

M. Reed Little and L. Nigay (Eds.): EHCI 2001, LNCS 2254, pp. 281–297, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Dynamic Links
for Mobile Connected Context-Sensitive Systems

Philip Gray and Meurig Sage

Department of Computing Science, University of Glasgow, UK
{pdg, meurig}@dcs.gla.ac.uk

Abstract The current generation of mobile context-aware applications must
respond to a complex collection of changes in the state of the system and in its
usage environment. We argue that dynamic links, as used in user interface
software for many years, can be extended to support the change-sensitivity
necessary for such systems. We describe an implementation of dynamic links in
the Paraglide Anaesthetist's Clinical Assistant, a mobile context-aware system
to help anaesthetists perform pre- and post-operative patient assessment. In
particular, our implementation treats dynamic links as first class objects. They
can be stored in XML documents and transmitted around a network. This
allows our system to find and understand new sources of data at run-time.

1 Introduction

Early interactive systems just had to deal with mapping input from input devices onto
application operations and system changes to output devices. However, current
interactive systems exhibit a much higher degree of potential sensitivity to change in
surrounding environment. In addition to changes in input they must also handle
changes to sensors and incoming information from distributed information sources.

The modelling and implementation of this change-sensitivity is generally ad hoc.
Attention has been given to the forms of change that are usefully exploited, to the
methods of storage and communication of such changes in distributed systems, but
little attention to the general mechanisms for mediating application-oriented links
between change in source data and its desired consequential effect.

We propose a general software mechanism to support a variety of related types of
change sensitivity. Given their genericity of structure and the dynamic environments
in which they have to operate, we have also designed them to be highly configurable
and able to respond to changes in their run-time environment.

In Section 2 we provide a general introduction to the notion of dynamic links and
discuss their relationship to distributed context-sensitive interactive information
systems. Section 3 describes the setting in which our work was carried out, the
Paraglide Project, identifying the domain-related challenges that we have tried to
meet via our generic configurable link structure. Section 4 presents our model and its
implementation in the Paraglide Clinical Assistant. Finally Section 5 offers some
conclusions and directions for further work.

282 Philip Gray and Meurig Sage

2 Dynamic Links

2.1 What Is a Dynamic Link?

The notion of dynamic link is based on the concept of constraints as value
dependencies. That is, some data element e is constrained by condition c if the value
of e depends on the value of c. Constraint-satisfaction systems and related constraint
specification languages have proved useful for a variety of applications in which
value dependencies are volatile and subject to change. A number of successful user
interface development environments, for example, have been implemented using
constraints to specify the interactive behaviour of graphical elements ([2],[7]).

A dynamic link, in our sense, is a reified constraint. That is, it is a value
dependency represented by an object in the run-time system itself that defines a
relationship that may result in changes to the state of the link destination based on
changes to the link source over the lifetime of the link.

2.2 Dynamic Link Structures

In the domain of user interface software, constraint-based mechanisms have been
used for at least twenty years, although in their early incarnations the constraints were
not always instantiated as links. Smalltalk's MVC provides a notify/update
mechanism for creating constraints between view and model components. However,
the mechanism is not intended to be visible; it implements constraints as implicit
links. It is possible, but not necessary, to create specialised model components that
interpose between the source data and the dependent view. Such models can be
viewed as dynamic links. Other approaches have made the links explicit and hence
configurable [6].

The Iconographer and Representer systems treat the link as a central configurable
element, with special visual programming tools for the configuration ([4], [5]). Little
recent work has revisited this issue and we are now confronted with user interface
components with complex interactive structures with only poorly configurable
interfaces between linked components.

Similarly, dynamic links in hypermedia systems offer the potential to make the
usually fixed document associations dynamically configurable, so that they reflect
different potential views onto the document or so that they can change to
accommodate changes in the remote resources to which the links can point [3].

Modern distributed systems architectures provide mechanisms for the
implementation of distributed link structures (i.e., those in which source or destination
of the link resides in a remote environment). For example, Elvin [8] and JMS1 offer
facilities for establishing subscription-based notifications and data delivery from
remote servers. However, while this supplies enabling technology for the link, it is not
sufficient to create the link itself, which often requires access to application-oriented
data and operations.

1 JMS is a messaging standard defined for Java by Sun Microsystems

(http://java.sun.com/). We are using the iBus//MessageServer implementation of JMS,
produced by SoftWired Inc. (http://www.softwired-inc.com).

