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Abstract. Virtual environments lack a standardised interface between the user 
and application, this makes it possible for the interface to be highly customised 
for the demands of individual applications.  However, this requires a 
development process where the interface can be carefully designed to meet the 
requirements of an application.  In practice, an ad-hoc development process is 
used which is heavily reliant on a developer's craft skills.  A number of 
formalisms have been developed to address the problem of establishing the 
behavioural requirements by supporting its design prior to implementation.  We 
have developed the Marigold toolset which provides a transition from one such 
formalism, Flownets, to a prototype-implementation.  In this paper we 
demonstrate the use of the Marigold toolset for prototyping a small 
environment. 

1   Introduction 

One of the characteristics of virtual environments is the lack of a standard interface 
between the user and system. With virtual environments it is necessary to construct 
interfaces that support the specific requirements of individual applications [3]. 
Consider a flight simulator. The components that constitute its interface (including the 
devices, interaction techniques and objects rendered to the user) are all concerned 
with simulating the effect of flying the real aircraft. Another application, such as 
medical training, could not reuse the interface component of the airplane successfully, 
even though the application may share common goals such as training. This generic 
lack of standardisation is not surprising considering that virtual environments often 
seek to imitate the real world. For instance, compare interfaces for driving a car, 
flying a plane, opening a tin or opening a carton of milk. Each interface matches the 
requirements of its application and is quite different in terms of the information 
communicated and physical actions.  

The lack of standardisation in virtual environment interfaces contrasts with the 
dominant style of WIMP (windows, icons, mice and pointers) interaction. WIMP 
interfaces, such as Microsoft Windows, reuse a consistent interface regardless of 
application. The devices (mouse and keyboard), interaction techniques (point and 
click) and components (buttons) are all standardised. This consistent style forms the 
basis of the success of WIMP applications, because users are aware of how to interact 
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with new applications because of their knowledge of previous applications. However, 
the success of virtual environment applications relies on the ability to recreate real 
world, or novel, interfaces particular to the needs of individual applications. An 
important side effect of the inconsistent nature of virtual environments is that the 
work required to build an application interface is vastly increased compared to that of 
a WIMP. A developer must consider carefully how the requirements of a particular 
application determine the design of the interface for that application.  

There are two parts of a virtual environment application that form the human-
computer interface. Firstly, the visual appearance and geometry of the renderings 
including representations of the user within the environment and, secondly, the 
behaviour of the interface, including the mapping of the user onto the environment via 
interaction techniques, and the behaviour of the environment itself in response to user 
interaction. The visual renderings are usually constructed in a 3D-modeller such as 
3Dstudio [2]. These tools model the renderings as they will appear in the environment 
allowing easy verification of whether they meet the requirements or not (often these 
are compared to photographs [14]). By contrast, the behaviour of the interface is 
defined using program code within a virtual environment development application 
such as [5, 7] in a form that is difficult to analyse in terms of the initial requirements. 
Consequently, rather than dealing with abstract requirements such as the door must 
open half way when the user clicks the middle mouse button, the developer must deal 
with implementation oriented abstractions such as the low-level data generated from 
the input device(s) and complex mathematical transformations of 3D co-ordinate 
systems. Additionally, design decisions are embedded within the program code 
without any higher level documentation. This makes inspection and maintenance 
difficult. These issues are discussed in more detail in [26].  

A strategy which has found some success addressing similar problems within 
software engineering and human-computer interaction is behavioural design (see [28, 
11], for instance). Behavioural design is the process of constructing abstract 
representations of the behaviour of a system. The aim of this is to describe 
characteristics of the behaviour in a way that is independent of unnecessary 
implementation concerns. These descriptions are also used to discuss the design, 
perform reasoning (formal and informal) and inform the programmer of the precise 
requirements of the implementation. In addition, such designs facilitate the 
documentation and subsequent maintenance of the system. The motivation for 
incorporating this style of behavioural design into the development of virtual 
environments has recently been recognised and a number of formalisms which 
attempt at various levels of rigour to support this process have been developed (see  
[9, 12, 16, 23, 25, 31]).  

