
M. Reed Little and L. Nigay (Eds.): EHCI 2001, LNCS 2254, pp. 263–279, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Information Sharing with Handheld Appliances

Jörg Roth

University of Hagen, Department for Computer Science
58084 Hagen, Germany

Joerg.Roth@Fernuni-hagen.de

Abstract. Handheld appliances such as PDAs, organisers or electronic pens are
currently very popular; they are used to enter and retrieve useful information,
e.g., dates, to do lists, memos and addresses. They are viewed as stand-alone
devices and are usually not connected to other handhelds, thus sharing data
between two handhelds is very difficult. There exist rudimentary infrastructures
to exchange data between handhelds, but they have not been designed for a
seamless integration into handheld applications. Handheld devices are funda-
mentally different from desktop computers, a fact that leads to a number of
issues. In this paper, we first analyse the specific characteristics of handheld
devices, the corresponding applications and how users interact with handhelds.
We identify three basic requirements: privacy, awareness and usability. Based
on these considerations, we present our own approach.

1 Introduction

Currently, there exists a growing market for handheld devices such as PDAs, mobile
phones, electronic pens etc. Upcoming communication technologies like UMTS and
Bluetooth promise new functionalities for human communication. Currently, the
mostly accepted way for communication is still verbal communication, whereas sym-
bolic or textual media such as SMS or Email are still hard to use with handheld
devices.

Handheld devices may already store reasonable amounts of data, e.g. appoint-
ments, holidays, addresses and agendas. On one hand, it should be possible to
exchange these data between users without too much effort, on the other hand, hand-
held devices are basically of private nature and thus not intended for sharing data with
other people. These contradictory characteristics may be one reason, why handhelds
are currently being viewed as autonomous systems without any sophisticated facilities
for inter-handheld communication.

In this paper, we present requirements, issues and problems of communication-
oriented, distributed applications for handheld appliances. A lot of research has been
done about the design of distributed applications in desktop environments. However,
due to the fundamental different nature of handheld devices, these results can hardly
be adapted to handheld scenarios.

This paper is structured as follows: first, we present the fundamental differences
between handheld devices and traditional desktop computers. Based on these consid-
erations we identify three key requirements, a communication-oriented distributed
handheld application has to meet: privacy, awareness and usability. We then present a

264 Jörg Roth

framework, which allows a designer to create successful information sharing applica-
tions for handhelds.

2 Handheld Computing Characteristics

The notion of handheld device, palmtop, PDA and organiser is often interpreted in
different ways. An older interpretation distinguishes between pen-based devices and
palmtops, where the latter have keyboards. In contrast, Microsoft divides Windows
CE devices into handheld PCs (H/PC) with a keyboard, palmsize PCs (P/PC), which
are controlled by a pen and handheld PC Pro devices, which are subnotebooks [3]. To
get completely confused, Microsoft calls the new pen-based devices based on
Windows CE 3.0 Pocket PC.

In the following, we understand by handheld devices mobile devices with small
displays, without or with just rudimentary keyboards and an autonomous power
supply. Examples are:
_ 3Com's Palm devices (e.g. Palm III or Palm V),
_ Casio's Cassiopeia or
_ Electronic pens such as the C-Pen.

In particular, we do not summarise notebooks or laptops under the notion of hand-
helds.

Handheld computing is closely related to so-called ubiquitous computing. Mark
Weiser introduced the concept of ubiquitous computing often called "ubicomp" [19].
His vision was a huge number of invisible and "calm" computers surrounding people
in their everyday life. In contrast, handheld computing keeps the device in the fore-
ground, whereas ubicomp devices should work in the background [6]. People using
handhelds are aware of using computers and adapt their activities to the device, e.g.
learn a specific kind of handwriting. However, studying handheld computing may be
the right step towards ubicomp, since a number of problems is identical. Handhelds,
e.g., should be suitable for everyday tasks, easy to handle and fail proof.

Table 1 shows some hardware characteristics of popular handheld devices.
Compared to desktop computers, handheld devices have small memories, low
computational power, limited input and output facilities and usually do not contain a
mass storage. Persistence data have to be stored in the battery-buffered RAM, and
thus decreases the available runtime RAM for dynamic data and runtime stack. Even
worse: some CPUs (e.g. Palms CPU) allow only addressing small pieces of memory
(64k) as a whole. The reduced capabilities have two major reasons:

1. Size: The display is limited to palm size (approx. 10cm x 8cm); chips (e.g.
memory and CPU), even when highly integrated, need space for connectors and
circuit boards. Due to these limitations, it is impossible or at least cost intensive to
integrate high-resolution displays or a big number of electronic parts into a device.

2. Battery life: Fast CPUs, big memories and high-resolution displays (particularly
coloured ones) consume a big amount of valuable battery power. If battery technology
will not significantly improve in the future, handheld computers will always be far
behind the capabilities of desktop computers.