Dynamic Links for Mobile Connected Context-Sensitive Systems 283

2.3 Dynamic Links in Context-Sensitive Interactive Systems

Our concern in this paper is not with constraints or even dynamic links in general, but
in their application to distributed interactive systems, particularly those in which
client services are mediated via small, mobile context-aware devices such as PDAs
and wearable devices. In this domain, links can serve a number of roles, particularly
relating local data elements to
• other local data
• data from remote services
• data from external sensors.

By generalising over these different forms of link we can
• hide from the link ends the nature of the link, improving reusability via information

hiding and
• centralise relevant domain knowledge for use across different link sources and

destinations.
Link effects may vary according to the aspect of the target data that is affected.

Thus, the linked source may cause a change in the value of the target (the most
common relationship). However, it might also cause a change in the likelihood of
certain values being appropriate.

We can distinguish between link update effects. The link may actually cause a
change to the value of the destination object or simply notify the destination that an
appropriate change has taken place in the link source and let the destination object
take appropriate action.

Actual link behaviour is also variable. In some cases, the link is governed by a set
of constraints, as in the case of constraints among graphical elements or between
multiple views onto the same data. In other cases, complex domain knowledge may
be needed to resolve the link relationship. Some links cannot be resolved without the
involvement of a human agent, resulting in user-assisted links. Finally, some links
depend on contextual information for their resolution; that is, they behave differently
depending upon the context in which they are resolved.

Links may have to perform additional work to establish relationships and to
maintain them. Thus, if a link has a remote component as a source or target, then it
may have to communicate with that remote component, perhaps via middleware, to
create a communication channel for transfer of data. New sources and types of data
that are relevant as link sources may become available during the lifetime of a
context-sensitive system; it is important, therefore, that such a system be able to
discover new resources and either configure its links or create new ones to handle
these resources [1].

As shall be described later in this paper, taking this high-level conceptual view of
links offers potential advantages in the flexibility of software structures to support
them. We are unaware of any systems, apart from the one described here, that
provides this level of generality in approach.

284 Philip Gray and Meurig Sage

3 Paraglide – An Anaesthetist's Clinical Assistant

3.1 Overview

The work reported here has taken place in the context of the Paraglide project which
is developing a mobile, wireless context-sensitive system for pre- and post-operative
assessments by anaesthetists. The Paraglide system consists of a set of clinical
assistants that hold information about current cases requiring assessment, along with
associated data. Clinicians use a clinical assistant to collect additional data to record
their assessments and to develop plans of drugs and techniques that will be used
during the operation.

Clinical assistants communicate with a set of remote services, opportunistically
requesting information from these services. This information falls into two general
categories: data and task oriented. The first category covers relevant medical data,
such as records of previous anaesthetic records and current laboratory test results. The
anaesthetist can view this data and decide whether to incorporate it into their current
anaesthetic record. The second category of task oriented data covers information that
the system can use to help the anaesthetist. Much anaesthetic work is very routine at
least for any given anaesthetist. For instance, in some cases only a small set of drugs
and techniques are appropriate. The type of operation, along with a few key aspects of
the patient’s medical record, determine the technique that will be used. The Paraglide
system can offer plan templates based on the anaesthetist’s previous work that match
the current patient’s history and the surgical procedure.

3.2 Types of Context & Change Sensitivity in the Domain

There are two basic forms of context- and change-sensitivity that the Paraglide system
must be able to handle:
• changes to local data on the clinical assistant
• changes to the accessibility of case-relevant data from Paraglide servers (i.e., the

generation of requests to such servers and the subsequent arrival of responses to
these requests)2.
Paraglide clinical assistants operate in a wireless environment with intermittent

connections. Additionally, they can operate outside the normal clinical environment
(e.g., in the anaesthetist's home) where the nature of the connection may be very
different, without access to sensitive data that must remain inside the hospital's LAN.
Thus the system must also be sensitive to changes in the connection status.

Paraglide users perform tasks that require changes in the organisation of the
activity depending upon the context. Thus, a clinician operating on an emergency case
will have very different demands on data than one dealing with general or day
surgery. Our system must be responsive to these changes in context.

2 Sensor-derived data can be modelled as a form of either local or remote data, depending upon

how it is captured and communicated.

