha to placate a complaining
client: it either trains the faulty employee or "renovates" the manpower offered to the
client. And therefore both are adequate to achieve the goal expressed in the second
rule of Fig. 3.

Complex operation advance_the_career has an apparent peculiarity, in that it devi-
ates from the usual norm of plan-generation algorithms, whereby operations are
chained together exclusively as needed for the satisfaction of pre-conditions. Here,
however, the component operation enroll is not required for satisfying a pre-condition
for promote (except in the special case where training is the chosen way to remove the
effects of a pending complaint). Our notion of typical plans, similarly to scripts [20],
allows however a looser interpretation. A plan is typical if it reflects the usages and
policies, imposed or not by rational reasons, that are observed (or anticipated) in the
real-world environment. Thus, we may imagine that the employer, Company Alpha, is
sensed to be more favourable to promoting employees who, even in the absence of
complaints against their service, seek the training program.

Through an analysis of the component or alternative operations of a given complex
operation, it is possible to determine the pre-conditions for its execution. It is also
possible to identify, among the facts that necessarily hold (or do not hold) after the
execution, a goal to be achieved by the operation. Given, as input, observations con-
cerning the execution of a few operations, the Library of Typical Plans can be used by
plan-recognition algorithms to detect which possible plans the agents may be trying to
perform. The recognized plan (or plans) can then be used in simulations of future
events. Also, plan detection implies the detection of the respective goals and pre-
conditions. Once the pre-conditions are obtained, they can be analysed to check
whether the plan can be completed. In turn, the detected goals can serve as input to
plan-generation algorithms to produce still other plans able to achieve them, which
may also be worthy to be tried in simulation runs.

In a previous work [2] we have used the three-level schemata for simulation pur-
poses, with the help of a plan-recognition / plan-generation method, combining algo-
rithms introduced in [11] and [22], and supported by a Prolog prototype. In that con-
text, a simulated process is enacted, whereby, at each state reached, the goal-inference
rules are applied to propose goals by detecting situations affecting each agent. For
attempting to fulfil such possibly collaborating or conflicting goals, plans are taken
from a Library of Typical Plans or built by the plan-generator component. In turn, the
execution of such plans leads to other states, where the goal-inference rules are again
applied, and again plans are obtained and executed, so that the multistage process will
continue until it reaches a state where no more goals arise, or until it is arbitrarily
terminated.

Constructing Libraries of Typical Plans 131

3. Using Goal-Inference Rules to Extract Plans from Plots

More often than not it is difficult for the designers of real-life information systems to
anticipate the usage patterns that will emerge after the system is delivered to opera-
tion. Hence, it may be necessary to postpone some design steps and interpose a trial
phase, wherein agents are given access to a prototypical version of the system, with a
Log of executed operations being recorded for later analysis. The missing design steps
can then be undertaken with the benefit of the sample experimental evidence ex-
tracted from the Log.

In section 2.3. we were considering the formulation of: (a) goal-inference rules,
and (b) typical plans (consisting of basic or complex operations). Now suppose in-
stead that, assuming a more realistic scenario, it was possible, by interviewing the
prospective agents of an information system being designed, to achieve step (a) to a
reasonable extent, whereas (b) could not be completed, since the people consulted felt
unable to predict beforehand how they would use the proposed basic operations. So,
as suggested above, we resort to the trial phase strategy, allowing the agents to inter-
act with a prototypical version until such time as the operation Log is sensed to con-
tain enough data for a comprehensive analysis. We proceed by extracting from the
Log a series of plots. Each plot is a sequence of events, ordered by their time-stamps,
where the first event occurred at a time instant t1 and the last event at t2. In other
words, if the entire Log is regarded as a sequence of events, then a plot PL is the sub-
sequence of the Log circumscribed to a given time interval tl..t2. To avoid exces-
sively long plots, involving many disparate events, it is possible (and often useful), as
shown in [8], besides restricting plots to time intervals, to filter them so as to only
retain events directly or indirectly related to certain specified objects. In the sequel,
we shall assume that all plots to be processed have passed, whenever convenient,
through this preliminary filtering step.