Information Sharing with Handheld Appliances 265

Table 1. Some hardware characteristics of handheld devices

Device Processor RAM Screen Battery life
Palm IIIxe
(3Com)

16Mhz
MC68EZ328

8MB 160x160
(16 grey)

1.5-2 months
(normal use)

Cassiopeia E-15
(Casio)

69MHz
NEC VR4111

16MB 240x320
(16 grey)

25 hours
(continuously)

C-Pen 800
(C-Technologies)

100Mhz
Intel StrongARM

8MB 200x56
(b/w)

2-3 weeks
(normal use)

The reduced equipment of handheld devices has a big influence on software devel-
opment. Handheld applications are usually not developed 'from scratch' but make use
of their operating system’s services. Popular operating systems like PalmOS [2],
Windows CE [3], EPOC [17] or ARIPOS [5] provide the following services:
_ starting, stopping and switching applications, managing the memory and the user

interface;
_ special device-dependent services like handwriting recognition, OCR, time-

dependent alarms;
_ supervising the battery power, performing auto-power-off;
_ managing persistent data in the battery-buffered memory;
_ managing communication to other devices (usually to the host PC).

Software development kits allow the software designer to code and compile handheld
applications on desktop computers, usually in C. Some kits provide emulators for
testing applications before downloading them to the specific device.

Compared to desktop operating systems, handheld operating systems do not offer
the same variety of services. Major shortcomings are:

Limited user interface capabilities: Usually the so-called WIMP paradigm (Win-
dows, Icons, Menus, Pointers), which is very common to desktop computers, is, if at
all, supported in a very reduced way only because of the limited display and input
capabilities.

Limited support for persistent data: Since handhelds have no mass storage system,
all persistent data have to be kept in the battery-buffer RAM. Windows CE emulates a
hierarchical file system inside the RAM area. Other systems like ARIPOS and
PalmOS store persistent data in so-called databases [2] (not to be confused with tra-
ditional databases). A database is a persistent collection of records. Each record has a
unique identifier; its content is opaque to the operating system. Constructing and
interpreting records solely depends on the corresponding application. Databases can
be viewed as flat file system with a record-oriented structure.

Limited or no parallel execution capabilities: Most handheld operating systems do
not support threads or processes for background tasks, a common technique for desk-
top computer applications. As a work-around, some systems offer so-called timers,
which can periodically call a predefined procedure. Unfortunately, a call is only per-
formed, when no other instruction is being executed, thus a timer does not provide
real background operations.

Limited support for communication: Compared with desktop computers, handhelds
only support a small set of communication capabilities. Handheld operating systems
usually support one specific way of communication determined by the peripheral
equipment. ARIPOS, e.g., only supports IrDA communication, since the C-Pen only

266 Jörg Roth

contains an infrared transceiver for communication. PalmOS supports serial commu-
nication and TCP/IP, but does not support TCP server sockets, essential for reacting
on incoming communication requests.

Networking: In addition to the limited communication support, the underlying
network itself has some drawbacks:
_ Wireless communication infrastructures currently have low bandwidths (GMS,

e.g., only provides 9600 Baud) and tend to have high error rates and abnormal ter-
minations.

_ Handhelds as communication end points are mobile in the network, i.e. often
change their network addresses.

_ Mobile devices are rarely connected, i.e. are most of the time not available in the
network because of network failures or just because the device is turned off.

Emerging technologies as UMTS, IPv6 and Bluetooth will change the way handhelds
can be used inside a network. UMTS, e.g., allows a device to be permanently con-
nected to the network with high bandwidth. IPv6 offers with MobileIP the possibility
to keep the same IP address, even when a device moves inside the network. However,
such technologies are not yet widely available and cannot be used inside current con-
cepts.

All topics mentioned above have big influence on the application development
process. Usually, because of the limited handheld capabilities developing handheld
applications is very cost intensive. This includes testing and debugging; since hand-
helds do not offer the same debugging facilities like desktop computers, testing and
debugging is quite cumbersome.

3 Handheld Applications

3.1 Application Types

Interactions with handheld applications and interactions with desktop applications
follow different usage paradigms. First, handheld applications have to respect the
limitations mentioned above; much more important: users request a different kind of
availability from such applications: handhelds do not 'boot up'. When needed, appli-
cations have to immediately appear on screen. In turn, when the handheld device is
deactivated, an application has to immediately save its state and disappear. In general,
handheld applications are being used for entering and retrieving small pieces of
information rather than processing data.

On handhelds, only a small set of application types can reasonably be used. We
analysed 32 Palm applications currently available as shareware. In order to get a
representative set of applications, we took a shareware collection of a popular German
journal [4]. Table 2 shows the results.

Five applications are utilities and so-called hacks, which extend the operating
system. This kind of application is not used to store information, thus not taken into
further consideration.

