Skip to main content

Robust Face Detection Using the Hausdorff Distance

  • Conference paper
  • First Online:
Book cover Audio- and Video-Based Biometric Person Authentication (AVBPA 2001)

Abstract

The localization of human faces in digital images is a fundamental step in the process of face recognition. This paper presents a shape comparison approach to achieve fast, accurate face detection that is robust to changes in illumination and background. The proposed method is edge-based and works on grayscale still images. The Hausdorff distance is used as a similarity measure between a general face model and possible instances of the object within the image. The paper describes an efficient implementation, making this approach suitable for real-time applications. A two-step process that allows both coarse detection and exact localization of faces is presented. Experiments were performed on a large test set base and rated with a new validation measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.P. Dubuisson and A.K. Jain. A modified Hausdorff distance for object matching. In ICPR94, pages A:566–568, Jerusalem, Israel, 1994.

    Google Scholar 

  2. K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maitre. XM2VTSDB: The extended M2VTS database. In Second International Conference on Audio and Video-based Biometric Person Authentication, pages 72–77, March 1999.

    Google Scholar 

  3. H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages 203–207, San Francisco, CA, 1996.

    Google Scholar 

  4. W. Rucklidge. Efficient Visual Recognition Using the Hausdorff Distance, volume 1173 of Lecture notes in computer science. Springer, 1996.

    MATH  Google Scholar 

  5. J. Terrillon, M. David, and S. Akamatsu. Automatic detection of human faces in natural scene images by use of a skin color model and of invariant moments. In Proc. of the Third International Conference on Automatic Face and Gesture Recognition, pages 112–117, Nara, Japan, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jesorsky, O., Kirchberg, K.J., Frischholz, R.W. (2001). Robust Face Detection Using the Hausdorff Distance. In: Bigun, J., Smeraldi, F. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2001. Lecture Notes in Computer Science, vol 2091. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45344-X_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-45344-X_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42216-7

  • Online ISBN: 978-3-540-45344-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics