
M. Reed Little and L. Nigay (Eds.): EHCI 2001, LNCS 2254, pp. 91–108, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Prototyping Pre-implementation Designs
of Virtual Environment Behaviour

James S. Willans and Michael D. Harrison

Human-Computer Interaction Group
Department of Computer Science, University of York

Heslington, York, Y010 5DD, U.K.
{James.Willans,Michael.Harrison}@cs.york.ac.uk

Abstract. Virtual environments lack a standardised interface between the user
and application, this makes it possible for the interface to be highly customised
for the demands of individual applications. However, this requires a
development process where the interface can be carefully designed to meet the
requirements of an application. In practice, an ad-hoc development process is
used which is heavily reliant on a developer's craft skills. A number of
formalisms have been developed to address the problem of establishing the
behavioural requirements by supporting its design prior to implementation. We
have developed the Marigold toolset which provides a transition from one such
formalism, Flownets, to a prototype-implementation. In this paper we
demonstrate the use of the Marigold toolset for prototyping a small
environment.

1 Introduction

One of the characteristics of virtual environments is the lack of a standard interface
between the user and system. With virtual environments it is necessary to construct
interfaces that support the specific requirements of individual applications [3].
Consider a flight simulator. The components that constitute its interface (including the
devices, interaction techniques and objects rendered to the user) are all concerned
with simulating the effect of flying the real aircraft. Another application, such as
medical training, could not reuse the interface component of the airplane successfully,
even though the application may share common goals such as training. This generic
lack of standardisation is not surprising considering that virtual environments often
seek to imitate the real world. For instance, compare interfaces for driving a car,
flying a plane, opening a tin or opening a carton of milk. Each interface matches the
requirements of its application and is quite different in terms of the information
communicated and physical actions.

The lack of standardisation in virtual environment interfaces contrasts with the
dominant style of WIMP (windows, icons, mice and pointers) interaction. WIMP
interfaces, such as Microsoft Windows, reuse a consistent interface regardless of
application. The devices (mouse and keyboard), interaction techniques (point and
click) and components (buttons) are all standardised. This consistent style forms the
basis of the success of WIMP applications, because users are aware of how to interact

92 James S. Willans and Michael D. Harrison

with new applications because of their knowledge of previous applications. However,
the success of virtual environment applications relies on the ability to recreate real
world, or novel, interfaces particular to the needs of individual applications. An
important side effect of the inconsistent nature of virtual environments is that the
work required to build an application interface is vastly increased compared to that of
a WIMP. A developer must consider carefully how the requirements of a particular
application determine the design of the interface for that application.

There are two parts of a virtual environment application that form the human-
computer interface. Firstly, the visual appearance and geometry of the renderings
including representations of the user within the environment and, secondly, the
behaviour of the interface, including the mapping of the user onto the environment via
interaction techniques, and the behaviour of the environment itself in response to user
interaction. The visual renderings are usually constructed in a 3D-modeller such as
3Dstudio [2]. These tools model the renderings as they will appear in the environment
allowing easy verification of whether they meet the requirements or not (often these
are compared to photographs [14]). By contrast, the behaviour of the interface is
defined using program code within a virtual environment development application
such as [5, 7] in a form that is difficult to analyse in terms of the initial requirements.
Consequently, rather than dealing with abstract requirements such as the door must
open half way when the user clicks the middle mouse button, the developer must deal
with implementation oriented abstractions such as the low-level data generated from
the input device(s) and complex mathematical transformations of 3D co-ordinate
systems. Additionally, design decisions are embedded within the program code
without any higher level documentation. This makes inspection and maintenance
difficult. These issues are discussed in more detail in [26].

A strategy which has found some success addressing similar problems within
software engineering and human-computer interaction is behavioural design (see [28,
11], for instance). Behavioural design is the process of constructing abstract
representations of the behaviour of a system. The aim of this is to describe
characteristics of the behaviour in a way that is independent of unnecessary
implementation concerns. These descriptions are also used to discuss the design,
perform reasoning (formal and informal) and inform the programmer of the precise
requirements of the implementation. In addition, such designs facilitate the
documentation and subsequent maintenance of the system. The motivation for
incorporating this style of behavioural design into the development of virtual
environments has recently been recognised and a number of formalisms which
attempt at various levels of rigour to support this process have been developed (see
[9, 12, 16, 23, 25, 31]).

Despite the clear advantages of pre-implementation behavioural design, it is
unrealistic to expect this approach to determine the behaviour of a virtual
environment interface completely, particularly in view of the diversity of possible
designs. As noted by Myers `the only reliable way to generate quality interfaces is to
test prototypes with users and modify the design based on their comments' [18], a
view strongly supported in [30]. Thus, a more realistic situation is where behavioural
design is closely integrated into a prototyping process such that designs can be tried
out and tested with users and the designs refined to reflect their feedback. In order to
address this goal we have developed the Marigold toolset [33, 34]. This toolset
supports the rapid transition from pre-implementation designs of virtual environment
interface behaviour (using the Flownet specification formalism [23, 25]) to fully

Prototyping pre-implementation designs of virtual environment behaviour 93

working implementation-prototypes. Marigold also provides a means of exploring
different configuration of devices and behaviours [34] early in the design cycle.
Currently the code-generation module of Marigold is for the Maverik toolkit [1], but
the approach is independent of any specific environment. A number of rudimentary
model-checking facilities are also provided [35]. In this paper we demonstrate how
Marigold supports the prototyping of Flownet specifications by incrementally
building a small kitchen environment.

The remainder of the paper is structured as follows. In section 2 we give an
overview of the Flownet specification formalism and, in order to strengthen
motivation for the use of this representations, we compare a specification to its
equivalent program code. In sections 3, 4 and 5 we exemplify Marigold by building
specifications and prototypes incrementally for a virtual kitchen. In section 6 we
examine related work. Finally, in section 7 we summarise our conclusions.

2 Flownets

A number of formalisms have been used for the description of virtual environment
interface behaviour. In [22, 31], process algebra is used to describe interaction
techniques, and in [24] the use of state based notations such as Statecharts [10] are
investigated. However, more recently there has been a general opinion that virtual
environment interface behaviour is better considered as a hybrid of discrete and
continuous data-flow components [12, 36]. With this in mind, a number of further
formalisms have been investigated [32, 36]. The formalism developed and presented
in [13, 17] and Flownets presented in [23, 25] were both developed specifically for
the description of virtual environment interaction techniques. This make it possible to
abstract from low-level mathematical transformations and data-structures which may
confuse a design. One of the major differences between the two notations are that
Flownets use Petri-nets [20] to describe the discrete abstractions rather than state-
transition diagrams. This enables the description of multi-modal (concurrent)
interaction using Flownets. Moreover, although virtual environment behaviour may
only consist of interaction techniques in simple environments (walk-throughs), more
advanced environments contain world objects with their own behaviour. The user
interacts with these world objects using appropriate interaction techniques. In [27] it
is demonstrated how Flownets are able to model world objects in addition to
interaction techniques. The relation between the user, interaction technique behaviour
and world object behaviour is shown in figure 1.

In addition to using Petri-nets to describe the discrete elements, Flownets use
constructs from a notation originally intended to model system dynamics [8] for the
description of the continuous data flow and transformation processes. We will
describe the formalism by way of an example of an interaction technique. The mouse
based flying interaction technique enables the user to navigate through a virtual
environment using the desktop mouse to control the direction and speed. Variations of
this technique are used in many virtual environment packages (see for example
VRML [4]). One variation works as follows. The technique is initiated by pressing of
the middle mouse button and moving the mouse away from the clicked position. Once
the mouse is a threshold distance away from the clicked position, the user's movement
through the environment is directly proportional to the angle between the current

94 James S. Willans and Michael D. Harrison

pointer position and the point where the middle mouse button was pressed. The
distance between these two positions determines the speed. A second press of the
middle mouse button deactivates flying.

Interaction
techniques

World
objects

USER Output Output

Input

Virtual environment

Fig. 1. The relation between the user the behaviour of virtual environments

The Flownet specification of the mouse based flying interaction technique is
shown in figure 2. The technique has two plugs to the external environment: one input
mouse, and one output position. When the middle mouse button is pressed the middle
m/butt sensor is activated and the start transition fired (1). The start transition enables
the flow control, which enables the transformer (update origin), which updates the
value of origin held in a store with the current mouse position (2) (taken from the
mouse plug). A token is then placed in the idle state. When the out origin sensor
detects that the mouse has moved away from the origin position, transition (3) is fired
which moves the token from the idle state to the flying state. A token in the flying
state enables the corresponding flow control which enables the transformer (update
position) to update the position data in the store using the current mouse position and
the origin position (4). This is then output to the position plug. Whenever the flying
state is enabled, the inhibitor connecting this state to the start transition implies that
the start transition cannot be re-fired. When the in origin sensor detects that the
mouse has moved back to the origin position, a transition is fired which returns the
token from the flying state to the idle state closing the flow control and halting the
transformation on position. Regardless of whether the technique is in the idle or the
flying state, it can be exited by the middle m/butt sensor becoming true and firing
either one of the two exit transitions (5 or 6).

The argument for using this formalism is that there is clarity about the
implementation of requirements and about the characteristics of behaviour. This point
can be illustrated by comparing the Flownet representation of the mouse based flying
interaction technique in figure 2 with the equivalent implementation code in
Appendix A written in Maverik. It is not important to understand the code, rather to
appreciate how the behaviour of the technique is clearer in the Flownet representation
of figure 2. This is because the behavioural structure (what happens when and why) of
the technique is explicit in the Flownet but implicit in the code. Additionally,
although the code contains more detail than the Flownet representation (low level data
state and transformations, for instance), it is difficult to relate the abstractions to the
requirements. If we treat the informal description given earlier in this section as the
requirements, then it can be seen that the Flownet captures these concepts, for
instance idle, flying and middle mouse button. More importantly, the Flownet

Prototyping pre-implementation designs of virtual environment behaviour 95

captures a precise relation between these concepts. For instance, that it is necessary
to be in the state of flying in order to update position, and that update position
requires positional data (origin) created during the transition to the idle state.

~~

start

out origin in origin

idle

origin

update origin

middle mouse button
flying

position

exit

exit

mouse position

update position

1

2

3

4

5

6

Fig. 2. Flownet specification of the mouse based flying interaction technique

3 Interaction Techniques

The Marigold toolset supports a design process which closely integrates virtual
environment behaviour specification using the Flownet formalism, and the
prototyping of that behaviour. In the next sections we exemplify this design process
by building elements of a virtual kitchen. Within this section we provide a method for
the user to navigate around the kitchen. For this we will use the mouse based flying
technique introduced in the previous section. Prototyping a Flownet description of an
interaction technique using Marigold is a two stage process. The first stage takes
place in the hybrid specification builder (HSB) which supports the specification of a
Flownet using direct manipulation (figure 3). At this point, a small amount of code is
added to some of the nodes of the specification. This code describes the semantics of
some of the Flownet components more precisely. There are three types of code that
can be added:

Variable code. This is placed in the plugs of the specification. It describes what
kind of information flows in and out of the plugs and, hence, around the specification.
Illustrated in figure 4 (a) is the code added to the mouse plug. An integer variable
represents the state of the mouse buttons and a vector represents the mouse position.
Variable code is also used to define data which reside in the stores.

96 James S. Willans and Michael D. Harrison

Fig. 3. The mouse based flying specification in Marigold HSB

Conditional code. This is placed in some transitions and all sensors. It describes the
threshold state of the data for firing the component. Illustrated in figure 4 (b) is the
code added to the middle m/butt sensor. As can be seen from figure 4 (b), the HSB
informs the developer which data flow in and out of the node (i.e. which data they are
able to access). The code specifies that when the middle mouse button is pressed, the
sensor should fire.

Process code. This is placed in all transformers and denotes how the information
flowing into the transformer is transformed when enabled. Illustrated in figure 4 (c) is
the code added to the position transformer. This describes how position should be
transformed using the current mouse position and the origin position.

Once the code has been added, it is necessary to generate a stub of the interaction
technique. This is a description of the interaction technique which is independent of
an environment. No commitment is made to the inputs and outputs of a technique.

The second stage of implementing a Flownet specification involves integrating the
interaction technique stub, generated from the HSB, into an environment (input
devices and output devices, for instance). This is performed using the prototype
builder (PB). Illustrated in figure 5 is the mouse based flying interaction technique
within the PB and connected into an environment. Each node has a set of variables.
The variables for the mouse based flying interaction technique (mbf) are those that
were placed in the plugs within the HSB. The relation between the environment
elements are defined by joining these variables enabling the flow of data from one to
another. Within the mouse based flying specification, we have linked a desktop
mouse, as an input to the technique, and a viewpoint, as an output from the technique.
From this specification, the code for a prototype environment can be generated and
compiled. However, for the navigation to be perceived world objects must be present

Prototyping pre-implementation designs of virtual environment behaviour 97

within the environment. In the next section, we specify and introduce a world object
for the user to observe as they navigate.

Fig. 4. a) Adding variables to the mouse input plug b) Adding conditional code to the middle
mouse button sensor c) Adding process code to the position transformer

Fig. 5. PB specification for a virtual environment prototype using the mouse based flying
interaction technique

98 James S. Willans and Michael D. Harrison

4 World Objects

Often virtual environments are simply walk-through where the user navigates the
environment observing static renderings of world objects. However, more complex
environments reflect the real world where the user can interact with and observe
world objects. In this section we expand the environment of the previous section to
include a virtual gas hob (oven) world object with which the user can interact.

A world object specification is also constructed using the HSB and a stub
generated as described in the previous section. Rather than using the PB to integrate
the stub of the world object's behaviour into an environment directly, a third tool, the
Complex Object Builder (COB), supports an intermediate refinement stage. Within
the COB a link is made between a world object's behaviour stub (generated from the
HSB) and the visual renderings constructed using a third party 3D-modelling tool
such as 3DStudio [2]. Any additional information required from the external
environment (the PB) is also made explicit using the COB. From the COB
specification, another stub is generated and integrated into the complete environment
(interaction techniques and devices, for instance) within the PB specification. This
intermediate refinement stage simplifies the PB specification because a single node is
an encapsulation of both a world object's behaviour and appearance. In addition, a
world object's encapsulated behaviour/appearance may be reused. The COB supports
this type of reuse by packaging these components together in a reusable node.

Figures 6 and 7 illustrate the discrete and continuous parts of the behaviour of the
hob respectively. Although the HSB supports the construction of a Flownet
specification using one view, it can be useful to split the continuous and discrete part
of larger specifications to maintain clarity of presentation. As can be seen from these
two figures, common constructs (sensors and flow controls) relate the two views.
Code is added to some of the nodes constituting the specification in the manner as
described for the mouse based flying interaction technique, and a stub of the
behaviour is generated.

The next stage is to integrate this stub with the visual renderings using the COB
(figure 8). The node labelled hob is the stub of the gas hob generated from the HSB.
Representations of the renderings of the gas switch, ignition and flame are related to
the behaviour because their states are changed according to the Flownet specification.
However the oven body is not related because, although this is visually perceived, it
has no behaviour. The external link node specifies that data is required which is not
contained within the specification. Consequently, the position of the virtual hand must
be linked into the gas hob within the PB. The relative positioning of the rendering
representations are also set within the COB. From the COB, a stub of the specification
is generated.

Our original PB specification is expanded to include the complex world object.
Figure 9 shows the prototype specification that includes the original mouse based
flying interaction technique (mbf) and a simple manipulation (sman) interaction
technique. The sman technique, also defined using a Flownet, controls the position of
a pointer world object by two mappings of the keyboard device. The hob world object
stub can be seen on the left side of the specification. The one variable within this
complex world object is linked to the pointer as required by the external link within
the COB specification.

Prototyping pre-implementation designs of virtual environment behaviour 99

Fig. 6. The discrete part of the Flownet specification for the gas hob within the HSB

Fig. 7. The continuous part of the Flownet specification for the gas hob within the HSB

100 James S. Willans and Michael D. Harrison

Fig. 8. The COB specification showing the integration of the Flownet stub of the gas hob into
the external environment

Fig. 9. The PB specification extended to include the integration of a complex world object and
manipulation interaction technique

Prototyping pre-implementation designs of virtual environment behaviour 101

Fig. 10. The prototype (as generated from the PB specification) running

The prototype generated from this specification is illustrated in figure 10. It allows
the user to navigate around the environment using the mouse and manipulate the
virtual pointer using the keyboard. The virtual pointer can be used to interact with the
hob which will behave according to its Flownet specification. The gas on/off switch is
on the left side of the oven, and the push ignition on the right. Additionally, a pan is
situated on top of the hob (this is part of the oven body rendering representation in
figure 8).

5 Non-static Binding

Flownet specifications are not concerned with the environment external to the
behaviour, they abstract from this by interfacing to plugs. The PB and the COB tools
provide a means of binding an environment to the plugs of Flownets. The binding
style described in the previous sections is static. However, a developer may wish to
specify that a selection interaction technique can select one of a number of objects
within the kitchen, without explicitly linking every object to the selection technique.
Similarly, a developer may wish to state that any object placed within a kitchen
drawer is affected by the opening and closing behaviour of the drawer because it is in
the drawer. This type of non-static binding is supported by two additional constructs
within the Marigold PB namely world object group and dynamic bind. In this section,
we expand the specification we have developed in the previous two sections to
include behaviours which make use of these constructs. The expanded PB
specification is illustrated in figure 11 with a number of new nodes and links.

Firstly, as illustrated at the top of the specification of figure 11, the world object
group construct provides a method of grouping world object renderings (ball one and
ball two). In this example, the select interaction technique is using this group to
determine which object is selected by the pointer object and to change the state of the
ball objects selected variable (from false to true). The sman (simple manipulation)
technique then controls the position of whichever ball is selected.

102 James S. Willans and Michael D. Harrison

Secondly, the dynamic bind construct allows conditions such as in the drawer to be
described so that when an object (rendering) satisfies the statement it binds to the
behaviour. In figure 11 such a construct (db) can be seen labelled in drawer and
linked to the position of the drawer complex object. When a dynamic bind is inserted
into a PB specification, the tool asks the user to specify a visual rendering and set the
position of this visual rendering. For the in drawer dynamic bind a rendering was
constructed to represent the space inside the virtual drawer (this is not displayed in the
environment). This rendering is positioned so that it is initially inside the drawer. A
number of options can also be set on a dynamic bind construct. In this example, it is
specified that when an object is fully within the space defined by the rendering (in the
drawer) it will bind dynamically to the behaviour of the drawer and that the dynamic
bind rendering itself should also bind to the behaviour. Consequently, when objects,
such as ball one and/or ball two are placed within the drawer, they bind to the
drawer's behaviour and open and close with the drawer. In addition, although the bind
rendering cannot be observed in the environment, this always remains inside the
virtual drawer.

The dynamic bind construct also has the potential to specify physical laws within a
virtual environment. For instance, a bind could be constructed the size of the
environment which is linked to a Flownet specification imposing a gravity behaviour.
Consequently, when objects are within the environment, they are linked to this
behaviour. Or, a bind could be placed within a swimming pool, such that when an
object enters the water, it is linked to the gravity of water. To enable this, it would be
necessary for Marigold to support the generation of collision detection.

Fig. 11. Expanded PB specification with an additional drawer complex world object, selection
interaction technique and dynamic binding constructs

Prototyping pre-implementation designs of virtual environment behaviour 103

The small kitchen example now supports navigation, control of the virtual hand,
behaviour of the gas hob, behaviour of the drawer and the selection and manipulation
of the two balls. These balls are initially positioned within the drawer and therefore
bind to the drawer's opening and closing behaviour. The virtual hand can be used to
remove either one or both of the balls from the drawer, whereupon they lose their
binding to the drawer's behaviour. A screenshot of this environment is shown in
figure 12.

Fig. 12. Final prototype with a drawer, hob and three interaction techniques

6 Related Work

The distinguishing feature of Marigold is the initial consideration of the virtual
environment interface behaviour independent of any specific implementation using
Flownets. The approach presented in [13, 17] links higher level abstractions to
implementation components, such that when these abstractions are rearranged, the
change is propagated into the underlying implementation. This is in the style of user
interface management systems (UIMS) which has been researched widely for other
styles of interface. However, such an approach can be seen to be implementation
driven, rather than requirements driven, since an implementation abstraction must
exist in order to satisfy a specification abstraction. We have illustrated that using
Marigold the developer is building implementation components that meet the
requirements of the specification.

Another approach which has influenced the design of the PB and COB components
of Marigold is the data-flow style of specification. In [21] modules are connected
together (in a manner similar to the PB) to specify virtual environments. These
modules are linked to an underlying implementation which changes according to the
configuration of the specification. This style of specification has been extended so
that it can be achieved while the developer is immersed in the environment [29]. Like
the UIMS approach, the semantics of these modules are static and consequently limit

104 James S. Willans and Michael D. Harrison

what can be specified . In Marigold, although static components are also used within
the PB and COB, these components (devices and rendering representation) are input
and output to the behaviour and not the behaviours themselves. The behaviour
components are developed specifically for an applications requirements using the
HSB.

An approach to designing complete virtual environments is introduced in [15]
which contains a component for describing the behaviour of the system using
Statecharts. This is an adaptation of an existing real-time system design approach. A
number of contrasts can be drawn with Marigold. The behaviour of the systems
described are walk-through. It would be difficult using this approach to describe some
of the complex user-driven behaviour captured using Flownets, for example.
Additionally, Marigold offers a faster and, thus, tighter integration between
specification and prototype because of the environment integration method supported
by the PB and COB.

The interactive cooperating object formalism (ICO) is a design approach for the
development of interactive systems [19]. ICO combines the power of object-oriented
structure and Petri-nets for the internal behaviour of objects. A tool is being
developed which supports their implementation [6]. The abstractions made within the
PB, and the style of PB specification itself, enable a developer to rapidly integrate a
specification into an environment. These abstractions are not readily available within
ICO and would need to be written using code. In addition, the Flownet formalism
itself seems to be a suitably rich formalism for describing virtual environment
behaviour compared to Petri-nets alone. Flownets continuous data-flow constructs
capture a strong mapping between the user interaction (devices), their state, and the
presentation of this state.

7 Conclusion

In this paper we have discussed a need for the pre-implementation design of virtual
environment interface behaviour and have reviewed the approaches developed to
address this concern. We have also motivated a need to integrate this form of design
with the building of prototypes so that developers and users can explore the designs at
an implementation level. The Marigold toolset has been developed as an approach to
providing a rapid transition between such designs and prototypes. We have described
this toolset by exemplifying the incremental design and prototyping of a small kitchen
prototype. Such a prototype may be used at two levels. Firstly, it is important to
determine whether the environment is usable. For instance, in the example, does the
behaviour of the environment enable the user to navigate to the drawer, open the
drawer, transfer both balls to the pan on the hob from the drawer, and switch the hob
on? At another level, does the environment fulfill the broader requirements? If the
small kitchen was to aid in training chefs, then the behaviour of the environment is
clearly inadequate. At the end of a session the chef maybe able to complete a task
within the virtual environment, but this bears no correspondence to the behaviour of
the real environment.

It is anticipated that once the developer and users have arrived at a design that
satisfies the requirements, through an iterative process of design and prototyping, one
of two options may be taken. Firstly, a programmer may construct the final

Prototyping pre-implementation designs of virtual environment behaviour 105

implementation directly from the specifications taking into account issue of
performance (paramount to larger environments). Secondly, as suggested in [25], the
Flownet specifications may be refined to a more detailed specifications (maybe using
HyNets as presented in [25]), from which a programmer would implement the
behaviour of the environment.

Acknowledgements

We are grateful to Shamus Smith for his comments on this paper.

References

1. Maverik programmer's guide for version 5.1. Advanced Interface Group, Department of
Computer Science, University of Manchester, 1999.

2. Autodesk-corporation. 3DStudio. 111 McInnis Parkway, San Rafael, California, 94903,
USA.

3. Steve Bryson. Approaches to the Successful Design and Implementation of VR
Applications. London Academic Press, 1995.

4. Rik Carey and Gavin Bell. The Annotated VRML 2.0 Reference Manual. Developers Press,
1997.

5. Superscape Corporation. Superscape, 1999. 3945 Freedom Circle, Suite 1050, Santa Clara,
CA 95054, USA.

6. Remi Bastide David Navarre, Philippe Palanque and Ousmane Sy. Structuring interactive
systems specifications for executability and prototypeability. In Philippe Palanque and
Fabio Paterno, editors, Design, Specification and Verification of Interactive Systems '00,
pages 97-119. Lecture notes in Computer Science 1946, 2001.

7. Pierre duPont. Building complex virtual worlds without programming. In Remco C.
Veltkamp, editor, Eurographics'95 STAR report, pages 61-70. Eurographics, 1995.

8. J. W. Forrester. Industrial Dynamics. MIT Press, 1961.
9. Mark Green. The design of narrative virtual environments. In Design, Specification and

Verification of Interactive Systems'95, pages 279-293, 1995.
10. David Harel. Statecharts: A visual formalism for complex systems. Science of Computer

Programming, 8:231-274, 1987.
11. Michael Harrison and Harold Thimbleby, editors. Formal Methods in Human-Computer

Interaction. Cambidge University Press, 1990.
12. Robert J. K. Jacob. Specifying non-WIMP interfaces. In CHI'95 Workshop on the Formal

Specification of User Interfaces Position Papers, 1995.
13. Robert J. K. Jacob. A visual language for non-WIMP user interfaces. In Proceedings IEEE

Symposium on Visual Languages, pages 231-238. IEEE Computer Science Press, 1996.
14. Kulwinder Kaur, Neil Maiden, and Alistair Sutcliffe. Design practice and usability

problems with virtual environments. In Proceedings of Virtual Reality World '96,1996.
15. G. Jounghyun Kim, Kyo Chul Kang, Hyejung Kim, and Jiyoung Lee. Software

engineering of virtual worlds. In ACM Virtual Reality Systems and Technology
Conference (VRST'98), pages 131-138, 1998.

16. Mieke Massink, David Duke, and Shamus Smith. Towards hybrid interface specification
for virtual environments. In Design, Specification and Verification of Interactive Systems
'99, pages 30-51. Springer, 1999.

17. S. A. Morrison and R. J. K. Jacob. A specification paradigm for design and
implementation of non-WIMP human-computer interaction. In ACM CHI'98 Human

106 James S. Willans and Michael D. Harrison

Factors in Computing Systems Conference, pages 357{358. Addison-Wesley/ACM Press,
1998.

18. Brad A. Myers. User-interface tools: Introduction and survey. IEEE Software, 6(1):15-23,
1989.

19. Philippe A. Palanque, Remi Bastide, Louis Dourte, and Christophe Silbertin-Blane.
Design of user-driven interfaces using petri nets and objects. In Proceedings of CAISE'93
(Conference on advance information system engineering), Lecture Notes in Computer
Science, volume 685, 1993.

20. C. A. Petri. Kommunikation mit automaten. Schriften des iim nr. 2, Institut fur
Instrumentelle Mathematic, 1962. English translation: Technical Report RADC-TR-65-
377, Griffiths Air Base, New York, Vol. 1, Suppl. 1, 1966.

21. William R. Sherman. Integrating virtual environments into the data flow paradigm. In 4th
Eurographics workshop on ViSC, 1993.

22. Shamus Smith and David Duke. Using CSP to specify interaction in virtual environments.
Technical Report YCS 321, University of York - Department of Computer Science, 1999.

23. Shamus Smith and David Duke. Virtual environments as hybrid systems. In Eurographics
UK 17th Annual Conference, pages 113-128. Eurographics, 1999.

24. Shamus Smith, David Duke, Tim Marsh, Michael Harrison, and Peter Wright. Modelling
interaction in virtual environments. In UK-VRSIG'98, 1998.

25. Shamus Smith, David Duke, and Mieke Massink. The hybrid world of virtual
environments. Computer Graphics Forum, 18(3):C297-C307, 1999.

26. Shamus P. Smith and David J. Duke. Binding virtual environments to toolkit capabilities.
Computer Graphics Forum, 19(3):C81-C89, 2000.

27. Shamus P. Smith, David J. Duke, and James S. Willans. Designing world objects for
usable virtual environments. In Workshop on design, specification and verification of
interactive systems, 2000.

28. Ian Sommerville. Software Engineering. Addison-Wesley, fifth edition, 1996.
29. Anthony J. Steed. Defining Interaction within Immersive Virtual Environments. PhD

thesis, Queen Mary and Westfield College, UK, 1996.
30. Kari Systa. A Specification Method for Interactive Systems. PhD thesis, Tampere

University of Technology, 1995.
31. Boris van Schooten, Olaf Donk, and Job Zwiers. Modelling interaction in virtual

environments using process algerbra. In 12th Workshop on Language technology:
Interaction in virtual worlds, pages 195-212, 1999.

32. Ralf Wieting. Hybrid high-level nets. In J. M. Charnes, D. J. Morrice, and D. T. Brunner,
editors, Proceedings of the 1996 Winter Simulation Conference, pages 848-855. ACM
Press, 1996.

33. James S. Willans and Michael D. Harrison. A toolset supported approach for designing
and testing virtual environment interaction techniques. Accepted for publication in the
International Journal of Human-Computer Studies, 1999.

34. James S. Willans and Michael D. Harrison. A `plug and play' approach to testing virtual
environment interaction techniques. In 6th Eurographics Workshop on Virtual
Environments, pages 33-42. SpringerVerlag, 2000.

35. James S. Willans and Michael D. Harrison. Verifying the behaviour of virtual environment
world objects. In Workshop on design, specification and verification of interactive
systems, pages 65-77. Lecture notes in computer science 1946, 2000.

36. Charles Albert Wuthrich. An analysis and a model of 3D interaction methods and devices
for virtual reality. In Design, Specification and Verification of Interactive Systems '99,
pages 18-29. Springer, 1999.

Prototyping pre-implementation designs of virtual environment behaviour 107

Discussion

J. Höhle: Can you model independent behaviour instead of reactive behaviour - such
as a time based behaviour?
J.Willans: You certainly can add timing constraints in the system but it would be hard
to ensure their satisfaction. Satisfaction would depend upon implementation details.

N. Graham: How hybrid is your specification? You seem to be modelling dynamic
behaviour within discrete framework. It does not seem to involve truly continuous
inputs, such as dealing with the effect of momentum when lifting an object, or dealing
with sound. Is this natural in flownets?
J.Willans: We do not have that kind of example yet. Flownets is hybrid in
representation at the design level. There are other lower level representations that
capture continutiy in more detail (e.g. HyNet).

Appendix A

#include "maverik.h"
#include "mav_tdm.h"

MAV_vector new_offset;
MAV_vector origin_pos;
int mouseClick;

/* RELATES TO FLOWNET SPECIFICATION */
/* MIDDLE MOUSE BUTTON + UPDATE ORIGIN */

int mouseButtonPress(MAV_object * o,
MAV_TDMEvent * ev)
{
 int origin_x, origin_y;
 int xx, yy;
 if (ev->tracker == 0 && eb->button ==1) {
 mav_mouseGet(mav_win_all, &origin_x,
 &origin_y, &xx, &yy);
 origin_pos.x = origin_x;
 origin_pos.y = origin_y;
 origin_pos.z = 0;
 mouseClick = !mouseClick;
 }
}

/* RELATES TO FLOWNET SPECIFICATION */
/* UPDATE POSITION */
void updateViewpoint(void)
{
 mav_win_current->vp->eye =
 mav_vectorAdd(mav_win_current->vp->eye,
 new_offset);
}

/* RELATES TO PETRI-NET PART OF */
/* FLOWNET SPECIFICATION */

void interaction(void)
{
 MAV_vector current_mouse;
 MAV_vector direction;
 float speed;
 int curr_mouse_x, curr_mouse_y, xx, yy;
 if (mouseClick) {
 mav_mouseGet(mav_win_all, &curr_mouse_x,
 &curr_mouse_y, &xx, &yy);
 current_mouse.x = curr_mouse_x;
 current_mouse.y = curr_mouse_y;
 current_mouse.z = 0;
 if (outOriginSq(current_mouse)) {
 direction = mav_vectorSub
 (origin_pos,
 current_mouse);
 direction = mav_vectorSet
 (direction.x,
 direction.z,
 direction.y);
 speed = mav_vectorDotProduct
 (direction, direction);
 speed = speed / 1000;
 new_offset = mav_vectorScalar
 (direction, speed);
 origin_pos = mav_vectorAdd
 (new_offset, origin_pos);
 updateViewpoint();
 }
 }
}

108 James S. Willans and Michael D. Harrison

/* RELATES TO FLOWNET SPECIFICATION */
/* OUT OF ORIGIN */

int outOriginSq(MAV_vector current_mouse)
{
 MAV_vector temp;
 float distance;
 temp = mav_vectorSub(current_mouse,
origin_pos);
 distance = mav_vectorDotProduct(temp, temp);
 if (distance > 5) {
 return 1;
 }
 return 0;
}

int main(int argc, char *argv[])
{
 MAV_SMS *sms;
 MAV_composite comp;

 mav_initialise();

 mav_TDMModuleInit();
 sms = mav_SMSNew
 (mav_SMSClass_objList, mav_objListNew());
 mav_compositeReadAC3D
 ("desk.ac", &comp,MAV_ID_MATRIX);
 comp.matrix = mav_matrixSet(0, 0, 4, 0, 0, 0);
 mav_SMSObjectAdd
 (sms, mav_objectNew(mav_class_composite,
&comp));
 mav_callbackTDMSet
 (mav_win_all, mav_class_world,
mouseButtonPress);
 mav_frameFn0Add(interaction);
 mouseClick = 0;
 while (1) {
 mav_eventsCheck();
 mav_frameBegin();
 mav_SMSDisplay(mav_win_all, sms);
 mav_frameEnd(); }

	Prototyping Pre-implementation Designs of Virtual Environment Behaviour
	1 Introduction
	2 Flownets
	3 Interaction Techniques
	4 World Objects
	5 Non-static Binding
	6 Related Work
	7 Conclusion
	Acknowledgements
	References
	Discussion
	Appendix A