Information Sharing with Handheld Appliances 267

Table 2. A selection of Palm applications

Applications Application type Data type No.
Launcher III, SwitchHack,
German Chars, Hackmaster,
Eco Hack

Utilities mixed 5

Brainforest, dNote,
HandyShopper,
PocketMoney, HanDBase

Textual notes, ideas,
shopping lists, bank
accounts

textual
documents,
tables

5

Feiertage, Yearly, DateBk3,
Palm Planner

Dates, appointments,
holidays

dates 4

Abacus, TinySheet, MiniCalc Spreadsheet tools spreadsheets 3
Desktop to Go, Documents to
Go, TealDoc

Documents textual
documents

3

ptelnet, MultiMail, HandWeb Internet tools mails, web pages 3
DiddleBug, TealPaint Graphical notes,

freehand
graphical data 2

Parens, Currency Calculator Calculators numbers 2
PocketChess, TetrisV Games game states 2
Secret! Security texts 1
Route Europe Route planner geographic data 1
Timer Clock time 1

Except for two programs, which allow graphical input, all applications store well

structured and record oriented data, often text based. Typical data types for handheld
applications are
_ texts and lists of texts,
_ date entries,
_ numbers,
_ tables or spreadsheets.

None of the applications above deals with multimedia data such as audio or video,
which require a considerable network bandwidth, sufficient output devices and a huge
amount of battery charge. Currently multimedia data are not suitable for handheld
devices.

To summarise, most of the applications deal with simple data types such as strings
or numbers, joined together to lists or tables. Only few applications support graphical
data.

3.2 Privacy

Data stored inside a handheld device are usually viewed as private data. Even more
than desktop computers, handhelds are viewed as personal devices [16] for storing
personal data such as telephone numbers, birthdays and leisure-time activities. Some
handheld operating systems protect private data. PalmOS, e.g., allows a user to mark
entries as private, i.e. a password is needed for viewing them. In addition, a handheld
device as a whole can be locked via a password.

268 Jörg Roth

Connecting handheld devices for data exchange may jeopardize privacy. In case of
an untrusted network, applications have to offer mechanisms for guaranteeing data.
No private data should be transferred across a network, other people must not be able
to break into a handheld and to spy out private data.

To gain acceptance by end-users, an infrastructure has not only to ensure privacy;
but also convince the user that her or his private data are kept private. This is perhaps
the most crucial issue related to privacy.

3.3 Awareness

Mobile devices can be connected to a network at different places. Depending on the
location, different information may be available. Users should be aware of their
current location, including the geographic location as well as the location in the net-
work. This information is part of so-called context awareness. Abowd and Mynatt list
different kinds of context awareness, defined by the "five W's": Who, What, Where,
When and Why [1]. The Who context, e.g., is based on information about other people
in the environment, especially for looking at activities.

Sharing information between people leads to the area of groupware and CSCW
(computer supported collaborative work). Collaborative applications significantly
differ from single-user applications. Many users provide input (often simultaneously),
output has to be processed for many users, and shared data have to be kept consistent.
Groupware applications have to provide a 'feeling' of working together in a group,
called collaboration awareness: users have to be aware of other users involved in the
collaborative task.

Context awareness as well as collaboration awareness require special components
inside the applications' user interfaces called awareness widgets. Similar to users, we
call an application aware of something, if it explicitly takes care of a special situation,
otherwise we call it transparent. Collaboration aware applications, e.g., are
especially designed for supporting a group, i.e. they contain special code for group
functions. Collaboration transparent applications originally are single-user applica-
tions, which, with help of a groupware toolkit, can be used by many users simultane-
ously. Collaboration transparent applications do not offer awareness widgets. A
similar notion can be applied to the mobility aspect: mobility aware applications con-
tain code to handle mobility, e.g. react on unstable network connections and changing
network locations. Mobility transparent applications cannot handle such problems
explicitly, but rely on an underlying platform.

3.4 Usability

Usable applications support users in carrying out their tasks efficiently and effec-
tively. For handheld applications, usability may be even more important than for
desktop applications. When an application is designed in isolation from the intended
users, the result is all too often an application which does not meet their needs and
which is rejected by end-users. An application should meet the following require-
ments:

Respect hardware and software limitations: Usable applications take into account
the hardware and software limitations of their hosting handheld devices. Heavy com-

Information Sharing with Handheld Appliances 269

putational tasks are not suited for handhelds; user interfaces should be designed for
small displays with minimal text input; communicating across a network should con-
sider the small bandwidth and high error rate.

Software quality: Handheld applications should be more fail proof than desktop
applications. A locked or crashed application blocks the entire device. An application
trapped in an infinite loop prevents some devices from being switched off. Cold
starting a handheld often results in loosing all stored data. The problem becomes even
worse, if an application communicates with other devices. A blocked device may
interrupt the entire group communication. To improve software quality, design guide-
lines may help a developer to build well-formed applications. Such a guideline can,
e.g., be found in [2]. A platform or application framework, that encapsulates standard
solutions for a specific application domain, helps a developer to meet these guide-
lines: She can rely on a set of services and only has to code application-specific func-
tions.