3.1. Interpreting Plots to Detect Plans

Having isolated a number of plots to be used as input, we analyse them by applying
the various goal-inference rules supposed to have been determined at a preliminary
phase. Our method relies on the assumption that plots generally reflect the interaction
of diverse plans — not always totally executed and successful with respect to the
intended goals — undertaken by the various agents.

When considering the plots, differently from the context of our previous work (cf.
end of section 2.3), we are not looking at simulation runs, but rather at observed ac-
tions, which may not be entirely rational. Hence, our use of goal-inference rules falls
into an abductive mode of reasoning, as explained in the sequel. Assume that a rule R
indicates that agent A, confronted with situation S, will have the desire to achieve a
goal G. Now suppose that in the plot being examined an operation (or sequence of
operations) O is present, with the effect of achieving goal G for A, and suppose fur-
ther that, in the state before the execution of O, the motivating situation S prevailed.
We then formulate the hypothesis that the event can be explained by this rule R, i.e.
that agent A executed (or was able to induce an authorized agent A' to execute) opera-
tion O because A previously observed the occurrence of S, being thereby motivated to
achieve G. This kind of reasoning is no more than hypothetical, because there may

132 Antonio L. Furtado and Angelo E.M. Ciarlini

exist other reasons (possibly expressed in other goal-inference rules) that may better
explain why O was executed. So, each goal-inference rule helps us to suggest one
interpretation for the events in a narrative.

Our Prolog prototype tool, BLIB, builds a Library of Typical Plans by examining a
succession of plots taken from the Log. It begins by trying to extract from each such
plot PL one or more plans, P, that can be associated with a goal-inference rule R =
gi_rule(A,S,G), establishing that situation S motivates agent A to pursue goal G. A
subsequence of events P' from PL is said to be associated with R if, prior to the execu-
tion of the first event in P', the situation S holds and, after the execution of the last
event in P', a state is reached where G finally holds. Plan P is obtained from P' by a
second more refined filtering process, which only keeps the events whose post-
conditions contribute to G, plus, proceeding backwards, recursively, those that
achieve pre-conditions of events already included in P. It should be stressed, in view
of the preceding considerations, that a plurality of plans can be extracted from the
same plot, and that the same plan can be associated with more than one goal-inference
rule. Accordingly, all interpretations warranted by the existing rules are taken into
account by the tool.

3.2. Overview of the Library Construction Process

The algorithm accumulates its output in a data structure, called the ASG-Index (from
now on simply referred to as Index), which is organized as a table, whose entries
correspond to each goal-inference rule gi_rule(A,S,G), defined on agent A, situation
S, and goal G. Each entry of the table is consequently indexed by [A,S,G], and stores
an (initially empty) list of operations, which can be either basic or complex. Each of
these operations incorporates a specific plan associated with the rule. At any instant,
the Index contains, in its essential elements, a representation of the current stage of
the Library of Typical Plans being constructed. Consider, for instance, the plot:

PL = [50, complain('Beta','Mary'), hire('Leonard’), hire('John'),
replace('Mary','Leonard’,'Beta'), fire('Mary')]

where sO denotes the preceding database state. Now, consider the rule below, to be
tentatively applied to PL:

gi_rule('company Alpha', account_status(C,inactive), not account_status(C,inactive)).

which says that, for agent A = Alpha, the situation S where the account of a client has
become inactive induces the goal G of bringing it back to activity.

When analysing PL to check whether or not the rule is applicable, the chaining of
pre-conditions and effects in PL is verified by a conventional holds meta-predicate,
which, incidentally, is the basis for simple plan-generators following STRIPS formal-
isms. A fact F holds after an operation O is executed at a state s, reached by executing
a previous sequence of operations Q if either: (1) O is the pseudo-operation sO and F
belongs to the corresponding database state; (2) F is among the facts declared to be
added by O, and the pre-conditions of O hold at 8; or (3) F already held at s, and is
not among the facts declared to be deleted by O.