Despite the clear advantages of pre-implementation behavioural design, it is 
unrealistic to expect this approach to determine the behaviour of a virtual 
environment interface completely, particularly in view of the diversity of possible 
designs. As noted by Myers `the only reliable way to generate quality interfaces is to 
test prototypes with users and modify the design based on their comments' [18], a 
view strongly supported in [30]. Thus, a more realistic situation is where behavioural 
design is closely integrated into a prototyping process such that designs can be tried 
out and tested with users and the designs refined to reflect their feedback. In order to 
address this goal we have developed the Marigold toolset [33, 34]. This toolset 
supports the rapid transition from pre-implementation designs of virtual environment 
interface behaviour (using the Flownet specification formalism [23, 25]) to fully 



Prototyping pre-implementation designs of virtual environment behaviour      93 

working implementation-prototypes. Marigold also provides a means of exploring 
different configuration of devices and behaviours [34] early in the design cycle. 
Currently the code-generation module of Marigold is for the Maverik toolkit [1], but 
the approach is independent of any specific environment. A number of rudimentary 
model-checking facilities are also provided [35]. In this paper we demonstrate how 
Marigold supports the prototyping of Flownet specifications by incrementally 
building a small kitchen environment. 

The remainder of the paper is structured as follows. In section 2 we give an 
overview of the Flownet specification formalism and, in order to strengthen 
motivation for the use of this representations, we compare a specification to its 
equivalent program code. In sections 3, 4 and 5 we exemplify Marigold by building 
specifications and prototypes incrementally for a virtual kitchen. In section 6 we 
examine related work. Finally, in section 7 we summarise our conclusions. 

2   Flownets 

A number of formalisms have been used for the description of virtual environment 
interface behaviour. In [22, 31], process algebra is used to describe interaction 
techniques, and in [24] the use of state based notations such as Statecharts [10] are 
investigated. However, more recently there has been a general opinion that virtual 
environment interface behaviour is better considered as a hybrid of discrete and 
continuous data-flow components [12, 36]. With this in mind, a number of further 
formalisms have been investigated [32, 36]. The formalism developed and presented 
in [13, 17] and Flownets presented in [23, 25] were both developed specifically for 
the description of virtual environment interaction techniques. This make it possible to 
abstract from low-level mathematical transformations and data-structures which may 
confuse a design. One of the major differences between the two notations are that 
Flownets use Petri-nets [20] to describe the discrete abstractions rather than state-
transition diagrams. This enables the description of multi-modal (concurrent) 
interaction using Flownets. Moreover, although virtual environment behaviour may 
only consist of interaction techniques in simple environments (walk-throughs), more 
advanced environments contain world objects with their own behaviour. The user 
interacts with these world objects using appropriate interaction techniques. In [27] it 
is demonstrated how Flownets are able to model world objects in addition to 
interaction techniques. The relation between the user, interaction technique behaviour 
and world object behaviour is shown in figure 1. 

In addition to using Petri-nets to describe the discrete elements, Flownets use 
constructs from a notation originally intended to model system dynamics [8] for the 
description of the continuous data flow and transformation processes. We will 
describe the formalism by way of an example of an interaction technique. The mouse 
based flying interaction technique enables the user to navigate through a virtual 
environment using the desktop mouse to control the direction and speed. Variations of 
this technique are used in many virtual environment packages (see for example 
VRML [4]). One variation works as follows. The technique is initiated by pressing of 
the middle mouse button and moving the mouse away from the clicked position. Once 
the mouse is a threshold distance away from the clicked position, the user's movement 
through the environment is directly proportional to the angle between the current 
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pointer position and the point where the middle mouse button was pressed. The 
distance between these two positions determines the speed. A second press of the 
middle mouse button deactivates flying. 

 

Interaction
techniques

World
objects

USER Output Output

Input

Virtual environment
 

Fig. 1.  The relation between the user the behaviour of virtual environments 

The Flownet specification of the mouse based flying interaction technique is 
shown in figure 2. The technique has two plugs to the external environment: one input 
mouse, and one output position. When the middle mouse button is pressed the middle 
m/butt sensor is activated and the start transition fired (1). The start transition enables 
the flow control, which enables the transformer (update origin), which updates the 
value of origin held in a store with the current mouse position (2) (taken from the 
mouse plug). A token is then placed in the idle state. When the out origin sensor 
detects that the mouse has moved away from the origin position, transition (3) is fired 
which moves the token from the idle state to the flying state. A token in the flying 
state enables the corresponding flow control which enables the transformer (update 
position) to update the position data in the store using the current mouse position and 
the origin position (4). This is then output to the position plug. Whenever the flying 
state is enabled, the inhibitor connecting this state to the start transition implies that 
the start transition cannot be re-fired. When the in origin sensor detects that the 
mouse has moved back to the origin position, a transition is fired which returns the 
token from the flying state to the idle state closing the flow control and halting the 
transformation on position. Regardless of whether the technique is in the idle or the 
flying state, it can be exited by the middle m/butt sensor becoming true and firing 
either one of the two exit transitions (5 or 6). 

The argument for using this formalism is that there is clarity about the 
implementation of requirements and about the characteristics of behaviour. This point 
can be illustrated by comparing the Flownet representation of the mouse based flying 
interaction technique in figure 2 with the equivalent implementation code in 
Appendix A written in Maverik. It is not important to understand the code, rather to 
appreciate how the behaviour of the technique is clearer in the Flownet representation 
of figure 2. This is because the behavioural structure (what happens when and why) of 
the technique is explicit in the Flownet but implicit in the code. Additionally, 
although the code contains more detail than the Flownet representation (low level data 
state and transformations, for instance), it is difficult to relate the abstractions to the 
requirements.   If we treat the informal description given earlier in this section as the 
requirements, then it can be seen that the Flownet captures these concepts, for 
instance idle, flying and middle mouse button.  More importantly, the Flownet 
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captures a precise relation between these concepts.  For instance, that it is necessary 
to be in the state of flying in order to update position, and that update position 
requires positional data (origin) created during the transition to the idle state. 
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Fig. 2. Flownet specification of the mouse based flying interaction technique 

3  Interaction Techniques 

The Marigold toolset supports a design process which closely integrates virtual 
environment behaviour specification using the Flownet formalism, and the 
prototyping of that behaviour. In the next sections we exemplify this design process 
by building elements of a virtual kitchen. Within this section we provide a method for 
the user to navigate around the kitchen. For this we will use the mouse based flying 
technique introduced in the previous section. Prototyping a Flownet description of an 
interaction technique using Marigold is a two stage process. The first stage takes 
place in the hybrid specification builder (HSB) which supports the specification of a 
Flownet using direct manipulation (figure 3). At this point, a small amount of code is 
added to some of the nodes of the specification. This code describes the semantics of 
some of the Flownet components more precisely. There are three types of code that 
can be added: 

Variable code. This is placed in the plugs of the specification. It describes what 
kind of information flows in and out of the plugs and, hence, around the specification. 
Illustrated in figure 4 (a) is the code added to the mouse plug. An integer variable 
represents the state of the mouse buttons and a vector represents the mouse position. 
Variable code is also used to define data which reside in the stores. 
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Fig. 3. The mouse based flying specification in Marigold HSB 

Conditional code. This is placed in some transitions and all sensors. It describes the 
threshold state of the data for firing the component. Illustrated in figure 4 (b) is the 
code added to the middle m/butt sensor. As can be seen from figure 4 (b), the HSB 
informs the developer which data flow in and out of the node (i.e. which data they are 
able to access). The code specifies that when the middle mouse button is pressed, the 
sensor should fire. 

Process code. This is placed in all transformers and denotes how the information 
flowing into the transformer is transformed when enabled. Illustrated in figure 4 (c) is 
the code added to the position transformer. This describes how position should be 
transformed using the current mouse position and the origin position.  

Once the code has been added, it is necessary to generate a stub of the interaction 
technique. This is a description of the interaction technique which is independent of 
an environment. No commitment is made to the inputs and outputs of a technique. 