Respect everyday requirements: Handheld applications are used every day. Abowd
and Mynatt introduced the term called everyday computing [1]. They state that daily
activities rarely have a clear beginning or end and often are being interrupted. This
issue is especially important when considering communication-oriented applications.
The strict distinction between asynchronous and synchronous groupware [7] hardly
applies to everyday tasks. This leads to the notion of relaxed synchronous collabora-
tion when group members collaborate synchronously, but may sometimes be discon-
nected from the network for short periods of time [15]. In addition, everyday tasks
require spontaneous, unplanned communication. Exchanging data between handhelds
should be as easy as a phone call. Especially, user-driven central co-ordination or
administration should be avoided.

4 Related Work

Mobile phones: Mobile phones offer simple mechanisms to transfer textual data. SMS
(short message service) [13] is a protocol, which allows sending up to 160 characters
to another mobile phone. It can slightly be compared to the email service on the
Internet, but is based on the mobile phone infrastructure GSM (global system for
mobile communication). WAP (wireless application protocol) [20] allows browsing
special Internet pages on small displays. WAP provides a one-way only information
channel, i.e. it is not possible to send page contents from one device to another.

Beaming: A simple technique for exchanging data between handhelds, so-called
"beaming", comes along with the Palm device [2]. Manufacturers of other devices,
e.g. of C-Pens or Windows CE devices adapted the technology. Beaming can be
viewed as de-facto standard for short range data exchange between handheld devices.
It is infrared based and allows exchanging single records of data, e.g. one address or
one memo. The distance between communicating devices should not exceed approx.
one meter. Beaming requires human interaction, i.e. each time an entry is to be
transferred, the sender as well as the receiver have to interact with their devices.
Beaming is only suitable for small amounts of data.

PIMs: Personal Information Managers (PIMs) are important tools for handhelds.
They conveniently allow entering data by keyboard and then downloading them to the
handheld. A popular PIM is Microsoft's Outlook [11]. In addition to synchronising

270 Jörg Roth

data with a handheld, Outlook allows scheduling appointments in a team, i.e. small
amounts of data can be exchanged between a group of people.

Coda: Several research platforms have been developed for data distribution and
consistency in mobile environments. Coda [9] provides a distributed file system
similar to NFS, but in addition supports disconnected operations. Applications based
on Coda are fully mobility transparent, i.e. run inside a mobile environment without
any modification. Disconnected mobile nodes have access to remote files via a cache.
Operations on files are logged and automatically applied to the server when the client
reconnects. Coda applications can either define themselves mechanisms for detecting
and resolving conflicts or ask the user in case of conflicts.

Rover: The Rover platform [8] supports mobility transparent as well as mobility
aware applications. To run without modification, network-based applications such as
Web browsers and news readers can use network proxies. The development of
mobility aware applications is supported by two mechanisms: relocated dynamic
objects (RDOs) and queued remote procedure calls (QRPC). RDOs contain mobile
code and data and can reside on a server as well as on a mobile node. During
disconnections, QRPCs are applied to cached RDOs. As in Coda, after reconnection
operations are logged and applied to server data.

Bayou: Bayou [18] provides data distribution via a number of servers, thus seg-
mented networks can be handled. In contrast to Coda, replicated records are still
accessible, even when conflicts have been detected but not resolved. Bayou applica-
tions have to provide a conflict detection and resolution mechanism. Ideally, no user
intervention is necessary. Bayou is not designed for supporting real-time applications.

Sync: Sync [12] supports asynchronous collaboration between mobile users. It
provides collaboration based on shared objects, which can be derived from a Java
library. As in Bayou, data conflicts are handled by the application. Sync applications
have to provide a merge matrix, which for each pair of possible conflicting operations
contains a resulting operation. With the help of the merge matrix, conflicts can be
resolved automatically.

Lotus Notes: Lotus Notes [10] has not primarily been designed for mobile
computers, but allows replicated data management in heterogeneous networks. Nodes
can be disconnected and merge their data after reconnection. Data in Lotus Notes
have a record structure. Fields may contain arbitrary data, which are transparent to
Notes. Records can be read or changed on different nodes simultaneously. When
reconnecting, users resolve conflicting updates. With the help of the Notes extension
Mobile Notes, it is possible to access databases via Palm devices and mobile phones.

Discussion: Mobile phone protocols are designed for very simple data and not
practical for structured data. It is difficult to adapt application specific data with an
internal record structure to these protocols. A good solution for small amounts of data
provides beaming, since any application can use this communication mechanism to
exchange records with other handhelds. Due to the record-by-record concept,
beaming is not suitable for bigger amounts of data.

Outlook has been designed especially for office environments and can hardly be
adapted to other everyday tasks. It is not possible to add new applications to Outlook.
In addition, Outlook requires a considerable amount of central administration.