Clearly, in case (1) the tool must have access to facts concerning the objects in-
volved, holding at the temporal database state corresponding to sO, either directly

Constructing Libraries of Typical Plans 133

retrieved by the tool itself or prefetched (as happens with the present version). To
check facts at states reached along the execution of operations in PL, the holds meta-
predicate simply resorts to the definitions of the operations. Notice that (2) and (3)
make the process recursive (fixing the pre-conditions as sub-goals, or looking for F in
the effects of the operations in Q), and that (3) is a standard solution for the frame
problem (facts not affected by O continue to hold). By using holds we not only check
coherence but also provide for the instantiation of some of the variables in the pre-
conditions and effects that do not correspond to the parameters.

In our example, the rule is found to be applicable to PL, allowing the extraction of
a sequence, which is readily refined to a plan P (by eliminating the irrelevant
hire('John')): P=hire('Leonard’),replace('Mary','Leonard’,'Beta’),fire('Mary').

Notice that S occurs as a consequence of complain('Beta’,'Mary') and that G holds
immediately after fire('Mary').

Having extracted a plan, BLIB must decide about its relevance to the construction
of the Index. The plan may be simple, involving a single event, or compound. If the
plan is compound, it is first put in a standard representation consisting of a set of
tagged events and of a set of order dependencies, expressed as tag-pairs, where the
order dependencies are determined exclusively on the basis of the satisfaction of pre-
conditions by post-conditions, and where dependencies deducible by transitivity are
omitted. In standard representation, the compound plan P exemplified above be-
comes:

— set of tagged events:
[f1:hire('Leonard’),f2:replace('Mary','Leonard’,'Beta’), f3:fire('Mary')]
— set of dependencies: [f1-f2, f2-f3]

In the Index, all operations involving a compound plan are kept in this format,
which is convenient for testing if a candidate plan Pi brings a novel contribution. The
inclusion or not of Pi at an entry [A,S,G] depends on a comparison with the opera-
tions already in that entry. One possibility is that an operation Oj defined on a (simple
or compound) plan Pj identical to Pi is already there — in which case nothing is done.
Another case is that of similar plans. We say that two plans Pi and Pj are similar if,
even with different parameter values and executed in a different order, they involve
the same: (a) number and type of events; (b) order dependencies; and (c) co-
designation/ non-co-designation schemes.

Co-designation (or, respectively, non-co-designation) allows (forbids) the occur-
rence of the same value (constant or variable) in different parameter positions. Notice,
for instance, that in the example above 'Mary’ occurs in the first position of replace
and in fire; a plan with ‘John'in both places (or, say, X in both places) would meet the
same co-designation requirement. To verify whether the order dependencies are the
same, one looks for a renaming of the tags of one of the plans that can render the sets
of order dependencies in the two plans identical.

Now, if we are considering a candidate plan Pi and there already exists an opera-
tion Oj with a similar plan Pj in the Index, Pj will be replaced by the most specific
generalization P* of Pi and Pj, whenever P* is more general (contains a larger num-
ber of variables) than Pj; otherwise Pi is discarded. Reliance on most specific gener-
alization [7] is a fundamental feature of our approach; we strive to stay as close as
possible to the evidence supplied by the plots, and thus, in particular, keep constants

134 Antonio L. Furtado and Angelo E.M. Ciarlini

that tend to repeat (e.g. one certain course taken by all employees who later succeeded
to be promoted).

improve_service

N

renovate_assistance

\ S

enroll hire replace fire

Fig. 4. Fragment of the library of typical plans

The third case is that of a Pi with no similar plan in the [A,S,G] entry. If Pi is sim-
ple, it is immediately added to the entry. If compound, BLIB asks the designer's help
(noting that he can decline, in which case Pi is discarded) to indicate the signature and
parameter roles of the new composite complex operation Oi. The generated clauses
for the example, to be stored in the Index at the [A,S,G] entry are shown below:

op_complex(renovate_assistance('Beta’,'Leonard’,'Mary'),
[client/ to, employee/ with, employee/ 'in the position of']).
components(renovate_assistance('Beta’,'Leonard’,'Mary'),
[f1:hire('Leonard’),f2:replace('Mary','Leonard’,'Beta’),.f3:fire('Mary')], [f1-f2,f2-f3]).

