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Abstract

Sylvester equations AX�XB = C play an important role in numerical linear
algebra. For example, they arise in the computation of invariant subspaces,
in control problems, as linearizations of algebraic Riccati equations, and in
the discretization of partial di�erential equations. For small systems, direct
methods are feasible. For large systems, iterative solution methods are available,
like Krylov subspace methods.

It can be observed that there are essentially two types of subspace methods
for Sylvester equations: one in which block matrices are treated as rigid objects
(functions on a grid), and one in which the blocks are seen as a basis of a
subspace.

In this short note we compare the two di�erent types, and aim to identify
which applications should make use of which solution methods.

1 Di�erent types of Sylvester equations

In this paper, we study solution methods for Sylvester equations AX � XB = C.
Here, A and B are square matrices of size n and k, whereas C and the unknown
X are matrices of dimensions n� k. We distinguish between two di�erent types of
solutions X that frequently occur in practical applications.

(A) As a numerical approximation to the solution of a partial di�erential equation,
X may represent a function on a rectangular grid.

(B) X may represent a k-dimensional subspace of IRn in algorithms for computa-
tion of invariant subspaces; merely the column span of X is of interest.

A natural context for equations of type (A) is to view the solution X as an element
of the Hilbert space H(n; k) of n � k matrices endowed with the Frobenius inner
product hG;Hi = trace(G�H) and its derived Frobenius norm k � kF . This setting
enables Ritz-Galerkin projection onto subspaces in a canonical way. Another fea-
sible solution method for equations of this type, in which X is also not seen as a
number of column vectors, is MultiGrid.

�Mathematical Institute, Utrecht University, P.O.Box 80.010, 3508 TA, Utrecht, The Nether-

lands. E-mail: brandts@math.uu.nl

1



Equations of type (B) are di�erent in the sense that it does not really matter whether
X or XF is produced by the numerical algorithm, where F may be any basis trans-
formation of IRk; indeed, right-multiplication of X by F does not change the col-
umn span, showing that F does not even have to be known explicitly. This freedom
should, whenever possible, be exploited by the solution algorithms.

We remind the reader [4] that the Sylvester equation AX�XB = C is non-singular
if and only if A and B do not have an eigenvalue in common. For perturbation
theory (which is di�erent than for general linear systems) we refer to [6].

1.1 Kronecker product formulation

Recall that any Sylvester equation can be written as an ordinary linear system of
equations since T : X 7! AX � XB is a linear mapping on IRn�k . De�ning a
function vec from the space of n � k matrices to the space of nk vectors by

vec(X) = vec
�h

x1 � � � xk
i�

= (x�1; � � � ; x
�

k)
� ; (1)

the action of T can be mimicked by an ordinary left-multiplication:

vec(T(X)) = vec(AX �XB) = (Ik 
A �B� 
 In�k)vec(X): (2)

Here, Iq is the q�q identity matrix and 
 the Kronecker product, which, for general
matrices Y = (yij) and Z = (zij), is de�ned as,

Y 
 Z =

2
64
y11Z � � � y1nZ
...

...
yn1Z � � � ynnZ

3
75 : (3)

Observation 1.1 The Kronecker product formulation in IRn�k endowed with the
standard `2-inner product is equivalent to the formulation in the space H(n; k) by
the identity

vec(A)�vec(B) = hA;Bi: (4)

This shows that the application of standard solution methods for linear systems to
the Kronecker product formulation of a Sylvester equation, results in methods that
are particularly �t for equations of type (A).

1.2 Basis transformations and assumptions

In theory, but practically only feasible if k is small, any basis transformation BF =
FT of B can be used to change the equation AX �XB = C into

AY � Y T = CF with Y = XF and T = F�1BF: (5)

This shows for example that if B is diagonalizable, the Sylvester equation reduces
to k decoupled linear systems.

We will assume that k � n and that k and n are such, that direct solution methods
are not feasible. Hence we concentrate on iterative methods. Moreover we assume
that if k is small, B is not diagonalizable, since the resulting decoupling would
remove the typical Sylvester features and lead to ordinary linear systems.
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2 Two model problems

In order to illustrate the two di�erent types of Sylvester equations mentioned in the
previous section, we will now describe two sets of model problems. The �rst set of
problems depends on a parameter that changes a partial di�erential equation from
di�usive to convective, whereas in the second set, the matrix A can be taken from
the Harwell-Boeing collection.