The second stage of implementing a Flownet specification involves integrating the 
interaction technique stub, generated from the HSB, into an environment (input 
devices and output devices, for instance). This is performed using the prototype 
builder (PB). Illustrated in figure 5 is the mouse based flying interaction technique 
within the PB and connected into an environment. Each node has a set of variables. 
The variables for the mouse based flying interaction technique (mbf) are those that 
were placed in the plugs within the HSB. The relation between the environment 
elements are defined by joining these variables enabling the flow of data from one to 
another. Within the mouse based flying specification, we have linked a desktop 
mouse, as an input to the technique, and a viewpoint, as an output from the technique. 
From this specification, the code for a prototype environment can be generated and 
compiled. However, for the navigation to be perceived world objects must be present 
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within the environment. In the next section, we specify and introduce a world object 
for the user to observe as they navigate. 

 

 

Fig. 4. a) Adding variables to the mouse input plug b) Adding conditional code to the middle 
mouse button sensor c) Adding process code to the position transformer  

 

Fig. 5. PB specification for a virtual environment prototype using the mouse based flying
interaction technique 
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4   World Objects 

Often virtual environments are simply walk-through where the user navigates the 
environment observing static renderings of world objects. However, more complex 
environments reflect the real world where the user can interact with and observe 
world objects. In this section we expand the environment of the previous section to 
include a virtual gas hob (oven) world object with which the user can interact. 

A world object specification is also constructed using the HSB and a stub 
generated as described in the previous section. Rather than using the PB to integrate 
the stub of the world object's behaviour into an environment directly, a third tool, the 
Complex Object Builder (COB), supports an intermediate refinement stage. Within 
the COB a link is made between a world object's behaviour stub (generated from the 
HSB) and the visual renderings constructed using a third party 3D-modelling tool 
such as 3DStudio [2]. Any additional information required from the external 
environment (the PB) is also made explicit using the COB. From the COB 
specification, another stub is generated and integrated into the complete environment 
(interaction techniques and devices, for instance) within the PB specification. This 
intermediate refinement stage simplifies the PB specification because a single node is 
an encapsulation of both a world object's behaviour and appearance. In addition, a 
world object's encapsulated behaviour/appearance may be reused. The COB supports 
this type of reuse by packaging these components together in a reusable node.  

Figures 6 and 7 illustrate the discrete and continuous parts of the behaviour of the 
hob respectively. Although the HSB supports the construction of a Flownet 
specification using one view, it can be useful to split the continuous and discrete part 
of larger specifications to maintain clarity of presentation. As can be seen from these 
two figures, common constructs (sensors and flow controls) relate the two views. 
Code is added to some of the nodes constituting the specification in the manner as 
described for the mouse based flying interaction technique, and a stub of the 
behaviour is generated. 

The next stage is to integrate this stub with the visual renderings using the COB 
(figure 8). The node labelled hob is the stub of the gas hob generated from the HSB. 
Representations of the renderings of the gas switch, ignition and flame are related to 
the behaviour because their states are changed according to the Flownet specification. 
However the oven body is not related because, although this is visually perceived, it 
has no behaviour. The external link node specifies that data is required which is not 
contained within the specification. Consequently, the position of the virtual hand must 
be linked into the gas hob within the PB. The relative positioning of the rendering 
representations are also set within the COB. From the COB, a stub of the specification 
is generated.  

Our original PB specification is expanded to include the complex world object. 
Figure 9 shows the prototype specification that includes the original mouse based 
flying interaction technique (mbf) and a simple manipulation (sman) interaction 
technique. The sman technique, also defined using a Flownet, controls the position of 
a pointer world object by two mappings of the keyboard device. The hob world object 
stub can be seen on the left side of the specification. The one variable within this 
complex world object is linked to the pointer as required by the external link within 
the COB specification. 
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Fig. 6. The discrete part of the Flownet specification for the gas hob within the HSB 

 

Fig. 7. The continuous part of the Flownet specification for the gas hob within the HSB 
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Fig. 8. The COB specification showing the integration of the Flownet stub of the gas hob into 
the external environment 

 

Fig. 9. The PB specification extended to include the integration of a complex world object and 
manipulation interaction technique 
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Fig. 10. The prototype (as generated from the PB specification) running 

The prototype generated from this specification is illustrated in figure 10. It allows 
the user to navigate around the environment using the mouse and manipulate the 
virtual pointer using the keyboard. The virtual pointer can be used to interact with the 
hob which will behave according to its Flownet specification. The gas on/off switch is 
on the left side of the oven, and the push ignition on the right. Additionally, a pan is 
situated on top of the hob (this is part of the oven body rendering representation in 
figure 8).  