If the added basic or composite Oi is the first in the [A,S,G] entry, nothing else is
done. Otherwise, BLIB regards the existence of more than one plan associated with
the rule as an opportunity to create a generic complex operation. Accordingly, it asks
the designer (who, again, can decline) to supply the signature of the complex opera-
tion. Suppose that, before introducing the new renovate_assistance operation, the
respective entry already contained the basic operation enroll. With the designer's help,
generic operation improve_service can be further added, with the following clauses
being recorded in the entry (notice that all parameters are filled with variables, so that
no propagated change will be needed in view of future detection of similar plans):

op_complex(improve_service(C), [client/for]).
is_a(enroll(E,T), improve_service(C): serving(E,C)).
is_a(renovate_assistance(C,P,E), improve_service(C)).

The current version of BLIB supports only one generic operation Og per entry. So,
if Oi is introduced when there already exist two or more operations in the entry, and
Og has already been introduced, then the definition of the existing Og is merely ex-
panded through an additional is_a clause, relating Oi with Og.

Fig. 4 shows a fragment of the generated Library of Typical Plans. Following the
conventions in Kautz's plan-recognition project [11], single arrows denote part-of
links (composite operations) and double arrows are for is-a links (generic operations).

Constructing Libraries of Typical Plans 135

3.3. Reorganizing the Index

One software engineering requirement to be met by the organization of the Library of
Typical Plans is that it should be conducive to a modular architecture for the later
implementation of the operations. Multi-level composition naturally reflects in opera-
tional modules calling other modules on a shared basis, and multi-level generalization
leads to the conditional choice of modules appropriate to each different case.

Yet, in its current version, the first phase of BLIB creates no more than one-level
composition and generalization hierarchies, the only slightly more involved possibil-
ity being the presence of composite operations as alternatives of a generic operation,
as exemplified in Fig. 4. Due to our concern to avoid complicated and time-
consuming cases of propagation, we decided to keep this simple structure as long as
new plots continue to be submitted as input. However, at any time after a batch of
plots has been processed, BLIB can be called to execute a reorganization second
phase over the Index (and, hence, over the represented structure of the Library), so as
to produce certain improved multi-level hierarchies. If the acquisition of plans is
resumed later, then the original restricted structure must be first reinstated (which is
made possible by keeping a back-up copy prior to second phase runs).

The second phase of BLIB allows three kinds of restructuring, which are attempted
in the indicated order: (1) multi-level generalizations; (2) generic operations as com-
ponents of composite operations; and (3) multi-level compositions.

hire_mp hire_mp

/ire\ * hire_e/

Fig. 5. Multi-level generalization

Reflecting what often happens in practice, we expanded our example application,
which resulted in new larger versions of the three schemas (not reproduced here, for
space considerations), and processed additional plots. The second phase transforma-
tions were then executed. One instance of each kind is displayed below in diagram-
matic form.

1. Suppose that entry [A1,S1,G1] has a generic operation Ogl, and entry [A2,S2,G2]
has a generic operation Og2, and that the entire set of alternatives of Og2 is a
proper subset {O1, O2, ..., Ok} of the alternatives of Ogl. Then, transformation (1)
can be applied to replace, at the definition of Ogl, all the k alternatives by a single
occurrence of Og2. Fig. 5 illustrates the transformation. In the extended applica-
tion, besides hiring regular employees (operation hire, renamed to hire_r), Com-
pany Alpha was allowed to hire trainees (hire_t) and consultants (hire_c); notice
that both regular employees and trainees are specializations of employee, whereas
consultants are a separate category of manpower. At the first phase, operation
hire_mp (hire manpower) was introduced as a generalization of hire_r, hire_t and
hire_c, and operation hire_e (hire employee) as a generalization of hire_r and

136 Antonio L. Furtado and Angelo E.M. Ciarlini

hire_t. After the transformation, hire_mp becomes a generalization of hire_e and
hire_c.