Most of the research toolkits above request their mobile clients to be notebook
computers with, e.g., hard disks. The focus of these platforms is to maintain data con-
sistency in a weakly connected environment. Problems related to handheld devices
such as small memory and reduced computational power are not handled satisfacto-

Information Sharing with Handheld Appliances 271

rily. Automatic conflict detection and resolution need a considerable amount of
resources on the handheld devices. We believe that such mechanisms are (currently)
not suitable for handheld scenarios.

Concepts, such as the Rover toolkit, which require mobile code and marshal-
ling/unmarshalling mechanisms, currently cannot be adapted to handheld devices,
since they are significantly different from their servers. The concept of mobile code
requires platform independent code and identical runtime libraries on both platforms
involved. Even though languages such as Java are running on many platforms, hand-
held portings will provide other runtime libraries, thus mobile code mechanisms will
fail.

The platforms above leave many problems described above unsolved. Especially
privacy and awareness are still open issues.

5 The QuickStep Approach

The QuickStep platform [15] allows developing mobility aware and communication-
oriented handheld applications. Developers can use communication and collaboration
primitives provided by the platform and can concentrate on application-specific
details. A set of predefined awareness widgets can be integrated into an application
with a few lines of code. The QuickStep approach can be described as follows:
_ QuickStep supports applications with well-structured, record oriented data. It

explicitly has not been designed for supporting multimedia data, graphical oriented
applications or continuous data streams.

_ QuickStep provides awareness widgets for collaboration awareness as well as con-
text awareness.

_ QuickStep applications are fully collaboration and mobility aware.
_ QuickStep comes along with a generic server application, which allows supporting

arbitrary client applications without modifying or reconfiguring the server.
_ The QuickStep architecture ensures privacy of individual data.

Before describing the QuickStep platform itself, we present two sample applica-

tions developed with QuickStep.

5.1 Sample Applications

The first sample application allows a group of users to exchange date information
(e.g. about vacations or travellings). This tool is useful in meetings, in which mem-
bers want to schedule appointments for future meetings. Each member owns a hand-
held device, which already contains a list of appointments as well as entries indicating
the time one is unavailable. The problem is to find a date, when all members are
available. Figure 1 presents an application that can help to find such a date.

The figure shows the view of two users on their personal handheld device. The
upper half of the window displays the days of a month. Each range of dates when
someone is unavailable is indicated by a bar. To get a better overview, the view can
be switched to a two-months display. The lower half of the window serves as the
legend for the upper half.

272 Jörg Roth

Fig. 1. A collaborative calendar tool

The two users Joerg and Stephan can see their own bars and the bars of each other.
Foreign bars are labelled by the user name rather than the local label. For other users
only the date range is of interest, not why someone is unavailable. Each user can
make new entries which are distributed to the other user in real-time. With the help of
this application, it is very easy to find dates, where all members are available.

The second example, the business card collector (figure 2), is a useful application
for conferences. The application shows a list of all users assembled at a specific
location. A user can view these cards and collect interesting cards in a persistent area.
If the user permits, the business card collector publishes the card automatically, when
entering a location.

a) Joerg's handheld b) Stephan's handheld

Fig. 2. A business card collector

Information Sharing with Handheld Appliances 273

To develop such an application 'from-scratch', a developer has to implement many
tasks, e.g., communication protocols have to be integrated, shared data have to be
managed. The application should offer awareness widgets. All these services have to
be developed in addition to the main task. Developing all these functions would
overwhelm a developer. QuickStep helps a developer to concentrate on the applica-
tion-specific details. Data primitives as well as predefined awareness widgets can be
used from the platform.

In the following, we present the QuickStep platform. After describing the basic
concepts, we discuss QuickStep with the help of the three key requirements privacy,
awareness and usability.

5.2 The QuickStep Infrastructure

As described above, handheld operating systems offer only limited support for com-
munication. Most systems cannot handle communication in the background. If the
handheld device is always the initiating part of the communication, we need an addi-
tional computer, which acts as a communication relay between handhelds. This com-
puter, the QuickStep server, contains a generic server application, which is able to
serve arbitrary QuickStep applications.

Fig. 3. QuickStep communication infrastructure

Figure 3 shows the QuickStep communication infrastructure. A QuickStep server
operates in so-called locations. A location links all handheld devices together which
are 'in range', i.e. which can be accessed by the specific communication technology.
This can be the range of an infrared transceiver or a Bluetooth sender. Locations
linked together form an organisation. Organisations may connect locations, which are
in the same company, building, conference or public place. Table 3 shows typical
examples for locations and organisations.

Table 3. Examples for locations and organisations

 Train Company Conference
Location wagon meeting room, hallway presentation room, foyer
Organisation whole train company building whole conference

Location

QuickStep
server

Organisation

274 Jörg Roth

Connections between handhelds and QuickStep servers are usually wireless, where
the QuickStep servers are connected via traditional local area networks. The
QuickStep server can be viewed as 'inventory' of a specific location. Once installed, it
normally has not to be reconfigured or administered. The server runs without an
operator and does not need a user interface, thus can, e.g., work invisibly behind a
panel.