Dynamic Links for Mobile Connected Context-Sensitive Systems 285

3.3 Scenarios and Use Cases

A Paraglide clinical assistant usually runs on a small handheld computer to allow
anaesthetists to access and enter data on the move. Such systems have a number of
input problems. For instance, data entry is often slow and cumbersome. In general the
aim is therefore to allow users to select data rather than enter it. The system must
therefore be able to predict sensible values for this to work.
When a document, such as a set of blood results, arrives, a title summary is presented

in the relevant document interactor. The anaesthetist can open the document in a
reader panel and view its contents. They can then choose to paste the details into
their current anaesthetic record, or to delete it if not relevant.

Certain elements within the system can be automatically generated. For instance,
when the anaesthetist enters the height and weight of the patient, the system can
generate the “body mass index” which is used to determine if a patient suffers
from obesity.

Mutual dependencies exist between a great deal of the data within the system. These
frequently can only be expressed as predictions rather than actual definite
changes. For instance, if a patient has a given complaint such as asthma we can
predict that they are likely to be on one (possibly more) of a limited set of
asthmatic drugs.

Predictions can also depend on remote data. A user could select the operating surgeon
from a set of surgeons. This prediction set will change if the staff list changes and
a new list is sent out. Anaesthetic plans come from remote servers; the choice of
plans is affected by data on the handheld assistant (i.e., the patient’s medical
record) and on a remote server (i.e., the set of plans available in a database).
Matching can take place externally and then the predicted set of plans can be
updated.

There are therefore three dimensions of change that we must consider: predictions

vs values, distributed vs local data, and implicit vs explicit update (see figure 1). In
general, we wish to handle prediction updates implicitly. The user does not want or
need to be informed every time the system changes its set of predictions. They need to
find out when they attempt to set a value on which a prediction is based. It is also
useful to highlight a field if a prediction changes such that the system believes the
new value is not valid. The system can do this in a visible manner without interfering
in the current activity of the user. In general, we wish to handle value updates
explicitly so that the user knows what is in their system. For instance, when a set of
blood results arrives the anaesthetist will look at them. The anaesthetic report acts
both as an aide-memoire and a legal record. It would therefore be very unhelpful if
there was data in the record that the anaesthetist had not explicitly looked at and
affirmed as true. Also there is a need to examine where data came from (to see what
caused a value update). There can, however, be times when value updates should be
implicit; for instance the calculation of “body mass index”. These implicit updates
generally depend on local data changes. It is important to note that these local changes
may have been propagated by distributed updates. For instance, the height and weight
could come from a document; once those values have been updated, the body mass
index will be calculated.

286 Philip Gray and Meurig Sage

explicit

implicit

implicit

values predictions

distributed

local

Fig. 1. Dimensions of Change Sensitivity

4 The Paraglide Dynamic Link Architecture

4.1 Overview of the Architecture

A Paraglide Clinical Assistant consists of four components: a set of interactors (user
interface), a set of resources managers, a library of documents and a communications
subsystem (a broker). The interactors (or widgets) are used to communicate with users
and the broker mediates communication with other Paraglide Services. The
relationship among the components is shown in Figure 2.

Fig. 2. The Paraglide Clinical Assistant Architecture

Many links depend on domain-related data, e.g., the link between a surgeon's
specialty and the surgical procedure for a given case. Such information is held and/or
mediated via resource managers. Each manager is responsible for supplying domain-
related information to the system as a whole and also for creating links associated
with its domain.

Managers may record history about a given topic. For instance, the scene manager
can record navigation paths used by the anaesthetist to suggest possible future routes.

Dynamic Links for Mobile Connected Context-Sensitive Systems 287

They can also preload and provide access to lists of data. For instance, the worker
manager can load a set of surgeon records at start up.

Resource managers maintain data used within the system. There are four different
types: the scene manager maintains the collection of scenes and handles and records
navigation; the case manager produces new cases and provides access to them; the
technical environment manager maintains data about the system such as battery power
and network connectivity; and domain knowledge managers maintain data about
drugs, procedures, staff etc. The case manager produces case objects that represent an
object graph maintaining all data about a given case within the system.

We must therefore handle two sorts of links: those that maintain consistency
between different elements of a case object; and those that import document data. Our
fundamental approach is to try to unify the link framework, so that we can cope with
change-sensitivity in a principled way. Therefore all links are viewed as associations
that relate a source object to a destination object with respect to an aspect, or
operation, via a link function:

link = <source, destination, operation, link_function>

A link goes from a given source to a given definition, applying some form of link
function to transform the data from the source, and then performs some operation on
that destination. For instance, a link could go from a document to the blood test
results set, extracting all blood results from the document and transforming them into
Java objects, before adding them to the blood test results collection.