/ engage \ engage

engage_r engage_t » / \
/ hire_e hire_e assign
. / \ \ hire_/ \\ hire_t

hire_r hire_t assign

Fig. 6. Generic operation as component of composite operation

2. The second transformation replaces a generic operation, whose alternatives are
composite operations differing by a single component, by one composite operation
with a generic component. Assume that entry [A1,S1,G1] has a generic operation
Og1, and that all the alternatives O1, O2, ..., On generalized by Ogl are composite
operations with the same number m of components, of which m-1 involve the same
operations, and that the order dependencies are analogous. So, each Oj alternative
essentially differs from the others by only one component Oji. Let the set {Oli,
021, ..., Oni} of the dissimilar components of the n alternatives correspond exactly
to the set of alternatives under another generic operation Og2, contained in a sepa-
rate entry [A2,52,G2] of the Index. Then, transformation (2) can be applied to re-
place the entire contents of entry [A1,S1,G1] by one composite operation, keeping
for convenience the same name as Ogl. The components of the new Ogl will re-
sult from the most specific generalization of the components of O1, O2, ..., On, to
be computed after replacing by Og2 the dissimilar component Oji of each Oj. Since
employees (both regulars and trainees) cannot be fired as long as they stay associ-
ated with some client, they strive not simply to be hired but, as soon as possible, to
become fully engaged through an assignment. The complex operation engage
emerged at the first phase of the process with two specializations: engage_r and
engage_t, for each kind of employee. As shown in Fig. 6, a considerably simpler
structure results from adopting hire_e as a (generic) component of engage.

3. Finally, assume that entry [A1,S1,G1] has a composite operation Ocl, and entry
[A2,S2,G2] has another composite operation Oc2, such that the entire set of com-
ponents X2 = {O1, O2, ... , Ok} of Oc2 is compatible, without imposing restric-
tions, with a proper subset 61 of the set X1 of components of Ocl (i.e. 2 can be
unified with 61, and the number of variables in 61 remains the same after unifica-
tion). Suppose further that the order dependencies between the components of Oc2
are exactly those holding for those of subset 61 in the Oc1 definition. Transforma-
tion (3) then tries to replace, at [A1,S1,G1], all components of Ocl in the 61 subset
by a single component Oc2, and adjusts each order dependency [Oi-Oj] as follows,
letting 61~ be the complement subset X1 - ¢1: (a) if both Oi and Oj are in 61,
keep [0i-QOj]; (b) if Oi is in 61 and Oj in 617, replace [Oi-Oj] by [Oc2-Oj]; (c) if
Oi is in 61™ and Oj in &1, replace [Oi-Oj] by [0i-Oc2]; and (d) if both Oi and Oj
are in 61, simply drop [Oi-Oj]. Cases (b) and (c) may obviously yield duplicates,
which should be eliminated. A situation that is treated as an inconsistency, and

Constructing Libraries of Typical Plans 137

causes the transformation to fail, is the simultaneous presence of [Oc2-Op] and
[Op-Oc2] among the resulting order dependencies, which will arise whenever there
existed dependencies [Og-Op] and [Op-Or], with both Oq and Or in 1. For Com-
pany Alpha, to obtain a new client involves signing a contract and then providing
assistance through the appointment of an employee. The chosen employee could be
anyone previously hired or freed (by replace) from a previous assignment. But one
possibly typical plan is to perform a new hiring specifically for immediate assign-
ment to the new client, as indicated in composite operation obtain. On the other
hand, the combination of hiring and assigning can be compactly expressed by
composite operation engage. Fig. 7 shows a restructuring over the part-of hierar-
chy, which parallels what is done with the is-a hierarchy in Fig. 5.