5.3 Underlying Data

As mentioned above, most handheld operating systems offer an entity called database
to handle application-specific data. The database is a common programming abstrac-
tion in handheld applications, thus the ideal abstraction for communication-oriented
applications as well. QuickStep follows the same paradigm for collecting and dis-
tributing data. The QuickStep application programming interface (API) has similar
database functions as the database API. An application developer can use well-known
services to handle application specific data. Data stored in QuickStep databases are
automatically distributed among a group by the QuickStep platform. Similar to native
database services, the actual content of records is not of interest for the distribution
mechanism and can only be interpreted by the application. Especially, the QuickStep
server does not know the record structure.

Conflicts: Concurrent updates on shared data sometimes cause conflicts. Many
platforms described above have complex mechanisms to detect and resolve conflicts.
In our opinion, such mechanisms cannot be used inside handheld devices. Our
concept for solving conflicts is simply to avoid them: it is not possible to concurrently
manipulate data. For this, each record of data can only be changed by the handheld
device, which originally created the record; copies residing on other handheld devices
can only be viewed. To modify data which were created by another user, one has to
make a private copy, which is treated as a new record.

Mirroring and Caching: Due to the low computational power of handhelds, heavy
processing tasks should run on the server. On the other hand, with respect to the low
network bandwidth, it is not possible to transfer a large amount of processing results
between server and handheld. To reduce network traffic and to perform as many
computations as possible on a server, we developed a combined mirroring and
caching mechanism. Each handheld has its local database, which stores its user's data.
A cache database stores all data of other users, the local user has currently in view.
E.g., the cache database in the calendar tool stores dates of other users in a specific
month. Finally, the QuickStep server has a copy of each local database, the mirror
database. The mirror and cache databases are incrementally updated, each time a
handheld device is connected to the server. The application developer has not to
worry about the cache and mirror databases; they are completely set up and
maintained by the QuickStep runtime system.

5.4 Developing with QuickStep

Figure 4 shows the environment, in which a QuickStep application is embedded.
Applications developed with QuickStep use the QuickStep API as well as the API

offered by the corresponding operating system. QuickStep is built upon the database

Information Sharing with Handheld Appliances 275

communication and user interface APIs. QuickStep does not use the operating
system's communication API directly, instead it uses an intermediate layer, called the
network kernel framework. This layer, developed by the DreamTeam platform [14]
offers a generic interface for communication services such as starting and stopping
connections, transferring data etc. With the help of the network kernel framework, it
is possible to exchange the underlying communication API without changing the
QuickStep platform. E.g., one can exchange a TCP/IP communication by a direct
serial or infrared connection and only has to adapt the network kernel framework.

Fig. 4. The QuickStep programming environment

5.5 Privacy

To ensure privacy, QuickStep does not transfer any private data across the network.
Every record can be marked as private (the default value). Private records reside only
on the handheld and will not be transferred in any case.

Non-private records are not transferred until an anonymising process relieves them
from personal information. Since the record structure is opaque to the underlying
system, the anonymising function has to be provided by the application. In the
calendar application, e.g., the anonymising function blanks out the labels of appoint-
ments and transfers the date range only. The entry

 May 11-13: "Jörg is on the EHCI"

will be transformed to

 May 11-13: "Jörg is away"

since others do not have to know anything about the reason of absence.
As an additional concept, each record has a 'time to live' entry, after which a record

is deleted automatically from the QuickStep server and other handheld devices. This
is done because a user wants to be sure that her or his data are not available forever on
other computers (even in anonymised form). The time to life entry can be one of
session, min, hour, day and forever. If the value is session, the corresponding record
will be immediately removed from the server and handheld caches after the corre-
sponding handheld is disconnected. The other values indicate the time, a record will
reside after disconnection. The lifetime is controlled by special tasks inside the plat-
form, the lifetime supervisors which exist on the handheld devices and on the
QuickStep servers.

 Application

Network Kernel
Framework

QuickStep

PalmOS or Windows CE

Communication
API Database API User Interface API

Database API Awareness API

Other services

Log API

276 Jörg Roth

A similar concept applies to the space property. Each record has a 'space to live'
entry, which defines to which servers a corresponding copy is transferred. Space to
live entries can be one of location, organisation and everywhere. If the value is loca-
tion, only the QuickStep server which serves the current location gets a copy in the
corresponding database. If the value is organisation, the record is transferred to all
servers inside the organisation. The value everywhere is for future use and currently
not supported. We work on a concept, which allows linking multiple organisations
together for exchanging data. Currently, mirroring and group management requires a
tight coupling between servers, thus is only suitable for local area networks.
Transferring data between organisations requires completely different mechanisms.