2.1 A model problem of type (A): Convection-Di�usion equation

Consider the following simple convection-di�usion problem de�ned on a rectangular
domain 
, with constant convection vector b = (b1; b2)� and right-hand side f ,

��u + b�ru = f in 
; u = 0 on @
: (6)

We will use a grid of rectangles on 
, where the x1-direction is subdivided into n+1
intervals of size h, and the x2-direction into k + 1 intervals of size s. This yields
n � k unknowns u(ih; js) that can be collected in an n � k matrix X = (xij) with
xij = u(ih; js). Note that due to numbering and notational conventions, the vertical
columns of X represent the horizontal x1-direction. The following discrete problem
results, �

1

h2
Dn +

b1
2h
Kn

�
X +X

�
1

s2
Dk +

b2
2s
Kk

�
= F: (7)

Here, Dj, for j either n or k, is the j�j tridiagonal matrix corresponding to the [-1 2
-1] approximation to the second derivative, and Kj the j�j tridiagonal matrix corre-
sponding to the [-1 0 1] approximation to the �rst derivative. Left multiplication by
these matrices represents di�erentiation in the x1 direction, and right-multiplication
di�erentiation in the x2 direction. Finally, F = (fij) = (f(ih; js)).

2.2 A model problem of type (B): Invariant Subspace problem

A typical invariant subspace problem for a given matrix A would be to �nd a full-
rank long tall matrix Y and a small matrix M such that AY = YM . If such Y and
M are found, it also holds that AX̂ = X̂(X̂�AX̂), where X̂R = Y symbolizes a QR-
decomposition of Y . This is because �̂ := I�X̂X̂� represents orthogonal projection
on the orthogonal complement of the columnspan of X̂, so �̂AX̂ = 0. Now suppose
we have an orthogonal matrix Xj that approximates the invariant subspace X̂, then
a new and hopefully better approximation Xj+1 can be found by solving

AXj+1 �Xj+1(X
�

jAXj) = AXj �Xj(X
�

jAXj): (8)

This is one iteration of the block Rayleigh quotient method. Clearly, it is only the
column span of Xj+1 that is of interest here.

Remark 2.1 Another approach leads to a Sylvester equation that is neither of type
(A) nor (B). Let � := I �XjX

�

j . Then Xj + Q with Q�Xj = 0 spans an invariant
subspace if Q satis�es

X�

jQ = 0 and �AQ �Q(X�

jAXj) = Q(X�

jA)Q� AXj : (9)
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This is a generalized algebraic Riccati equation [2] for Q. Approximations to solu-
tions Q can be found by iteration: set Q0 = 0 and solve the Sylvester equations

X�

jQi+1 = 0 and �AQi+1 �Qi+1(X
�

jAXj) = Qi(X
�

jA)Qi �AXj : (10)

Since Qi denotes a correction to an invariant subspace approximation, the precise
columns of Qi are indeed of interest. But since the columns of Xj are to a certain
extend arbitrary, no particular structure can be expected to be present in Qi. For
theory on convergence of the above and related iterations, we refer to [13, 3, 9].

3 Iterative methods for the Sylvester equation

An iterative algorithm for the Sylvester equation will basically have the following
structure. Given an initial guess X0 for the solution X , we compute the residual
R0 := C � AX0 + X0B, put k = 0, solve Uk approximately and cheaply from the
residual correction equation AUk � UkB = Rk, and update

Ck := AUk � UkB; Rk+1 := Rk � Ck; Xk+1 := Xk + Uk; k := k + 1; (11)

after which the process is repeated if necessary. If Uk is solved exactly, then clearly,
Xk+1 = X . Otherwise, the hope is that the algorithm will produce a sequence Xk

that eventually converges to X . The equivalent of classical ideas in linear system
theory leading to Richardson, Jacobi and Gauss-Seidel can be applied by replacing
A and B by their diagonals or upper triangular parts in order to get approximations
for Uk. For a study of SOR applied to the Kronecker formulation, see [12].

3.1 Preconditioning by direct methods on approximate systems

Right multiplication of AUk � UkB = Rk by the j-th canonical basis vector ej of
IRk leads, after a simple rearrangement, to

(A� bjjI)uj = Cej + Uk(B � bjjI)ej : (12)

In case B is upper triangular, the columns uj (j = 1; : : : ; k) of Uk can be solved from
(12) recursively since in the right-hand side of (12), only the columns u1; : : : ; uj�1
appear. Assuming that A is lower triangular, left-multiplication with e�j leads to a
similar construction. Bringing both A and B on triangular form leads to a system
that can be solved directly. This is the Bartels-Stewart algorithm [1]. As observed
by Golub, Nash and Van Loan [5], it may be more e�cient to bring the largest of
the two matrices merely on Hessenberg form. Clearly, both methods can play an
important role as preconditioners in iterative methods.

3.2 Residual correction in a Krylov subspace

The main idea of Krylov subspace methods like GCR, GMRES and FOM [4] is that
the residual correction takes place by projection onto a Krylov subspace of some
dimension m. If more than one cycle of (11) is necessary for su�cient accuracy, one
speaks of a restarted method, like GMRES(m). Here we will study one cycle only,

4



so, residual correction in an m-dimensional Krylov subspace. In the literature, two
essentially di�erent types of Krylov subspace methods for Sylvester equations are
frequently found. In the �rst, one Krylov subspace belonging to the operator T is
used to project upon. In the second, a Krylov subspace for A is tensored with a
(left-)Krylov subspace for B and the result is used to project upon.

3.2.1 Krylov subspace methods of type (I)

Krylov subspace methods can be applied to the Kronecker product formulation (2)
of a Sylvester equation. By Observation 1.1, it follows that in GCR, GMRES and
FOM, a linear combination of the matrices T(R0); : : : ;T

m(R0) is determined that
approximates the initial residual R0 in some sense. Explicitly, in GCR and GMRES,
scalars 
1; : : : ; 
m are determined such that

RA
1 := R0 �

mX
j=1

Tj(R0)
j (13)

has minimal Frobenius norm, while in the Galerkin method FOM those scalars are
determined such that RA

1 resulting from (13) is h�; �i-orthogonal to Tj(R0) for all
j = 1; : : : ; m.

3.2.2 Krylov subspace methods of type (II)

The second approach, due to Hu and Reichel [7], is to associate Krylov subspaces to
A and B separately, and to construct the tensor product space. Generally, assume
that Vp is an orthogonal n � p matrix and Wq an orthogonal k � q matrix. Then,
each p � q matrix Ypq induces an approximation VpYpqW

�

q of the solution U0 of
AU0 � U0B = R0 by demanding that

V �

p (AVpYpqW
�

q � VpYpqW
�

qB �R0)Wq = 0: (14)

By the identity
vec(VpYpqW

�

q ) = (Wq 
 Vp)vec(Ypq) (15)

it can be seen that (14) is a Galerkin projection onto the pq-dimensional subspace
space Wq 
 Vp of IRnk . By choosing for Vp and Wq block Krylov subspaces with
starting blocks full rank matrices RA and RB such that R0 = RAR

�

B, (14) can be
written as

HAYpq � YpqH
�

B = (V �p RA)(W
�

pRB)
�; (16)

where HA := V �

p AVp is p � p upper Hessenberg, HB = W �

pB
�Wp is q � q upper

Hessenberg, and both V �p RA and W �

pRB tall upper triangular matrices. It was
shown by Simoncini [8] that this Galerkin method results in a truncation of an
exact series representation of the solution in terms of block Krylov matrices and
minimal polynomials. Hu and Reichel [7] also present a minimal residual method
based on the same idea.

Remark 3.1 In the case that k is small, Wq may be chosen as the k � k identity
matrix. The action of B is then used exactly. The resulting projected equation is
then

HAYpk � YpkB = V �

p R0: (17)
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After computing a Schur decomposition for B, the Golub-Nash-Van Loan algorithm
[5] can then be employed to solve the projected system.

3.2.3 Comparison of the costs

In the Galerkin method of type (I), the subspaces consist of m blocks of size n � k
while the projected matrix is only of size m �m. A sparse Sylvester action costs
O(kn2 + k2n) operations. The orthogonalization in step j costs j Frobenius inner
products, each of costs kn2, so up to step m the construction of the Hessenberg
matrix and the projected right-hand side costs O(km2n2). Constructing the solution
of the Hessenberg system costs only O(m2) operations. Producing the solution of
the large system costs O(mkn2). So, assuming that k << n is small, the overall
costs are O(mnk) for storage and O(km2n2) for computation.

In the method of type (II), the storage is pn+ qk for the two Krylov matrices. The
construction of those matrices costs about pn2+ qk2 for the actions of sparse A and
B. Orthogonalizations are O(p2n2) and O(q2k2). The Hessenberg matrices are of
size p� p and q � q and solution is about O(k3 + kp2) for Schur decomposition and
solving k Hessenberg systems. Again assuming that k << n, the storage costs are
dominated by O(pn) and the computational costs by O(p2n2).

Observation 3.2 Assuming that p � km, which means that the number of n vec-
tors involved in the projection process is for both methods the same, the second
method is slightly more computationally expensive. Put di�erently, with the same
computational costs, the �rst method is more e�cient in the use of memory.

3.3 Implementation of the Galerkin methods

The implementation of the Galerkin methods FOM(I) and FOM(II) of type (I) and
(II) respectively, is done through Arnoldi orthonormalization of the blocks from
which the approximation is constructed. The orthogonalization takes place in dif-
ferent inner products, and for di�erent operators. For FOM(I), the operator T is
used, for FOM(II) we assume that C has full rank and put Wp equal to the identity
of size k as in Remark 3.1. The Arnoldi parts are given as MatLab-like code below.

************ META-CODE USED IN FOM(I) * META-CODE USED IN FOM(II) *********

*

function [V,H,E] = BARNOLDI(A,B,C,m); * function [V,H,E] = BARNOLDI(A,C,m);

*

E = FrobNorm(C); V{1} = C/E; * [V{1},E] = qr(C,0);

for k=2:m * for k=2:m

W = A*V{k-1} - V{k-1}*B; * W = A*V{k-1};

for j = 1:k-1; * for j = 1:k-1;

H(j,k-1) = trace(V{j}'*W); * H{j,k-1} = V{j}'*W;

W = W - V{j}*H(j,k-1); * W = W - V{j}*H{j,k-1};

end * end

H(k,k-1) = FrobNorm(W); * [V{k},H{k,k-1}] = qr(W,0);

V{k} = W/H(k,k-1); * end

end *

*

***************************************************************************
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4 Numerical experiments

Both FOM(I) and FOM(II) will be applied to solve the Sylvester equations of type
(A) and (B) described in Section 2. First problem is the convection-di�usion problem
of Section 2.1 with n = 200 and di�erent values for k and h = s = 0:001. This could
correspond to a problem in a thin tube. Convection parameter was set to ten and
in the long direction only. Listed in Table 1 is the amount of 
ops needed to get a
relative residual reduction of 10�6, and also the number of iterations.

2 4 6

10

20

30

40

50

60

70

80

90

100

CONVECTION DIFFUSION PROBLEM ON A THIN DOMAIN k 
ops(I) iters(I) 
ops(II) iters(II)

1 1.1e6 49 1.1e6 49

2 2.1e6 47 1.9e6 44

3 3.1e6 47 2.7e6 43

4 4.4e6 48 3.3e6 41

5 5.9e6 50 3.7e6 39

Table 1. Number of 
ops and number
of iterations for di�erent values of k.

Left: the solution on a long thin strip.

As a second problem we took one iteration of the Block Raleigh Quotient iteration,
as explained in Section 2.2, applied to the matrix SHERMAN2 from the Harwell-
Boeing collection. This is a matrix of size 1080� 1080. Again, for di�erent values
of k, we computed the next iterate with both FOM(I) and FOM(II) starting with
the same approximation. In Table 2 below, the results are given in the same format
as for Table 1.

k 
ops(I) iters(I) 
ops(II) iters(II)

1 3.5e5 5 3.3e5 5

2 2.0e6 12 8.5e5 6

3 2.2e7 46 2.8e6 11

4 1.2e7 26 2.2e6 7

5 4.2e7 49 1.9e6 5

10 1 1 5.3e6 6

Table 2.

4.1 Conclusions

In both cases, the method FOM(II) performed better than FOM(I). For the problem
of type (A), the di�erence is small, and also it should be noted that in spite of the
slightly larger number of 
ops needed for FOM(I), it was faster in time. For the
problem of type (B), clearly FOM(II) outperformed FOM(I).
The main di�erence between the methods is, that FOM(I) produces the exact solu-
tion in general only after nk steps, while FOM(II), due to the exact representation
of B, needs only n=k steps to bring A on upper Hessenberg form. Note that much
depends on the rank of the right-hand side matrix. In all our experiments, we took
it full rank. If it is not full rank, FOM(II) runs into problems because it produces a
rank de�cient Krylov basis.
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