obtain obtain
' \nga e
enTrage / \
sign_contract hire_e \assign sign_contract hire_e assign

Fig. 7. Multi-level composition

4. Concluding Remarks

The present work is part of a larger research project, centred on the use of three-level
schema specifications for a variety of purposes. For the simulation of possible futures
in the mini-world of information systems — as well as for the interactive generation
of plots of narratives, belonging to real-life or literary genres —, we developed a
framework, formally described in [3]. In conformity with the framework, a prototype
tool was implemented [2], called Interactive Plot Generator (IPG), which utilizes
logic programming and constraint programming features to conduct simulation ex-
periments, supporting goal-inference rules of greater generality than those exempli-
fied here. The architecture of /PG is displayed in Fig. 8. Rectangular boxes represent
modules, all of which, except the Rule Formulation module, have been implemented.
The BLIB tool introduced in this paper corresponds to the main constituent of the
(shaded) Library Construction module.

Library construction terminates by extracting, from the Index built by BLIB, the
clauses defining the complex operations and, after adding complementary information
(especially the derived pre-conditions and the associated goals, which constitute the
main effects of the operations), composing the Library in the exact format required
for access by the other /PG modules.

Even though BLIB is fully operational, some of our decisions concerning its im-
plementation were only tentative, and may be revised as we experiment with an am-
pler variety of examples, ideally adapting the tool to work directly with databases of a
realistic size. The following points deserve special mention.

138 Antonio L. Furtado and Angelo E.M. Ciarlini

All extracted plans formed by more than one operation are discarded if the user
does not choose to give to it the status of a named composite operation. One may,
instead, prefer to keep record of such non-used plans for future analysis.

At the restructuring phase we limited ourselves to a few transformations which we
found relatively safe. Other transformations that are both safe and useful may be
identified in the future, leading, for instance, to complex operations that are generic
and, at the same time, contain components (as found in [11], and even in our full
version of IPG). Also, the preferred order of application of the transformations was
chosen in view of how they are currently implemented, but a more systematic study of
their mutual interactions is needed (and should be redone if new types of transforma-

tions are added).
User
Interface
" \

Recognizer Simulator \ emporal - Logic
Log
Processor

Library Goal

/Vv Evaluator

Library
Construction

! Rule Rules

Fig. 8. General architecture of IPG

The present approach exhibits an extensional, rather than an intensional bent. For
instance, for the first transformation we check whether the set of specialized opera-
tions of an Index entry [A1,S1,G1] currently contains the set of specialized operations
of another entry [A2,S2,G2]. But, in principle, this may follow from an implication
R2 — RI relating the corresponding goal-inference rules, with the consequence that
R1 = gi_rule(A1,S1,G1) would be more widely applicable than R2 =
gi_rule(A2,52,G2). This optional approach would involve a logical comparison of the
two situation-goal pairs.

Turning to a broader issue, recall that we assumed the goal-inference rules avail-
able before the typical plans. One may find more convenient to adopt a different strat-
egy, possibly trying to identify the typical plans on the basis of criteria not depending
on the rules. Moreover, being "typical" carries a notion of frequent occurrence, which
indicates that statistic measures should be incorporated, at least as a confirmation
criterion. With the continuation of the project we intend, regardless of the preferred
strategy for detecting typical plans, to focus our attention on goal analysis and on
methods and tools for the discovery of goal-inference rules.