5.6 Awareness

Context information is important for users as well as for the application, which may
make decisions based on contextual data. A user who collaborates may want
information about the context she or he is currently working in. For this, a user can
open a frame as presented in figure 5.

The context frame is the central instance for all context-related information:
_ What is the current connection state (connected or disconnected)?
_ To which server is the handheld currently connected (server name, organisation)?
_ What is my current location?
_ Who can be called in case of problems (e.g. network failures)?
_ Which other users are currently in the same location or organisation?
_ What are other users’ connection states?

Fig. 5. The context frame

Location information is important when a user enters an unknown location. Con-
sider a scenario where a huge building is equipped with a number of QuickStep
servers (e.g. one per floor). Each QuickStep server provides information about the
current location and thus can be used as a beacon for navigating inside the building.

Information Sharing with Handheld Appliances 277

For collaborating users, the connection state is important. If a user is disconnected,
data changes of that user cannot be viewed by other users. Thus, information about
the connection state should be available on the main window of an application. We
designed an integrated button and state indicator (figure 1, lower right button). This
widget allows connecting and disconnecting to a QuickStep server and via a small
icon indicates the current state.

The button/state indicator as well as the context frame are predefined awareness
widgets and can be integrated in an application via the QuickStep library. In addition,
an application can retrieve state and context information via the QuickStep API and
can react on events (e.g. disconnecting from a network). So, an application developer
can create his or her own awareness widgets.

5.7 Usability

QuickStep explicitly has been designed for handheld scenarios and respects hardware
and software limitations. As described above, heavy computations are avoided and
network limitations are considered. Using a well-formed and tested platform a devel-
oper can rely on stable services. The database abstraction offers a suitable application
framework. All services related to communication are embedded into the platform. To
easily find errors in the application itself, a developer can use the log API (see figure
4). Handheld logs are stored on QuickStep servers, thus problem analysis is possible,
even when an application or the entire handheld device crashes.

Everyday tasks are often run in an unexpected way. In order to encourage
spontaneous communication between users, central administration has to be avoided.
For this, groups of interacting users are not defined explicitly in QuickStep. All users
connected to a specific QuickStep server at the same time and using the same
QuickStep application automatically form a collaborative session. This concept
allows running a server without defining groups centrally. It is possible for a user to
join a group without having explicit permission from other users. Since a mechanism
for anonymising data is integrated into the platform, a user cannot spy out other users’
private data. QuickStep does not provide services for leaving a collaborative group.
When a user disconnects, the server first assumes a temporary disconnection, which
happens frequently. Only if a user is disconnected for a longer time (e.g. an hour), the
server removes that user from the session. The period of time, a user has to be discon-
nected until a leave operation is performed, is defined by the corresponding applica-
tion. When a user leaves, the corresponding mirror database is deleted from the
server.

6 Conclusion and Future Work

Handheld applications require approaches fundamentally different from desktop
applications. If, in addition, applications have to exchange information between users,
additional issues have to be considered. We identified three properties, an ideal com-
munication-oriented handheld application has to meet: privacy, awareness and
usability.

278 Jörg Roth

The QuickStep approach meets these properties: it allows a designer to develop
mobility and collaboration aware applications and has been especially designed for
handheld devices. The generic QuickStep server relieves the handheld devices from
heavy tasks and keeps data during disconnection. The QuickStep server operates
without human intervention and can serve arbitrary QuickStep applications without
modification. A server offers contextual information, which can be used by handheld
applications. Data distribution is handled by a caching and mirroring mechanism.

In the future, we will follow two directions. First, we want to include traditional
computers into the approach, because currently handheld computing relies on both,
handheld and desktop applications. As data input is more convenient on desktop com-
puters, an appropriate concept has to support both kinds of computers.

Second, we want to extend QuickStep to a global communication infrastructure.
With this, two or more users operating at different places in the world could exchange
data. Since wide area connections are considerably slow compared to local area net-
works, we have to develop new concepts. New technologies such as UMTS may help
to address this problem.

References

1. Abowd G. D., Mynatt E. D.: Charting Past, Present and Future Research in Ubiquitous
Computing, ACM Transactions on Computer-Human Interaction, Special Issue on HCI in
the new Millennium, Vol. 7, No. 1, March 2000, 29-58

2. Bey C., Freeman E., Mulder D., Ostrem J.: Palm OS SDK Reference, 3Com, http://www.
palm.com/devzone/index.html, Jan. 2000

3. Boling D.: Programming Windows CE, Microsoft Press, 1998
4. Brors D.: Software Highlights für Palm-Rechner, C’T Vol. 7, Apr. 2000, 138-141
5. C-Technologies, ARIPOS Programming, http://www.cpen.com
6. Demers A. J.: Research Issues in Ubiquitous Computing, Proc. of the thirteenth annual