5   Non-static Binding 

Flownet specifications are not concerned with the environment external to the 
behaviour, they abstract from this by interfacing to plugs. The PB and the COB tools 
provide a means of binding an environment to the plugs of Flownets. The binding 
style described in the previous sections is static. However, a developer may wish to 
specify that a selection interaction technique can select one of a number of objects 
within the kitchen, without explicitly linking every object to the selection technique. 
Similarly, a developer may wish to state that any object placed within a kitchen 
drawer is affected by the opening and closing behaviour of the drawer because it is in 
the drawer. This type of non-static binding is supported by two additional constructs 
within the Marigold PB namely world object group and dynamic bind. In this section, 
we expand the specification we have developed in the previous two sections to 
include behaviours which make use of these constructs. The expanded PB 
specification is illustrated in figure 11 with a number of new nodes and links. 

Firstly, as illustrated at the top of the specification of figure 11, the world object 
group construct provides a method of grouping world object renderings (ball one and  
ball two). In this example, the select interaction technique is using this group to 
determine which object is selected by the pointer object and to change the state of the 
ball objects selected variable (from false to true). The sman (simple manipulation) 
technique then controls the position of whichever ball is selected.  
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Secondly, the dynamic bind construct allows conditions such as in the drawer to be 
described so that when an object (rendering) satisfies the statement it binds to the 
behaviour. In figure 11 such a construct (db) can be seen labelled in drawer and 
linked to the position of the drawer complex object. When a dynamic bind is inserted 
into a PB specification, the tool asks the user to specify a visual rendering and set the 
position of this visual rendering. For the in drawer dynamic bind a rendering was 
constructed to represent the space inside the virtual drawer (this is not displayed in the 
environment). This rendering is positioned so that it is initially inside the drawer. A 
number of options can also be set on a dynamic bind construct. In this example, it is 
specified that when an object is fully within the space defined by the rendering (in the 
drawer) it will bind dynamically to the behaviour of the drawer and that the dynamic 
bind rendering itself should also bind to the behaviour. Consequently, when objects, 
such as ball one and/or ball two are placed within the drawer, they bind to the 
drawer's behaviour and open and close with the drawer. In addition, although the bind 
rendering cannot be observed in the environment, this always remains inside the 
virtual drawer.  

The dynamic bind construct also has the potential to specify physical laws within a 
virtual environment. For instance, a bind could be constructed the size of the 
environment which is linked to a Flownet specification imposing a gravity behaviour. 
Consequently, when objects are within the environment, they are linked to this 
behaviour. Or, a bind could be placed within a swimming pool, such that when an 
object enters the water, it is linked to the gravity of water. To enable this, it would be 
necessary for Marigold to support the generation of collision detection. 

 

 

Fig. 11. Expanded PB specification with an additional drawer complex world object, selection 
interaction technique and dynamic binding constructs 



Prototyping pre-implementation designs of virtual environment behaviour      103 

The small kitchen example now supports navigation, control of the virtual hand, 
behaviour of the gas hob, behaviour of the drawer and the selection and manipulation 
of the two balls. These balls are initially positioned within the drawer and therefore 
bind to the drawer's opening and closing behaviour. The virtual hand can be used to 
remove either one or both of the balls from the drawer, whereupon they lose their 
binding to the drawer's behaviour. A screenshot of this environment is shown in 
figure 12. 

 

 

Fig. 12. Final prototype with a drawer, hob and three interaction techniques 

6   Related Work 

The distinguishing feature of Marigold is the initial consideration of the virtual 
environment interface behaviour independent of any specific implementation using 
Flownets. The approach presented in [13, 17] links higher level abstractions to 
implementation components, such that when these abstractions are rearranged, the 
change is propagated into the underlying implementation. This is in the style of user 
interface management systems (UIMS) which has been researched widely for other 
styles of interface. However, such an approach can be seen to be implementation 
driven, rather than requirements driven, since an implementation abstraction must 
exist in order to satisfy a specification abstraction.  We have illustrated that using 
Marigold the developer is building implementation components that meet the 
requirements of the specification.  

Another approach which has influenced the design of the PB and COB components 
of Marigold is the data-flow style of specification. In [21] modules are connected 
together (in a manner similar to the PB) to specify virtual environments. These 
modules are linked to an underlying implementation which changes according to the 
configuration of the specification. This style of specification has been extended so 
that it can be achieved while the developer is immersed in the environment [29]. Like 
the UIMS approach, the semantics of these modules are static and consequently limit 
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what can be specified . In Marigold, although static components are also used within 
the PB and COB, these components (devices and rendering representation) are input 
and output to the behaviour and not the behaviours themselves. The behaviour 
components are developed specifically for an applications requirements using the 
HSB. 

An approach to designing complete virtual environments is introduced in [15] 
which contains a component for describing the behaviour of the system using 
Statecharts. This is an adaptation of an existing real-time system design approach. A 
number of contrasts can be drawn with Marigold. The behaviour of the systems 
described are walk-through. It would be difficult using this approach to describe some 
of the complex user-driven behaviour captured using Flownets, for example. 
Additionally, Marigold offers a faster and, thus, tighter integration between 
specification and prototype because of the environment integration method supported 
by the PB and COB. 

The interactive cooperating object formalism (ICO) is a design approach for the 
development of interactive systems [19]. ICO combines the power of object-oriented 
structure and Petri-nets for the internal behaviour of objects. A tool is being 
developed which supports their implementation [6]. The abstractions made within the 
PB, and the style of PB specification itself, enable a developer to rapidly integrate a 
specification into an environment. These abstractions are not readily available within 
ICO and would need to be written using code. In addition, the Flownet formalism 
itself seems to be a suitably rich formalism for describing virtual environment 
behaviour compared to Petri-nets alone. Flownets continuous data-flow constructs 
capture a strong mapping between the user interaction (devices), their state, and the 
presentation of this state. 

7   Conclusion 

In this paper we have discussed a need for the pre-implementation design of virtual 
environment interface behaviour and have reviewed the approaches developed to 
address this concern. We have also motivated a need to integrate this form of design 
with the building of prototypes so that developers and users can explore the designs at 
an implementation level. The Marigold toolset has been developed as an approach to 
providing a rapid transition between such designs and prototypes. We have described 
this toolset by exemplifying the incremental design and prototyping of a small kitchen 
prototype. Such a prototype may be used at two levels. Firstly, it is important to 
determine whether the environment is usable. For instance, in the example, does the 
behaviour of the environment enable the user to navigate to the drawer, open the 
drawer, transfer both balls to the pan on the hob from the drawer, and switch the hob 
on? At another level, does the environment fulfill the broader requirements? If the 
small kitchen was to aid in training chefs, then the behaviour of the environment is 
clearly inadequate. At the end of a session the chef maybe able to complete a task 
within the virtual environment, but this bears no correspondence to the behaviour of 
the real environment. 

It is anticipated that once the developer and users have arrived at a design that 
satisfies the requirements, through an iterative process of design and prototyping, one 
of two options may be taken. Firstly, a programmer may construct the final 
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implementation directly from the specifications taking into account issue of 
performance (paramount to larger environments). Secondly, as suggested in [25], the 
Flownet specifications may be refined to a more detailed specifications (maybe using 
HyNets as presented in [25]), from which a programmer would implement the 
behaviour of the environment. 
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Discussion 

J. Höhle: Can you model independent behaviour instead of reactive behaviour - such 
as a time based behaviour? 
J.Willans: You certainly can add timing constraints in the system but it would be hard 
to ensure their satisfaction. Satisfaction would depend upon implementation details. 
 