Constructing Libraries of Typical Plans 139

References

1. Batini, C., Ceri, S., Navathe, S.B.: Conceptual Database Design: an Entity-Relationship
Approach. Benjamin-Cummings (1992)

2. Ciarlini, A.E.M., Furtado, A.L.: Simulating the Interaction of Database Agents. In: Proc.
DEXA’99 Database and Expert Systems Applications Conference. Florence, Italy (1999)

3. Ciarlini, A.E.M., Veloso, P.A.S., Furtado, A.L.: A Formal Framework for Modelling at
the Behavioural Level. In: Proc. The Tenth European-Japanese Conference on Informa-
tion Modelling and Knowledge Bases. Saariselkd, Finland (2000)

4. Cohen, P.R., Levesque, H. J.: Intention is Choice with Commitment. Artificial Intelli-
gence, 42. (1990) 213-261

5. Fikes, R.E., Nilsson, N. J.: STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving. Artificial Intelligence , 2(3-4) (1971)

6. Fillmore, C.: The Case for Case. In: Bach, E., Harms, R. (eds.): Universals in Linguistic
Theory. Holt, Rinehart and Winston (1968)

7. Furtado, A.L.: Analogy by Generalization and the Quest of the Grail. ACM/SIGPLAN
Notices, 27, 1 (1992)

8. Furtado, A.L., Ciarlini, A.E.M.: Generating Narratives from Plots using Schema Informa-
tion. In: Proc. NLDB'00 Applications of Natural Language to Information Systems. Ver-
sailles (2000)

9. Furtado, A. L., Neuhold, E. J.: Formal Techniques for Data Base Design. Springer-
Verlag, Berlin (1986)

10. Herbst, J.: A Machine Learning Approach to Workflow Management. In: Proc.
EMCL2000 European Conference on Machine Learning. Barcelona, Spain (2000)

11. Kautz, H. A.: A Formal Theory of Plan Recognition and its Implementation. In: . Allen, J.
F. et al (eds.): Reasoning about Plans.Morgan Kaufmann, San Mateo (1991)

12. Kolodner, J. L.: Case-Based Reasoning. Morgan Kaufmann, San Mateo (1993)

13. Kowalski, R., Sadri, F.: From Logic Programming towards Multi-Agent Systems. In:
Annals of Mathematics and Artificial Intelligence, 25, 1-2. (1999) 391-419

14. Matheus, C.J., Chan, P.K., Piatesky-Shapiro, G.: Systems for Knowledge Discovery in
Databases. IEEE Transactions on Knowledge and Data Engineering, 5, 6. (1993).

15. Meyer, J. J., Hoek, W., Linder, B.: A Logical Approach to the Dynamics of Commit-
ments. Artificial Intelligence, 113 (1-2). (1999) 1-41

16. Miller, R., Shanahan, M.: Narratives in the Situation Calculus. Journal of Logic & Com-
putation, 4, 5. (1994)

17. Mylopoulos, J., Castro, J.: Tropos: a Framework for Requirements-driven Software De-
velopment. In: Brinkkemper, S., Lindencrona, E., Solvberg, A. (eds.): Information Sys-
tems Engineering. Springer-Verlag, London. (2000)

18. Mylopoulos, J., Chung, L., Yu, E.: From Object-oriented to Goal-oriented Requirements
Analysis. Communications of the ACM, 42, 1. (1999) 31-37

19. Ozsoyoglu, G., Snodgrass, R.T.: Temporal and Real-time Databases: a Survey. IEEE
Transaction on Knowledge and Data Engineering, 7, 4. (1995).

20. Schank, R.C., Abelson, R.P.: Scripts, Plans, Goals and Understanding. Lawrence Erlbaum
Associates, Hillsdale, NJ. (1977)

21. Sgouros, N. M.: Dynamic Generation, Management and Resolution of Interactive Plots.
Artificial Intelligence, 107. (1999) 29-62

22. Yang, Q., Tenenberg, J., Woods, S.: On the Implementation and Evaluation of Abtweak.

Computational Intelligence Journal, 12, 2. (1996) 295-318

	1. Introduction
	2. Three-Level Specifications
	2.1. The Static Level
	2.2. The Dynamic Level
	2.3. The Behavioural Level

	3. Using Goal-Inference Rules to Extract Plans from Plots
	3.1. Interpreting Plots to Detect Plans
	3.2. Overview of the Library Construction Process
	3.3. Reorganizing the Index

	4. Concluding Remarks
	References

