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Abstract. Gait is an emerging biometric. Current systems are either holistic or 
feature based and have been demonstrated to be able to recognise people by the 
way they walk. This paper describes a new system that extends the feature 
based approach to recognise people by the way they walk and run. A bilateral 
symmetric and coupled oscillator is the key concept that underlies this model, 
which includes both the upper and the lower leg. The gait signature is created 
from the phase-weighted magnitude of the lower order Fourier components of 
both the thigh and knee rotation. This technique has proved to be capable of 
recognising people when walking or running and future work intends to 
develop invariance attributes of walking or running for the new description.  

1.  Introduction 

Using gait as a biometric is motivated by occlusion of criminals' faces and that they 
either walk or run to escape a crime scene. As such, even though many techniques 
have been developed to recognise people by the way they walk, there is no extant 
technique, which could recognise both by walking and by running. We describe a new 
system that can model both running and walking.  
 

In literature, Aristotle and Leonardo da Vinci studied human movement and 
Shakespeare observed the possibility of recognition by gait. More recently, Murray[1] 
produced standard walking movement patterns for pathologically normal men. 
Bianchi[2] revealed that there are inter-individual differences in human gait 
mechanics. Since the action of walking is dictated by the skeleto-muscular structure 
and the same structure is applied to running, if it suggests that if gait is indeed unique, 
then so should running. Perhaps, the earliest approach to gait recognition was to 
derive a gait signature from a spatio-temporal pattern[3].  Images were projected into 
an eigenspace and the resulting eigenvectors were used for recognition[4]. Then, the 
dense optical flow[5] technique used the relative phases of optical flow to form a 
feature vector to create a signature. A more recent statistical based approach 
combined canonical space transformation based on canonical analysis with the 
eigenspace transformation. Later, temporal information obtained from optical-flow 
changes between two consecutive spatial templates was incorporated to improve 
recognition capability[6]. The only model-based human gait recognition system[7] 



 

  

models human walking as two interconnected pendula representing thigh motion, 
which combined a velocity Hough transform with a Fourier representation to obtain a 
gait signature.  

 
Walking may be described in terms of double support, where two limbs are in 

contact with the ground, and single support, where one foot is in contact with the 
ground. Running is the natural extension of walking, which involves increased 
velocities, different joint movement and coordination. The running cycle, however, is 
not distinguished from walking by velocity, but by whether a person becomes 
airborne during motion, with 2 periods of double float where neither foot is in contact 
with the ground. The way the foot contacts the ground is different for walking and for 
running. Li et. al. observed that there occur topological similarities in the co-
ordination patterns between the thigh and lower leg in walking and running, which 
co-existed with functional differences throughout the gait cycle, especially in the 
transition from stance to swing phase., i.e. between 20% and 40% of the gait cycle[8]. 
 

We describe a new gait model that can handle running and walking, and with fewer 
parameters, in section 2.1. We then show how this can be used to create a gait 
signature in section 2.2, that is shown to be able to recognise people by the way they 
walk and run in section 3, on a limited database. 

2 Gait Modelling and Analysis 

2.1 Coupled Oscillator Gait Model 

As human gait is rhythmic and is naturally an oscillatory behaviour,[9] we can assume 
that an oscillator controls each limb and that limb movement is interconnected or 
coupled in some way. The main characteristic of human gaits, including walking, 
running and sprinting is bilaterally symmetric where the left and right legs and 
opposite side of arms interchange with each other with a phase shift of half a period. 
Both legs perform the same motion but out of phase with each other by half a period. 
These motions operate in space and time, satisfying the rules of spatial symmetry 
(swapping legs) and temporal symmetry (a phase-lock of half a period in general). 
Fig. 1 shows the rotation both of thighs and knees for a walking subject. Hence, we 
can assume the legs are coupled oscillators with half a period of phase shift. Both legs 
can be modelled by two distinct but systematically coupled oscillators, which oscillate 
at the same frequency (frequency-lock) but with fixed relative phase difference.  

 
The leg can be modelled as two pendula joined in series, see Fig. 2. The thigh 

rotation, θT(t), is described by Eq. (1), where t is the time index for the normalised 
gait cycle, AT is the amplitude of the thigh rotation and CT is the offset. 
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hx(0) and hy(0) are the initial hip coordinates. Decomposing Eq. (4) into the x and y 
parts yields the coordinates of the knee point as, 

 (5) 

 (6) 

Similarly, the structure of the lower leg is given by a line which starts at the knee, 
that passes through k at an angle θk. The ankle a is    