Because links depend on potentially variable relationships and because they must
be created at run-time, we also include link specification as an explicit element in the
architecture. A link specification is an object that holds the information necessary to
create a link of a specified type, defined in terms of the types of its arguments.

linkspec = <source_type, destination_type,

 operation_type, function_type>

As we shall see, it is occasionally useful to have multiple sources and frequently
useful to have multiple destinations. For example, a pre-operative examination
document (a link source) might have information relevant to patient medical history,
current medications and other clinical issues, all of which are contained in different
parts of the anaesthetic record and that appear in different parts of the user interface
(viz., several link destinations). We can therefore think of a link as a set of sources,
and a set of tuples of destination, operation and function.

Furthermore, to enable configurability, link specifications are written in XML.
They can therefore be stored in documents and transferred around a network. New
links types can be added without the need for recoding. They can, in fact, even be
added while the system is running, thus enabling dynamic reconfigurability. For
instance, if a new document type were to be added in a hospital, an update could be
sent out to allow all Personal Clinical Assistants to interpret it, without any need to
disrupt the users of the system.

288 Philip Gray and Meurig Sage

4.2 Link Sources

There are two sorts of link source, document and value sources. It is important to note
that these sources are not simple documents or values but sources that will provide
new documents or values over the duration of the program.

4.2.1 Document Sources
In the Paraglide system, information is transmitted between services as documents,
i.e., structured text. These documents may contain information relevant to a number
of local links. This information must be extracted from incoming documents in order
to resolve the links dependent on that document.

Managers talk to brokers (through the librarian) in order to request documents.
These requests are made through the following interface. A manager generates a topic
that says what documents to get. This topic specifies which service to go to for the
data, and what to say to the service. For instance, it may specify an SQL query to
extract data from a database service.

public void addDocumentRequest(PgTopic topic,

 DocumentListener l);

The manager provides a document listener that is used to consume relevant
documents. The document listener interface contains one method handleDoc which
consumes a document and performs some action with it. The document is also stored
in the document library until released by the consumer.

public void handleDoc(Document d);

This interface is inspired by, and built on top of the Java Messaging Service (JMS).
iBus//MessageServer, the JMS implementation we are using, guarantees document
delivery under conditions of intermittent connectivity, supporting the use of wireless
connected mobile systems.

It is significant to note that JMS uses a JavaBeans style model for interaction. We
provide a listener which is a callback function defining what to do with the given
input. This JavaBeans model is the same one used by Java user interface components.
This mapping makes it possible to unify information gathered from remote and local
sources.

To use a source we must generate a specific request from a given service. We can
specify a document source in XML in two parts: a from attribute specifying the
service source and a request attribute specifying the query to be made of the remote
service. For instance, the following source specification queries the LabResults
service for all blood results for a given patient.

<PgDocSource

 from="LabResults"

 request="select BloodResults where

 subject={/case/pgSubject/hospitalNumber}"/>

Dynamic Links for Mobile Connected Context-Sensitive Systems 289

Note that the above example highlights two important aspects of link specifications
Firstly, we can use a simple path-based syntax for referring to the elements that make
up the link, including documents and the attributes of local values (further details of
both context paths and document descriptors will be given below). Secondly, the
specification can refer to current data within the system, i.e. references that will be
resolved at run-time. Here we specify the hospital number of the patient in the current
case.

4.2.2 Value Sources
The other link source is a local value within the data structure. For instance, we may
have a link between a client and her specialty.

Paraglide uses a general JavaBeans model for all data structures. All mutable
objects are active values, i.e., we should be able to listen for and react to changes in a
value. Paraglide distinguishes two sorts of active value: Attributes and Collections.
Attributes contain simple object values that satisfy the Java Beans
PropertyChangeListener interface. We can add a listener to hear about changes to the
value.

public void addChangeListener(PropertyChangeListener
l);

The second form is DynamicCollections. Consider a dynamic list of items. We
may not want to hear about the whole change, but only be notified about incremental
changes to the collection. We can therefore add listeners to hear about changes such
as additions and deletions from a list.

public void addListDataListener(ListDataListener l);

Based on these two source types we have two forms of source specification. Value
sources specify a particular attribute; collection sources specify a collection and an
operation (we can do something when an item is either added to or deleted from a
collection). Again note that we use context paths to specify a route to a given object in
the current case data structure.

<PgValSource from="/case/client"/>

<PgCollSource op="add" from="/case/regularMedication"/>

A simple model might assume only a single source for any given link. In fact, it is
sometimes useful to have multiple sources. For instance, the “body mass index”
calculation depends on two sources: the height and weight attributes.3

4.3 Link Operations

Once we have a source we require an operation to perform with that source result.
There are two general types of operation:
• updates – operations which explicitly update some data structure,
• notifications - operations which notify a data structure about a set of updates.

3 In practice, we have found only a few instances where the use of multiple sources was really

necessary. None of these involve document sources.

290 Philip Gray and Meurig Sage

4.3.1 Updates
The simplest of the two forms of operation is update: an operation can explicitly
update some data. For instance, when the surgeon changes we update the specialty, by
setting the value. Again we have a distinction between collection and attribute
destinations. With an attribute destination we can set it with a given value. In contrast,
with a collection destination we can reset the collection, add or delete one or more
items to or from the collection.

4.3.2 Notification
An operation can notify some destination object about a set of changes. Recall that
when an anaesthetist receives a new document, such as a set of blood results, it is not
immediately integrated into the system. The anaesthetist has the opportunity to review
the document, and decide whether it is indeed accurate and relevant. The anaesthetist
can then either accept the contents and paste them into the anaesthetic record or reject
them, thereby deleting the document.

This form of activity is supported by notification. A notification operation contains
a summary function that specifies how to summarise the document. It also contains a
set of sub-operations that specify what to do if the notification is accepted. Each of
these sub-operations will extract some data from the source. We can generate a
summary based on these extracted elements.

For instance, we can have a message that notifies the relevant data structure with a
given summary and an operation that adds a new element for each blood investigation
to the system.

<PgNotify to=...

 summary="Blood Results {/PgBloods/@datimPublished}">

 <PgOp op="add" mode="collection"

 to="/case/bloodInvestigations">

 ...

 </PgOp>

</PgNotify>

Note that the summary is a combination of static text and extractions. Here the
source is a document so the extraction rule is an XML query. In contrast, if the source
were a local value then the query would be a context path query.

What do we do with a notification? We send a NotifyEvent to the destination. This
provides a summary, and two methods accept and reject. The summary method
provides a PgSummary with a title summary (which can, for instance, be viewed in
the relevant document list) and a list of child summaries that summarise the data that
is extracted from the source for each child operation. The accept method accepts all
the notification. If some of the child operations fail to work, we throw an exception
summarising all the failures. The reject method rejects the notification. If this were a

Dynamic Links for Mobile Connected Context-Sensitive Systems 291

notification in response to a document, it would delete the document from the library
document store.

public interface NotifyEvent {

 public PgSummary summary();

 public void accept() throws Exception;

 public void reject(); }

In practice so far we have used notification updates only with document sources.

We have generally opted for explicit updates only with distributed data. However, the
mechanism is available here if necessary.

While we can have one operation associated with a link function it is more helpful
to have multiple operations, both for ease of specification (we can write the source
only once) and efficiency (we can add only one listener that does several things,
perhaps eliminating some of the common work).

4.4 Link Destinations

4.4.1 Value Destinations
With a value destination we are changing the actual value, such as setting the surgical
specialty. As outlined in the previous section there are several possible operations that
can be performed on the destination. If the operation is a notify operation then we will
simply notify the destination. In this case it must be notifiable object (i.e. able to
accept a NotifyEvent). Otherwise if the destination is a collection then we will have a
collection operation, if an attribute the operation will simply set the value.

<PgOp mode="value" op="set" to="/case/specialty">

4.4.2 Predictions
Changes to the probability of values in the destination object have been implemented
via a predictions component. A prediction identifies three subsets of the value-set for
a destination object:
• a default
• a likely subset
• the entire value-set.

Although primitive, this provides a potentially useful way of offering alternatives
to the user, especially where there is a large set of enumerated alternatives.

More sophisticated prediction models, and more sophisticated ways of utilising the
predictive information, are possible. For instance, one can give probability values to
destination alternatives. Also, the source of the prediction can be identified where
several prediction-changing links are active on a single property.