ACM symposium on Principles of distributed computing, Aug. 14-17, 1994, L.A., 2-8
7. Ellis C. A., Gibbs S. J., Rein G. L.: Groupware - some issues and experiences, Communi-

cations of the ACM, Vol. 34, No. 1, Jan. 1991, 39-58
8. Joseph A. D., Tauber J. A., Kaashoek M. F.: Mobile Computing with the Rover Toolkit,

IEEE Transactions on Computers, Vol. 46, No. 3, March 1997 337-352
9. Kistler J. J., Satyanarayana M.: Disconnected Operation in the Coda File System, ACM

Transaction on Computer Systems, Vol. 10, No. 1, Feb. 1992, 3-25
10. Lotus Development Corporation: Lotus Notes, http://www.lotus.com/home.nsf/welcome/

lotusnotes
11. Microsoft Outlook, http://www.microsoft.com/outlook
12. Munson J. P., Dewan P.: Sync: A Java Framework for Mobile Collaborative Applications,

special issue on Executable Content in Java, IEEE Computer, 1997, 59-66
13. Point-to-point short message service support on mobile radio interface,

http://www.etsi.org, Jan. 1993
14. Roth J.: DreamTeam - A Platform for Synchronous Collaborative Applications, AI &

Society (2000) Vol. 14, No. 1, Springer London, March 2000, 98-119
15. Roth J., Unger C.: Using handheld devices in synchronous collaborative scenarios, Second

International Symposium on Handheld and Ubiquitous Computing 2000 (HUC2K), Bristol
(UK), 25.-27. Sept. 2000

16. Stabell-Kulø T., Dillema F., Fallmyr T.: The Open-End Argument for Private Computing,
First International Symposium on Handheld and Ubiquitous Computing, Karlsruhe, Ger-
many, Sept. 1999, Springer, 124-136

Information Sharing with Handheld Appliances 279

17. Tasker M., Dixon J., Shackman M., Richardson T., Forrest J.: Professional Symbian Pro-
gramming: Mobile Solutions on the EPOC Platform, Wrox Press, 2000

18. Terry D. B., Theimer M. M., Petersen K., Demers A. J.: Managing Update Conflict in
Bayou, a Weakly Connected Replicated Storage System, Proceedings of the fifteenth
ACM symposium on Operating systems principles, Copper Mountain, CO USA, Dec. 3-6,
1995, 172-182

19. Weiser M.: The computer for the Twenty-First Century, Scientific American, 1996, Vol.
265, No. 3, Sept. 1991, 94-104

20. Wireless Application Protocol Architecture Specification, WAP Forum, http://www.
wapforum.org/, April 30, 1998

Discussion

N. Graham: A lot of design decisions were based on limitations of the current
technology. How many of those limitations are fundamental?
J. Roth: Some characteristics of handhelds will never change, e.g. display size.
Display sizes will not improve since they have to fit in a hand. Another problem is
battery life. This is only improving about 10% per year. So battery life will always be
a limiting factor. There will certainly be faster CPUs in the future. Also wireless
technology will also continue to be low bandwidth and higher error rates.

P. Van Roy: Your current design seems to rely on a server. 2 people who meet and
would like to share information cannot if there is no server in the network
environment. What if you went to a peer-peer style? How would you guarantee
coherence? What would you do if there was no server; would people not be able to
communicate? There exist protocols, e.g. Ginsella, that are serverless.
J. Roth: It is impossible to create a network that is always on because the devices are
often switched off. So we need a server.

P. Van Roy: ... but gnutella doesnít require that devices are always on.
J. Roth: If two devices want to communicate then both devices need to be on.

S. Greenberg: Handheld devices are a real pain. I wish I had your stuff a few years
ago. How do you handle how information propagated to other devices can be
modified, that is, are people modifying the original data, or a copy of it? We ask this
because in our own work with propagration of information over PDAs we noticed that
people were sometimes confused over whether they were modifying someone elseís
personal information or if they were modifying a public copy of this information.
Unlike a piece of paper, you canít easily tell if it is a copy or the original. This is also
a privacy issue. Have you come across something like this?
J. Roth: We avoid this problem. Persons have their own records. Only the originator
of a piece of data is allowed to change it. Anyone can create or change their own
information, but the ownership always remains with the originator and everyone can
know who the owner of the information is.

F. Paterno: What kinds of building blocks/support do you have for developing
applications, e.g. widgets, platform encapsulations?
J. Roth: We are only building an infrastructure, not a complete toolkit for creating
applications. We donít offer UI widgets.

	Information Sharing with Handheld Appliances
	1	Introduction
	2	Handheld Computing Characteristics
	3	Handheld Applications
	3.1	Application Types
	3.2	Privacy
	3.3	Awareness
	3.4	Usability

	4	Related Work
	5	The QuickStep Approach
	5.1	Sample Applications
	5.2	The QuickStep Infrastructure
	5.3	Underlying Data
	5.4	Developing with QuickStep
	5.5	Privacy
	5.6	Awareness
	5.7	Usability

	6	Conclusion and Future Work
	References
	Discussion