 (7) 

where uK (t) is the unit vector of the line direction, k(t) is the position of the knee and 
λK is lower leg length, as uK(t) = [-sin(θT(t) - θK(t)), cos(θT(t) -θK(t) )] and k(t) = [kx, 
ky], where kx and ky is the point of the knee. Decomposing Eq. (7) into x and y parts 
yields the coordinates of the ankle as, 

 (8) 

 (9) 

2.2 Feature Extraction, Fourier Description and k-Nearest Neighbour 

Equations (5, 6, 8 and 9), which describe the model of the moving leg, are used as the 
basis for feature extraction. The parameters of interest are hx(0), hy(0), AT, AK1, AK2, 
Ay, CT, CK1, CK2, λT, λK and φ. With this model, the computational cost and the 
number of parameters required is greatly reduced as compared with the earlier model-
based approach[8], which requires at least 26 parameters to approximate the motion of 
a single leg, not to mention both legs. With appropriate phase-lock, the model can 
handle both the left and right legs with the same number of parameters. By 
incorporating the coupled oscillators, the moving legs can be extracted accurately 
without confusion.  Template matching is used frame by frame to determine the best 
values for the parameters and hence the angle of the line that best matches the edge 
data. These angles are then used to compute a Fourier transform representing the 
spectrum of variation in the thigh and lower leg. 

 
The first and the second harmonic of the Fourier components of both thigh and 

knee rotations have the highest inter-class variance as compared with the higher 
components, which drop to near zero as the cut-off frequency of human walking is 
5Hz. Multiplying the magnitude and phase component, i.e. phase-weighted 
magnitude, increases the inter-class variance. Hence, the first and second phase-
weighted magnitude of both thigh and knee are used to create the gait signature. A 
basic classifier, the k-nearest neighbour was used. Clearly, other classifiers can be 
used to improve recognition capability but the issues here are rather more basic in 
nature. The Euclidean distance is used to obtain the distance between the test sample 
and the training data. The recognition results were evaluated by leave-one-out cross 
validation for different values of k in the k-nearest neighbour rule. 
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3 Results 

The database consists of the side views of 5 subjects, each with 5 sequences of 
running and of walking on an electric treadmill with speeds set at 3 and 6mph. The 
subjects wore their own choice of clothing. The inclination of the thigh and knee, as 
extracted by the new automatic coupled oscillator technique, were compared with 
manually labelled angles of the grey level images. This analysis showed that the 
average difference of the automatically labelled data was 2.5o. This is reflected in Fig. 
3, which shows the extracted position of the front of the leg superimposed on the 
original images. The extracted angles are still precise in regions where the legs cross 
and occlude each other and tolerates well with the nature of the background, 
especially occlusion by the treadmill's support. 

       (a)       (b)                  (c)                       (d)                        (e)                        (f)   
Fig. 3. (a) Edge data, (b) only leading edge is taken, (c) edge with 25% noise and (d-f) feature 
extraction results (superimposed in white). 

 
Fig. 4 shows the phase-weighted magnitude of the Fourier component obtained 

from both the thigh and knee rotation. These are just three out of the four components 
used for recognition.  The descriptors of walking subjects appear to cluster well, and 
are consistent with high recognition rates. The clusters for the running subjects are 
less distinct, though a more sophisticated classifier could handle such data, especially 
when complemented by other descriptors. 

Fig. 4 (a) and (b) shows the phase-weighted magnitude obtained from the Fourier transform of 
5 walking and running subjects, respectively. 

 
The recognition rates are very encouraging and reach 96% for walking and 92% 

for running. These are consistent with other studies[5,7] on similarly sized databases. 
The effect of smoothing in the feature space by using larger values of k is only seen in 

  



 

  

the noisy running data. In other cases the nature of the feature space clusters lead to 
limited effect. On this data, it appears that k=3 is the most prudent choice in general. 
With 50% added noise, the rate maintains at an acceptable level, which reaches 80% 
and 76% for walking and running respectively. Table 1 shows the classification rates.   

 
 
 
 
 
 
Table 1. The classification rates via k-nearest neighbour for walking and running, with noise 
level of 0%, 25% and 50%, with k=1, k =3 and k =5. 

5 Conclusions 

A new model based technique has been developed for the thigh and lower leg and 
achieves fewer parameters by using the property of coupled oscillators. This new 
model has been shown to good effect in recognition of subjects by the way they walk 
and by the way they run, with a relatively better recognition rate for walking as 
compared to running. However, the recognition rate could be improved by using a 
more sophisticated classifier. Accordingly there is a potential for determining an 
invariance relationship between walking and running which in turn could be used to 
recognise people by either the way they walk or run. 
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Noise Level (%) Walking (%) Running (%) 
 k=1 k=3 k=5 k=1 k=3 k=5 

0 96 96 96 92 88 84 
25 80 88 88 84 84 88 
50 80 80 68 64 72 76 