A prediction update will generally change only the likely subset. We could imagine
situations in which the system could attempt to forbid a particular value. For instance,
an expert system might predict that a patient could not be on two drugs

292 Philip Gray and Meurig Sage

simultaneously. However, such an approach is very heavy-handed and assumes the
system is always accurate. We have chosen a lightweight approach in which updates
affect the likely subset by adding or deleting suggestions from it. The operations used
here are therefore collection operations.

The default is then simply the most likely element in the likely subset.

<PgOp mode="prediction" op="add"

 to="/case/regularMedication">

4.5 Link Functions

We may wish to perform some arbitrary transformation on the data before applying
the operation. To do this we use link functions. A link function is a function that
performs a simple apply transform to a piece of data.

public interface PgLinkFunction {

 public Object followLink(Object context,Object obj);}

It takes a context object (described below) and a value and generates a new value
based on this input. For reasons of efficiency, it is important that the link-function is a
pure function. That is, it transforms the data without any side-effecting updates. If
applied at any given time in the program to the same value it should therefore return
the same result. Given these conditions we can precompile link functions in advance
so that the difficult work is done at start-up, not each time the followLink function is
called.

We support several types of link function, based on the nature of the link. These
include property queries, xml queries, maps and ranges, constructors, and predefined
functions. A link function can also be a composition of these functions.

4.5.1 XML Queries
The first two forms of link function are both types of query that extract data from the
argument value. As we have seen so far there are two sorts of data that we may wish
to query: local data and incoming documents.

An extract query is the first type of query. It contains two parts: an actual query
and a result type. The result type can be either collection or value. An arbitrary
XMLQuery will generally return a set of results. However, sometimes we only wish
the first result form a query that we know will return a result. In this case we can use
the value result type to return only one (i.e., the first) result.

An XMLQuery is based on the developing XQL query standard4. In our initial work
we have only used and implemented a subset of this query mechanism. The format of
a query is based on a UNIX path structure, consisting of a set of entity names
separated by backslashes, e.g., “/PgBloods/PgBlood”. The query can start at the root
“/” or within the current context “./”.

4 http://www.w3c.org/

Dynamic Links for Mobile Connected Context-Sensitive Systems 293

What is the current context? Remember that we’re applying this query to a value.
This value may be a document or it may be the result of some earlier query. This
happens often in Constructor link-functions, detailed below. The context parameter in
the link-function argument provides access to the root document that the source
provided. We can precompile all query link functions for a given document source.
We can preprocess a document when it arrives, extracting all necessary data, allowing
us to parse a document once. This is particularly useful if several link-functions
extract the same data.

A query can return one of four results: an attribute or a set of attributes (e.g. return
the docId attribute of PgBloods entity is /PgBloods/@docId); the character data
residing under an entity (eg return the text string child of /Name/-); an entity (e.g.
return the PgBloods entity and attributes /PgBloods); or a whole document subtree
(e.g., return the whole PgBloods entity, attributes and children).

The following extract function extracts all the PgBlood subtrees and returns a
collection of them.

<Extract type = "collection"

 query="/PgBloods/PgBlood#">

4.5.2 Property Queries
A property query extracts a value from a local data structure. The JavaBeans model
introduced the notion that all values in a bean have a String property name through
which they can be accessed. A property query is based on this idea. For instance, the
following property link function extracts the specialty field from its argument.

<PgProperty value="specialty"/>

A property query is in fact a ContextPath. We can apply a context path to a
Context object to yield a result. Every object within the Java case object implements
this Context interface.

public class Context {

 public Object find(ContextPath p);

}

A ContextPath is in fact more complex than a simple field name. It does in fact
have similarity to an XMLQuery, involving a descent path which is a set of field
names separated by a backslash e.g., ./subject/age. The descent path can begin either
at the root or at the current value. Context paths into collections require some extra
handling. We can specify either the location of an item in a list (e.g. ./1) or a query on
the items within a collection (e.g. ./findings/[type=’weight’]).

4.5.3 Maps
One very useful type of function is a map from keys to values. These occur
commonly in prediction links. For instance, consider the case where the procedure
prediction depends on the specialty of the surgeon. We might have a map from

294 Philip Gray and Meurig Sage

specialty names to workers. Every time we change the specialty value we look up the
new value in the map and generate a new set of likely values.

It would, however, be very tedious to have to specify all of these maps by hand.
For instance, we have an XML data file containing data on the list of surgeons. Each
entry in the file contains a specialty field. We would like to be able to generate the
map from this file. This requirement becomes even more important with medical
history data with a number of different dependencies. There are links between issues
such as asthma, drugs, findings and measurements, and sometimes operations. For
instance, a coronary bypass operation implies one of a set of serious heart conditions
and likely drugs.

Our link functions allow maps to be generated from data files. We specify a file
type, which provides access to the data; a root query to apply to the file and a set of
from and to queries. Each of these queries is an XMLQuery. The root query extracts a
set of document objects. The from query then extracts the map keys from each object.
The to query extracts a result type. We may have one or more from and to queries. For
instance, the following link function says: “extract from the PgWorkers xml source,
the Worker entities; then generate a map where the keys are the specialty values of the
worker entities, and the values are lists of worker entities themselves”.

<MapExtract file="PgWorkers"

 root="PgWorkers/Worker"

 from="./@specialty" to="./">

The use of pure functions is particularly important here. We can precompile the
link-function, reading in the data once and then applying all following
transformations to the results. This means that when a change actually occurs we
perform a simple hash-map lookup, which is cheap to perform.

4.5.4 Ranges
Ranges are very similar to maps. Given a value, we calculate which of a set of non-
overlapping ranges it lies within and generate a set of likely results. For instance, if a
patients “body mass index” is greater than a given value, they are likely to be obese.
We can specify these using ranges. The measurement entity has two important
attributes minValue and maxValue. We can therefore generate a list of ranges from
measurement ranges to issues. We can generate a list of ranges and then simply
perform a binary search.

<MapExtract file="PgIssues"

 root="PgIssues/Issue"

 from="./Measurement"

 to="./"

 op="range">

Dynamic Links for Mobile Connected Context-Sensitive Systems 295

4.5.5 Constructors
A PgConstructor object converts data extracted from an XML file to a Java object,
taking as parameters the target object's class name and additional parameters as
necessary. These additional parameters specify Extract queries. If we’re generating
the object from an XML source then these will be XML Extract queries. Each of these
queries generates one parameter. These queries may have children, i.e., we may have
a query that extracts a collection of values, and applies a further constructor to that
result.

For instance, consider the following constructor. It generates a
PgInvestigationBlood object. It extracts the date attribute as its first parameter and
then generates a collection of blood results, one for each result value for its second
parameter.

<PgConstructor ref="PgInvestigationBlood">

<Extract type="value" query="./@date" />

 <Extract type="collection" query="./Result/@value" >

 <PgConstructor ref="PgInvestigationBloodResult"/>

 </Extract>

</PgConstructor>

For this all to work, we need a static Java method which generates instances; this

resides in the data manager.

public static Object getInstance(String name,

 Object[] params);

4.5.6 Predefined Functions
Sometimes the set of functions defined above is not enough. In this case we can call
preprogrammed Java link functions. This is most common for arithmetic calculations.
For instance, we can calculate the age based on the date of birth. We define a calcAge
method in Java and then call it.

<PgPredefined value="calcAge"/>

The data manager also provides access to such predefined methods.

public static PgLinkFunction getLinkFunction(String
name);

296 Philip Gray and Meurig Sage

5 Conclusions and Future Work

The generic link structure described in this paper is still in its infancy. We have
implemented a restricted prototype for the Paraglide system and intend to test it in
field trial-based setting in which the links will reflect the anticipated information
needs of clinicians.

There remain a number of features that require further development, the most
important of which are:
• bidirectional links
• mechanisms to identify and cope with pathological links (e.g., circular link sets)
• tools for specifying links and link functions
• more sophisticated predictions, including predictions from multiple sources.

We also envisage our link architecture offering additional functionality to the
application, such as context-sensitive help.

Acknowledgements

This work was supported by EPSRC under the Healthcare Informatics Initiative
(Grant GR/M53059). We wish to thank our colleagues on the Paraglide project (Chris
Johnson, Gavin Kenny, Martin Gardner and Kevin Cheng) for their feedback on the
ideas expressed in this paper and for their contribution to the design of Paraglide
system. We also thank the referees for their helpful comments.

References

1. G. Abowd and E. Mynatt. Charting Past, Present and Future Research in Ubiquitous
Computing. Transactions on Computer Human Interaction 7,1 (March 2000), 29-58.

2. A. Borning. Thinglab - A Constraint-Oriented Simulation Laboratory. Ph.D. thesis,
Stanford University, 1979.

3. L. A. Carr, D. DeRoure, W. Hall and G. Hill. The Distributed Link Service: A Tool or
Publishers, Authors and Readers. Proc. 4th International World Wide Web Conference.
Pp. 647-656.

4. P.D. Gray and S. Draper. A Unified Concept of Style and its Place in User Interface
Design. Proc HCI '96. Springer-Verlag. pp. 49 -62.

5. P. D. Gray, "Correspondence between specification and run-time architecture in a design
support tool," in Bulding Interactive Systems: Architectures and Tools, P. D. Gray and R.
Took, Eds.: Springer-Verlag, 1992, pp. 133-150.

6. R. D. Hill, "The Abstraction-Link-View Paradigm: Using Constraints to Connect User
Interfaces to Applications," Proc. CHI '92, 1992.

7. B.A. Myers., et.al. Garnet: Comprehensive Support for Graphical, Highly-Interactive User
Interfaces. IEEE Computer 23, 11 (Nov. 1990), 71-85.

8. Bill Segall, David Arnold, Julian Boot, Michael Henderson and Ted Phelps, Content
Based Routing with Elvin4, (To appear) Proceedings AUUG2K, Canberra, Australia, June
2000.

Dynamic Links for Mobile Connected Context-Sensitive Systems 297

Discussion

J. Hohle: It sounds like you are talking about consistency issues. Have you
investigated reason or truth maintenance systems, where you can model information
dependencies?
P. Gray / M. Sage: We are trying to build a lightweight system. There are heavy
systems that will do this? Our system needs to work on handheld devices. The power
of these links is the fact is that they can be connected to local and remote services.
Decision support systems are far too heavy for handheld devices. Perhaps you could
ìplug inî queries to a remote server which could do further processing.

C. Yellowlees: How do you resolve the desire to employ these high-powered back-end
systems with the constraint that the users in this application domain do not have
persistent connections to the network.
P. Gray / M. Sage: The resource manager may be adapted to perform predictions
locally when no network is available, and query a more powerful prediction tool on
the network if it detects that such a resource is available.

F. Paterno: In your application, do you really need a mobile device? Or would it be
sufficient to just have a computer in the patientís room connected by a LAN?
P. Gray / M. Sage: The hospital that we are working with is very large, so it is more
useful, and cheaper, to have them on their handheld device (which the anesthetists
already have and already carry). It is essential for this kind of system, given the
number of places where the doctos move (including by the bedside) to always have
access to the information, so this is a cheaper, more practical solution.

J. Roth: Are your handheld devices really mobile? Are they actually notebooks or
something like a Palm?
P. Gray / M. Sage: We are currently using tablets and are moving to a Compaq IPAQ.

J. Roth: How is the design influenced by using mobile computers?
P. Gray / M. Sage: The information from services in a hospital will be consistent, but
the doctor can use the information anywhere in the hospital.

K. Schneider: Given the goal of a dynamic lightweight application, how are you
ensuring that the data is reliable and trustworthy? How successful has the application
been? Are the doctors able to trust the info? Are they using it? What about the
system changing over time?
P. Gray / M. Sage: The full trial has only been running for a month. So far the doctors
seem to trust the information. The doctors are using our system and then printing a
paper backup later. Also, it is important to note that right now their data is often not
very timely (paper records transcribed by a secretary, and not delivered in a timely
fashion). It is important that any changes in the system over time are visible to
doctors.

	Dynamic Links for Mobile Connected Context-Sensitive Systems
	1	Introduction
	2	Dynamic Links
	2.1	What Is a Dynamic Link?
	2.2	Dynamic Link Structures
	2.3	Dynamic Links in Context-Sensitive Interactive Systems

	3	Paraglide – An Anaesthetist's Clinical Assistant
	3.1	Overview
	3.2	Types of Context & Change Sensitivity in the Domain
	3.3	Scenarios and Use Cases

	4	The Paraglide Dynamic Link Architecture
	4.1	Overview of the Architecture
	4.2	Link Sources
	4.2.1 Document Sources
	4.2.2 Value Sources

	4.3	Link Operations
	4.3.1 Updates
	4.3.2 Notification

	4.4	Link Destinations
	4.4.1 Value Destinations
	4.4.2 Predictions

	4.5	Link Functions
	4.5.1 XML Queries
	4.5.2 Property Queries
	4.5.3 Maps
	4.5.4 Ranges
	4.5.5 Constructors
	4.5.6 Predefined Functions

	5	Conclusions and Future Work
	Acknowledgements
	References
	Discussion

