Skip to main content

Efficient Querying of Periodic Spatiotemporal Objects

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1894))

Abstract

In this paper we propose a new data model called periodic spatiotemporal objects (PSOs) databases. We show that relational algebra can be extended to PSO databases and any fixed relational algebra queries can be evaluated in PTIME in the size of any input database. We also describe a database system implementation of the PSO model and several sample queries.

This work was supported in part by NSF grants IRI-9625055 and IRI-9632871 and by a Gallup Research Professorship.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Baudinet, M. Niézette, and P. Wolper. On the Representation of Infinite Temporal Data and Queries. Proc. 10th ACM Symposium on Principles of Database Systems, pp. 280–290, 1991.

    Google Scholar 

  2. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An Efficient and Robust Access Method for Points and Rectangles. Proc. ACM SIGMOD International Conference on Management of Data, pp. 322–331, 1990.

    Google Scholar 

  3. M. Benedikt, G. Dong, L. Libkin, and L. Wong. Relational Expressive Power of Constraint Query Languages. Journal of the ACM, 45:1, pp. 1–34, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An Access Control Model Supporting Periodicity Constraints and Temporal Reasoning. ACM Transactions on Database Systems, 23:3, pp. 231–285, 1998.

    Article  Google Scholar 

  5. E. Bertino, B. Catania, and B. Shidlovsky. Towards Optimal Two-dimensional Indexing for Constraint Databases. Information Processing Letters, 64 (1997), pp. 1–8.

    Article  MathSciNet  Google Scholar 

  6. C. Bonhomme, C. Trépied, M-A. Aufaure, and R. Laurini. A Visual Language for Querying Spatio-Temporal Databases. Proc. 7th ACM Symposium on Geographic Information Systems, 34–39, Kansas City, MO, November 1999.

    Google Scholar 

  7. A. Brodsky, J. Jaffar, and M. Maher. Towards Practical Query Evaluation for Constraint Databases. Constraints, 2:3–4, pp. 279–304, 1997.

    Article  MATH  Google Scholar 

  8. M. Cai, D. Keshwani, and P.Z Revesz. Parametric Rectangle: A Model for Querying and Animating Spatiotemporal Databases. In Proc. of the 7th Conference on Extending Database Technology, Springer LNCS-1777, pp. 430–444, Konstanz, Germany, March 2000.

    Google Scholar 

  9. M. Casco Associates. Linear Momentum and Collisions: A Mechanics Course, available at http://www.mcasco.com/p1lmc.html.

  10. J. Chomicki and T. Imieliński. Temporal Deductive Databases and Infinite Objects. In Proc. of 7th ACM Symposium on Principles of Database Systems, pp. 61–73, 1988.

    Google Scholar 

  11. J. Chomicki and T. Imieliński. Finite Representation of Infinite Query Answers. In ACM Transactions on Database Systems, (18)2, pages 181–223, 1993.

    Article  Google Scholar 

  12. J. Chomicki and P. Z. Revesz. Constraint-based Interoperability of Spatiotemporal Databases, Geoinformatica, 3:3, 1999. (Preliminary version In: Proc. International Symposium on Large Spatial Databases, Springer-Verlag LNCS 1262, pp. 142–161, Berlin, Germany, July 1997).

    Google Scholar 

  13. J. Chomicki and P. Z. Revesz. A Geometric Framework for Specifying Spatiotemporal Objects. In: Proc. International Workshop on Time Representation and Reasoning, pp. 41–46, Orlando, Florida, May 1999.

    Google Scholar 

  14. M. Erwig, R. H. Güting, M. M. Schneider and M. Vazirgiannis. Spatio-Temporal Data Types: An Approach to Modeling and Querying Moving Objects in Databases. In: Proc. ACM Symposium on Geographic Information Systems, November 1998.

    Google Scholar 

  15. A. U. Frank and M. Wallace Constraint Based Modeling in A GIS: Road Design as A Case Study. In: Proceedings of Auto-Carto 12, Charlotte, North Carolina, Vol. 4, pages 177–186, 1995.

