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Abstract. We study Monte Carlo approximations to high dimensional
parameter dependent integrals. We survey the multilevel variance reduc-
tion technique introduced by the author in [4] and present extensions and
new developments of it. The tools needed for the convergence analysis of
vector-valued Monte Carlo methods are discussed, as well. Applications
to stochastic solution of integral equations are given for the case where
an approximation of the full solution function or a family of function-
als of the solution depending on a parameter of a certain dimension is
sought.

1 Introduction

Monte Carlo is often the method of choice when high dimensional problems have
to be solved. Classical Monte Carlo methods approximate a scalar, like a high
dimensional integral or a functional of the solution of an integral equation (the
value in a point, or a weighted mean). This field is well studied.

In this paper we are concerned with a different question: What if we want to
approximate whole functions, like, for example, integrals depending on a param-
eter, or the solution of an integral equation on a submanifold or even the full
solution. Much less is known for these problems. Is Monte Carlo still advisable
in these cases? And if yes, what are efficient MC-methods for these situations?

Let us first introduce the basic numerical problems to be studied:

Parametric integration: Compute

u(λ) =
∫

G

f(λ, t)dt

as a function of λ ∈ Λ, where Λ ⊆ Rd1 is the parameter domain, G ⊆ Rd2 the
integration domain, and f is a given function on Λ × G. Applications include
high dimensional integrals in finance.

Integral equations: Let u be the solution of an integral equation

u(s) =
∫

G

k(s, t)u(t)dt + f(s),



where G ⊆ Rd2 and k and f are given functions. Consider the following task:
Given a family of functionals gλ (λ ∈ Λ), where Λ ⊆ Rd1 is the parameter
domain, compute

v(λ) := 〈u, gλ〉 =
∫

G

u(s)gλ(s)ds

as a function of λ ∈ Λ. For example, if Λ ⊆ G and gλ = δλ - the delta-function,
this means that we want to compute u(λ) on a subset Λ of G, e.g. a submanifold,
or, if Λ = G, we seek to compute the full solution function. Applications are
transport problems, where various parameter dependent families of functionals
are computed (for example, the particle density in space is an average over the
velocity).

Clearly, the question of parameter dependence has been touched in many
Monte Carlo papers, but a systematic study was conducted by Frolov, Chentsov
[2], Sobol [14], [15], who developed the method of dependent tests, and later
on by Mikhailov [10], Prigarin [12], Voytishek [17],[18], who called their class of
methods discrete-stochastic procedures. The multilevel approach to these prob-
lems originates in Heinrich [4] and was further developed in [5],[6], and by Hein-
rich and Sindambiwe in [7]. Sindambiwe [13] contains extensions to unbounded
domains and first numerical experiments, while Keller [8] presents applications
to light transport in computer graphics. Further numerical testing is reported
by Voytishek and Mezentseva [19]. It is the aim of this paper to give a short
introduction into the basic ideas of this method, its background and its applica-
tions. We start with an example which explains the crucial ideas in a very simple
situation.

2 A simple example

We are given a function f(λ, t) ∈ C[0, 1]2 and want to compute

u(λ) =
∫ 1

0

f(λ, t)dt (1)

for all λ ∈ Λ = [0, 1]. First we consider the

2.1 Standard, one-level approach:

What is the usual, direct way of applying Monte Carlo to this problem? We fix a
grid, {λi = i

n , i = 0, 1, . . . , n}, where n ∈ N, estimate the respective integrals
(1) in the node points and interpolate in some way. We estimate

u(λi) ≈
1
N

N∑
j=1

f(λi, ξj),

where ξj (j = 1, . . . , N) are independent, uniformly distributed on [0, 1] random
variables. Note that this is (in a simple form) the basic approach of discrete-
stochastic procedures ([17], [18]). Our choice here incorporates the method of



dependent tests [2]: although the ξj are independent, the same ξj is used for
all parameters λi, i = 0, . . . , n. Due to these dependencies one obtains smooth
approximating curves and avoids the statistical fluctuations from node to node.
(It is exactly this approach which we need as a starting point for our multilevel
method.) Next one approximates the full function by interpolation: For all λ ∈ Λ

u(λ) ≈ (Pu)(λ) =
n∑

i=0

u(λi)ϕi(λ)

≈ η(λ) :=
n∑

i=0

 1
N

N∑
j=0

f(λi, ξj)

ϕi(λ) =
1
N

N∑
j=0

(Pf(·, ξj))(λ).

For this introductory example, piecewise linear interpolation suffices, that is, the
ϕi are the respective hat functions. The error of such a method is defined to be
the root mean square norm deviation (we have chosen the L2-norm here, which
is the simplest in this respect, other norms are considered below):

e(η) =
(
E‖u− η‖2

L2
.
)1/2

=
(
E
∫ 1

0

|u(λ)− η(λ)|2dλ

)1/2

.

Under the simple smoothness assumption f ∈ C1,0([0, 1]2) (that means, f ∈
C([0, 1]2) and f is continuously differentiable with respect to λ), it can be shown
that

e(η) = O(N−1/2 + n−1).

Obviously, the computational cost (number of arithmetic operations, random
number and function value calls) is O(nN). Consequently, the optimal error-
cost relation is reached for n = Θ(N1/2), which gives an error O(N−1/2) at cost
O(N3/2).

2.2 Multilevel-Splitting

Now assume that we have a sequence of grids

{λ`i =
i

2`
, i = 0, 1, . . . , 2`} (` = 0, . . . ,m)

with the associated interpolation operators

P`u =
n∑̀
i=0

u(λ`i)ϕ`i,

so that P = Pm. Trivially, we can represent

P = Pm =
m∑

`=0

(P` − P`−1) (P−1 := 0).



Let us still stay with the standard (dependent test) estimator from above, which
can now be represented as

η =
m∑

`=0

1
N

N∑
j=0

(P` − P`−1)f(·, ξj). (2)

This allows us to have a closer look at the behaviour of this estimator in the
various levels: In the following table we give the order of variance and cost related
to the respective level (to emphasize the ideas, we act as if we would compute
the standard estimator by formula (2) – which actually would not change the
order of cost).

level 0 ` m

square root of variance N−1/2 2−`N−1/2 2−mN−1/2

cost N 2`N 2mN

We see that the variance reaches its maximum essentially at the first level, while
the maximal cost is concentrated at the last level. This leads us to the idea of
the multilevel approach: we try to balance error and cost in the most efficient
way.

2.3 Multilevel approach

Now we adopt representation (2), but moreover, allow the number of samples
in each level to vary. In other words, we choose N` ∈ N (l = 0, . . . ,m), let
{ξ`j , ` = 0, . . . ,m, j = 0, . . . , N`} be independent, uniformly distributed on
[0, 1] random variables, and define the multilevel estimator as

ηmult =
m∑

`=0

1
N`

N∑̀
j=1

(P` − P`−1)f(·, ξ`j).

A suitable choice of balancing for our simple situation is, for example, N` �
2−3`/2N (the notation � is equivalent to the Θ notation). We keep the relation
n = 2m � N1/2. Then it can be checked that the error-cost table looks as follows:

level 0 ` m

square root of variance N−1/2 2−`/4N−1/2 2−m/4N−1/2

cost N 2−`/2N 2−m/2N

It follows that the total stochastic error is O(N−1/2) (the deterministic, system-
atic error due to the interpolation approximation is ‖u − Pmu‖ = O(2−m) =
O(N−1/2)), and the total cost is O(N). What did we gain? As compared to
the standard, one level method, we saved the grid factor n (= 2m). That is,
we computed an approximation to the whole family of integrals with the error
O(N−1/2) and cost O(N) of a standard computation of one single integral!



3 A general result

After having explained the ideas at a simple example, we now state general
conditions in order to include large classes of domains, smoothness and types of
summability into this method and its analysis. At the same time we try to keep
the smoothness assumptions minimal in the sense that they are needed only with
respect to the parameter variables. Let Λ ⊂ Rd1 and G ⊂ Rd2 be bounded open
sets with Lipschitz boundary. Let 1 ≤ q ≤ ∞, r ∈ N and assume the following
(Sobolev embedding) condition: r/d1 > 1/q. Define

W r,0
q (Λ×G) =

{
f ∈ Lq(Λ×G) :

∂αf

∂λα
∈ Lq, |α| ≤ r

}

‖f‖W r,0
q

=

∑
|α|≤r

∥∥∥∥∂αf

∂λα

∥∥∥∥q

Lq

1/q

,

where ∂αf
∂λα denotes the generalized partial derivative. If p = ∞, the integrals are

replaced by the essential supremum in the usual way. So f ∈ W r,0
q (Λ×G) means

roughly that f(λ, t) is in the standard Sobolev space W r
q with respect to λ and

just in Lq with respect to t.
We proceed in a general way also with the approximating operators. Let

P` : W r
q (Λ) → Lq(Λ) (` = 0, 1, . . .)

be linear operators of the form

P`f =
n∑̀
i=0

f(λ`i)ϕ`i

with λ`i ∈ Λ̄ (the closure of Λ), and ϕ`i ∈ Lq(Λ). Note that, due to the embed-
ding condition, the f(λ`i) are well-defined. We assume that there exist constants
c1, c2, c3 > 0 such that

c12d1` ≤ n` ≤ c22d1`

‖I − P` : W r
q (Λ) → Lq(Λ)‖ ≤ c32−r`. (3)

Here I : W r
q (Λ) → Lq(Λ) stands for the identical embedding. We do not specify

the approximating operators in more detail. We just mention that for standard
domains there are plenty of families satisfying these requirements, as e.g. trian-
gular, rectangular or isoparametric finite elements (see Ciarlet [1]). For example,
if r = 2, and the domain is polyhedral, piecewise linear interpolation suffices.

Based on these tools we now introduce the multilevel estimator:

ηmult =
m∑

`=0

|G|
N`

N∑
j=1

(P` − P`−1)f(·, ξ`j) (P−1 := 0).



Here ξ`j are independent, uniformly distributed on G random variables. In detail,
the multilevel estimator looks as

ηmult =
m∑

`=0

|G|

 n∑̀
i=0

 1
N`

N∑̀
j=1

f(λ`i, ξ`j)

ϕ`i

−
n`−1∑
i=0

 1
N`

N∑̀
j=1

f(λ`−1,i, ξ`j)

ϕ`−1,i

 .

Let us mention that we are not restricted to the uniform distribution for the (ξ`j).
We might as well choose another appropriate (e.g. ”importance”) distribution,
say with density π, but then |G|f(·, ξ`j) in the above estimator should be replaced
by f(·, ξ`j)/π(ξ`j). Finally, we introduce the error criterion: Let p = min(2, q).
We define the error of method ηmult as

e(ηmult) = (E‖u− ηmult‖p
Lq

)1/p.

Let us explain this choice. Since we deal with Sobolev spaces with summability
index q, the natural norm to measure approximation error is the Lq(Λ) norm,
which we chose here. This, however, does not yet say how we handle the fact
that ηmult is a vector-valued (Lq(Λ)-valued) random variable. In the case 2 ≤
q ≤ ∞, we take the root mean square norm error (that is, the second moment)
as in our introductory example. However if q < 2, due to the weak summability
assumption, the second moment may not exist, and we therefore then take the
q-th moment. The following result which is proved in [6] gives the speed of
convergence of the described multilevel Monte Carlo method.

Theorem 1. Let 1 < q < ∞, p = min(2, q). Then there exist constants c1, c2 >
0 such that for each integer M > 1 there is a choice of parameters m, (N`)m

`=1

such that the cost of computing ηmult is bounded by c1M and for each f ∈
W r,0

q (Λ×G) with ‖f‖W r,0
q

≤ 1

e(ηmult) ≤ c2


M−r/d1 if r/d1 < 1− 1/p
M1/p−1 log M if r/d1 = 1− 1/p
M1/p−1 if r/d1 > 1− 1/p.

Using methods from information-based complexity theory ([16], [11], [3]), it can
be shown in a similar way as in [7] that this algorithm is optimal in a very broad
sense: No randomized algorithm with cost M can reach a better rate than the
above on the given class of functions (up to a possible log M factor in the case
r/d1 = 1− 1/p).

4 Error estimates via probability in Banach spaces

In this section we explain the tools needed to prove error estimates like the above,
that is, for vector-valued random variables. As the analysis of the classical, scalar



valued Monte Carlo method needs the theory of scalar-valued random variables,
that is, standard probability theory, we require for our analysis the respective
vector-valued tools, which are provided by Banach space probability theory (see
[9]). Let us have another, more general look at our problem from this point of
view. Suppose we seek to approximate u ∈ X, where X is a Banach space (e.g.
of functions, like in our concrete case of section 3, X = Lq(Λ)). Let 1 ≤ p ≤ 2
and let θ be an X-valued random variable with

Eθ = u and E‖θ‖p
X < ∞.

Let, furthermore, P0, P1, . . . , Pm be a sequence of finite rank operators on X.
We define an X-valued random variable approximating u by

ηmult =
m∑

`=0

1
N`

N∑̀
j=1

(P` − P`−1)θ`j (P−1 := 0).

Here (θ`j , ` = 0, . . . ,m, j = 1, . . . , , N`) are independent copies of θ (in the case
of section 3 we have θ = |G|f(·, ξ) ∈ Lq(Λ) = X). The error of ηmult is defined
as

e(ηmult) = (E‖u− ηmult‖p
X)1/p,

and satisfies

e(ηmult) ≤ ‖u− Pmu‖X + (E‖Pmu− ηmult‖p
X)1/p.

So the estimate of the total error reduces to the estimate of the deterministic
(systematic) part, ‖u−Pmu‖X , which is provided by approximation theory like
in (3) and which we will not discuss further, and the stochastic part

(E‖Pmu− ηmult‖p
X)1/p,

which we will concentrate on. To study it, we need a notion from probability
theory of Banach spaces (see [9]). A Banach space X is said to be of type p,
(1 ≤ p ≤ 2) if there is a constant c > 0 such that for all N , all x1, . . . , xN ∈ X

E‖
N∑

i=1

εixi‖p
X ≤ cp

N∑
i=1

‖xi‖p
X , (4)

where (εi)N
i=1 are independent, centered, {−1, 1}-valued Bernoulli variables. Let

us just briefly recall the following facts: For 1 ≤ q < ∞, Lq is of type min(2, q).
Type p implies type p1 for p1 ≤ p. Each Banach space is of type 1, by the triangle
inequality (and no space is of type > 2). For 1 ≤ q < 2, Lq is not of type p for
p > q. L∞ is not of type p for any p > 1. Each finite dimensional space is of type
2. If X is of type p, the type p constant of X is defined to be

Tp(X) = inf{c > 0 : c satisfies (4)}.

The crucial result for us is the following, which can be found in [9], Prop. 9.11.



Proposition 1. Let X be of type p (1 ≤ p ≤ 2) and let %i (i = 1, . . . , N) be
independent, X-valued random variables with E%i = 0 and E‖%i‖p

X < ∞. Then

E‖
N∑

i=1

%i‖p
X ≤ (2Tp(X))p

N∑
i=1

‖%i‖p
X .

From this result we immediately derive the following inequality, which is the
basis of the convergence analysis in Theorem 1:

(
E‖Pmu− ηmult‖p

X

)1/p ≤ c

(
m∑

`=0

N1−p
` E‖(P` − P`−1)(u− θ)‖p

X

)1/p

. (5)

Let us make a few remarks about the case q = ∞, which was left out in Theorem
1. Since L∞ is, as mentioned above, not of any nontrivial type, one might wonder
if any result like Theorem 1 can hold at all in this situation. It turns out that
one can derive a result very close to Theorem 1 also in the case q = ∞. Define

Xm = span

(
m⋃

`=0

P`(X)

)
= span{ϕ`,i, ` = 0, . . . ,m, i = 0, . . . , n`}.

Then we can make relation (5) more precise:

(E‖Pmu− ηmult‖2
X)1/2 ≤ 2T2(Xm)

(
m∑

`=0

N−1
` E‖(P` − P`−1)(u− θ)‖2

X

)1/2

.

Now, if Xm is spanned by functions with almost disjoint supports, meaning
that for each point λ ∈ Λ, the number of supports containing λ is bounded
by a constant not depending on m (as it usually is the case in the situations
mentioned after relation (3)), the spaces Xm are uniformly (in m) isomorphic to
`dim Xm
∞ . Moreover, it is known that

T2(`M
∞) � (log M)1/2.

This introduces just a logarithmic factor into the estimates. The following is
essentially proved in [7].

Theorem 2. There exist c1, c2 > 0 such that for each M > 1 there is a choice
of parameters such that the cost of ηmult is ≤ c1M and for all f ∈ W r,0

∞ (Λ×G)
with ‖f‖W r,0

∞
≤ 1

(
E‖u− ηmult‖2

L∞

)1/2 ≤ c2


M−r/d1(log M)r/d1 if r/d1 < 1/2
M−1/2(log M)3/2 if r/d1 = 1/2
M−1/2(log M)1/2 if r/d1 > 1/2.

The results are optimal, including the logarithmic factor (except, possibly, for a
factor log M in the case r/d1 = 1/2).



5 Integral equations

Finally, we want to explain how these methods can be used also for integral
equations

u(s) = f(s) +
∫

G

k(s, t)u(t)dt.

Recall that we want to compute the function

v(λ) := 〈u, gλ〉 .

We have for λ ∈ Λ
v(λ) = 〈f, gλ〉+ Eωθ(λ, ω),

where the random variable θ is constructed from the trajectory

ω = (t0, t1, . . . , tν)

of a Markov chain on G with initial density p0(t) and transition density p(s, t)
as follows

θ(λ, ω) =
ν∑

i=0

〈k(·, ti), gλ〉
k(ti, ti−1) . . . k(t1, t0)f(t0)
p(ti, ti−1) . . . p(t1, t0)p0(t0)

.

Now observe that

Eωθ(λ, ω) =
∫

Ω

θ(λ, ω)dP(ω)

is an integral depending on a parameter. Hence we can transform our previously
developed method into an analogous one for integral equations.
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