N. Graham: How hybrid is your specification? You seem to be modelling dynamic 
behaviour within discrete framework. It does not seem to involve truly continuous 
inputs, such as dealing with the effect of momentum when lifting an object, or dealing 
with sound. Is this natural in flownets? 
J.Willans: We do not have that kind of example yet. Flownets is hybrid in 
representation at the design level. There are other lower level representations that 
capture continutiy in more detail (e.g. HyNet). 

 

Appendix A 

#include "maverik.h" 
#include "mav_tdm.h" 
 
MAV_vector new_offset; 
MAV_vector origin_pos; 
int mouseClick; 
 
/* RELATES TO FLOWNET SPECIFICATION    */ 
/* MIDDLE MOUSE BUTTON + UPDATE ORIGIN */ 
 
int mouseButtonPress(MAV_object * o, 
MAV_TDMEvent * ev) 
{ 
    int origin_x, origin_y; 
    int xx, yy; 
    if (ev->tracker == 0 && eb->button ==1) { 
         mav_mouseGet(mav_win_all, &origin_x,  
                      &origin_y, &xx, &yy); 
         origin_pos.x = origin_x; 
         origin_pos.y = origin_y; 
         origin_pos.z = 0; 
         mouseClick = !mouseClick; 
    } 
} 
 
/* RELATES TO FLOWNET SPECIFICATION */ 
/* UPDATE POSITION                  */ 
void updateViewpoint(void) 
{ 
    mav_win_current->vp->eye =  
       mav_vectorAdd(mav_win_current->vp->eye,  
                     new_offset); 
} 
 

/* RELATES TO PETRI-NET PART OF */ 
/* FLOWNET SPECIFICATION        */ 
 
void interaction(void) 
{ 
    MAV_vector current_mouse; 
    MAV_vector direction; 
    float speed; 
    int curr_mouse_x, curr_mouse_y, xx, yy; 
    if (mouseClick) { 
        mav_mouseGet(mav_win_all, &curr_mouse_x,  
                     &curr_mouse_y, &xx, &yy); 
        current_mouse.x = curr_mouse_x; 
        current_mouse.y = curr_mouse_y;  
        current_mouse.z = 0; 
        if (outOriginSq(current_mouse)) { 
            direction = mav_vectorSub 
               (origin_pos,  
                current_mouse); 
            direction = mav_vectorSet 
               (direction.x,  
                direction.z,  
                direction.y); 
            speed = mav_vectorDotProduct 
               (direction, direction); 
            speed = speed / 1000; 
            new_offset = mav_vectorScalar 
               (direction, speed); 
            origin_pos = mav_vectorAdd 
               (new_offset, origin_pos); 
            updateViewpoint(); 
         } 
    } 
} 
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/* RELATES TO FLOWNET SPECIFICATION */ 
/* OUT OF ORIGIN                    */ 
 
int outOriginSq(MAV_vector current_mouse) 
{ 
    MAV_vector temp; 
    float distance; 
    temp = mav_vectorSub(current_mouse, 
origin_pos); 
    distance = mav_vectorDotProduct(temp, temp); 
    if (distance > 5) { 
       return 1; 
    } 
    return 0; 
} 
 
int main(int argc, char *argv[]) 
{ 
    MAV_SMS *sms; 
    MAV_composite comp; 
 
    mav_initialise(); 

    mav_TDMModuleInit(); 
    sms = mav_SMSNew 
        (mav_SMSClass_objList, mav_objListNew()); 
    mav_compositeReadAC3D 
        ("desk.ac", &comp,MAV_ID_MATRIX); 
    comp.matrix = mav_matrixSet(0, 0, 4, 0, 0, 0); 
    mav_SMSObjectAdd 
        (sms, mav_objectNew(mav_class_composite, 
&comp)); 
    mav_callbackTDMSet 
        (mav_win_all, mav_class_world, 
mouseButtonPress); 
    mav_frameFn0Add(interaction); 
    mouseClick = 0; 
    while (1) { 
        mav_eventsCheck(); 
        mav_frameBegin(); 
        mav_SMSDisplay(mav_win_all, sms); 
        mav_frameEnd(); } 
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