    Google Scholar 

  16. R. Gonzalez, and R. Woods. Digital Image Processing, Addison-Wesley, 1998.

    Google Scholar 

  17. S. Grumbach, P. Rigaux, and L. Segoufin. Spatio-Temporal Data Handling with Constraints. In: Proc. 6th ACM Symposium on Geographic Information Systems, November 1998.

    Google Scholar 

  18. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. Proc. ACM SIGMOD International Conference on Management of Data, pp. 47–57, 1984.

    Google Scholar 

  19. F. Kabanza, J-M. Stevenne, and P. Wolper. Handling Infinite Temporal Data. Journal of Computer and System Sciences, (51)1, pages 26–52, 1995.

    Article  MathSciNet  Google Scholar 

  20. P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint Query Languages. Journal of Computer and System Sciences, 51:1, pp. 26–52, 1995.

    Article  MathSciNet  Google Scholar 

  21. G. Kollios, D. Gunopulos, and V. J. Tsotras. On Indexing Mobile Objects. Proc. 18th ACM Symposium on Principles of Database Systems, pp. 261–272, 1999.

    Google Scholar 

  22. G. Kollios, D. Gunopulos, and V. J. Tsotras. Nearest Neighbor Queries in a Mobile Environment. In: Proc. Workshop on Spatio-Temporal Database Management, Springer-Verlag LNCS 1678, pp. 119–134, Edinburgh, Scotland, September 1999.

    Chapter  Google Scholar 

  23. M. Koubarakis and S. Skiadopoulos. Tractable Query Answering in Indefinite Constraint Databases: Basic Results and Applications of Querying Spatio-Temporal Information. In: Proc. Workshop on Spatio-Temporal Database Management, Springer-Verlag LNCS 1678, pp. 204–223, Edinburgh, Scotland, September 1999.

    Chapter  Google Scholar 

  24. R. Laurini and D. Thompson. Fundamentals of Spatial Information Systems. Academic Press, 1992.

    Google Scholar 

  25. P. Z. Revesz. Introduction to Constraint Databases, Springer-Verlag, 2000.

    Google Scholar 

  26. S. Saltenis, C. S. Jensen, S. T. Leutenegger and M. A. Lopez. Indexing the Positions of Continuously Moving Objects. In: Proc. ACM SIGMOD International Conference on Management of Data, pp. 331–342, 2000.

    Google Scholar 

  27. A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and Querying Moving Objects. In Proceedings of the 13th IEEE International Conference on Data Engineering, pages 422–432, 1997.

    Google Scholar 

  28. J. Tayeb, O. Ulusoy, O. Wolfson. A Quadtree-Based Dynamic Attribute Indexing Method. The Computer Journal, 41(3):185–200, 1998.

    Article  MATH  Google Scholar 

  29. A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass. Temporal Databases: Theory, Design, and Implementation. Benjamin/Cummings Inc., Redwood City, California, 1993.

    Google Scholar 

  30. D. Toman and J. Chomicki. Datalog with Integer Periodicity Constraints. Journal of Logic Programming, 35(3), June 1998, pp. 263–290.

    Google Scholar 

  31. D. Vasilis and M. Christos and S. Spiros. A Provably Efficient Computational Model For Approximate Spatiotemporal Retrieval. In: Proc. 7th ACM Symposium on Geographic Information Systems, pp. 40–46, Kansas City, Missouri, November 1999.

    Google Scholar 

  32. M. F. Worboys. A Unified Model for Spatial and Temporal Information. Computer Journal, 37:1, pp. 25–34, 1994.

    Article  Google Scholar 

  33. M. F. Worboys. GIS: A Computing Perspective, Taylor & Francis, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Revesz, P., Cai, M. (2000). Efficient Querying of Periodic Spatiotemporal Objects. In: Dechter, R. (eds) Principles and Practice of Constraint Programming – CP 2000. CP 2000. Lecture Notes in Computer Science, vol 1894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45349-0_29

Download citation

  • DOI: https://doi.org/10.1007/3-540-45349-0_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41053-9

  • Online ISBN: 978-3-540-45349-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics