Skip to main content

An Analysis of Dynamic Severity and Population Size

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1917))

Abstract

This work introduces a general mathematical framework for non-stationary fitness functions which enables the exact definition of certain problem properties. The properties’ influence on the severity of the dynamics is analyzed and discussed. Various different classes of dynamic problems are identified based on the properties. Eventually, for an exemplary model search space and a (1, λ)-strategy, the interrelation of the offspring population size and the success rate is analyzed. Several algorithmic techniques for dynamic problems are compared for the different problem classes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Branke, J. (1999a). Evolutionary approaches to dynamic optimization problems: A survey. In J. Branke & T. Bäck (Eds.), Evolutionary algorithms for dynamic optimization problems (pp. 134–137). (part of GECCO Workshops, A. Wu (ed.))

    Google Scholar 

  • Branke, J. (1999b). Memory enhanced evolutionary algorithms for changing optimization problems. In 1999 Congress on Evolutionary Computation (pp. 1875–1882). Piscataway, NJ: IEEE Service Center.

    Chapter  Google Scholar 

  • Cobb, H. G. (1990). An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments (Tech. Rep. No. 6760 (NLR Memorandum)). Washington, D.C.: Navy Center for Applied Research in Artificial Intelligence.

    Google Scholar 

  • Cobb, H. G., & Grefenstette, J. J. (1993). Genetic algorithms for tracking changing environments. In S. Forrest (Ed.), Proc. of the Fifth Int. Conf. on Genetic Algorithms (pp. 523–530). San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • De Jong, K. A., & Spears, W. M. (1991). An analysis of the interacting roles of population size and crossover in genetic algorithms. In H.-P. Schwefel & R. Männer (Eds.), Parallel Problem Solving from Nature: 1st Workshop, PPSN I (pp. 38–47). Berlin: Springer.

    Chapter  Google Scholar 

  • Deb, K., & Agrawal, S. (1999). Understanding interactions among genetic algorithm parameters. In W. Banzhaf & C. Reeves (Eds.), Foundations of Genetic Algorithms 5 (pp. 265–286). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Goldberg, D. E., & Smith, R. E. (1987). Nonstationary function optimization using genetic algorithms with dominance and diploidy. In J. J. Grefenstette (Ed.), Proc. of the Second Int. Conf. on Genetic Algorithms (pp. 59–68). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Grefenstette, J. J. (1999). Evolvability in dynamic fitness landscapes: a genetic algorithm approach. In 1999 Congress on Evolutionary Computation (pp. 2031–2038). Piscataway, NJ: IEEE Service Center.

    Chapter  Google Scholar 

  • Lewis, J., Hart, E., & Ritchie, G. (1998). A comparison of dominance mechanisms and simple mutation on non-stationary problems. In A. E. Eiben, T. Bäck, M. Schoenauer, & H.-P. Schwefel (Eds.), Parallel Problem Solving from Nature-PPSN V (pp. 139–148). Berlin: Springer. (Lecture Notes in Computer Science 1498)

    Chapter  Google Scholar 

  • Mahfoud, S. W. (1994). Population sizing for sharing methods (Tech. Rep. No. I11IGAL 94005). Urbana, IL: Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign.

    Google Scholar 

  • Miller, B. L. (1997). Noise, sampling, and efficient genetic algorithms. Unpublished doctoral dissertation, University of Illinois at Urbana-Champaign, Urbana, IL. (II1IGAL Report No. 97001)

    Google Scholar 

  • Mori, N., Imanishi, S., Kita, H., & Nishikawa, Y. (1997). Adaptation to changing environments by means of the memory based thermodynamical genetic algorithm. In T. Bäck (Ed.), Proc. of the Seventh Int. Conf. on Genetic Algorithms (pp. 299–306). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Morrison, R. W., & De Jong, K. A. (1999). A test problem generator for non-stationary environments. In 1999 Congress on Evolutionary Computation (pp. 2047–2053). Piscataway, NJ: IEEE Service Center.

    Chapter  Google Scholar 

  • Ronnewinkel, C., Wilke, C. O., & Martinetz, T. (2000). Genetic algorithms in time-dependent environments. In L. Kallel, B. Naudts, & A. Rogers (Eds.), Theoretical aspects of evolutionary computing (pp. 263–288). Berlin: Springer.

    Google Scholar 

  • Rowe, J. E. (1999). Finding attractors for periodic fitness functions. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, & R. E. Smith (Eds.), Proc. of the Genetic and Evolutionary Computation Conf. GECCO-99 (pp. 557–563). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Smith, R. E. (1997). Population size. In T. Bäck, D. B. Fogel, & Z. Michalewicz (Eds.), Handbook of Evolutionary Computation (pp. El.1:1–5). Bristol, New York: Institute of Physics Publishing and Oxford University Press.

    Google Scholar 

  • Trojanowski, K., & Michalewicz, Z. (1999). Searching for optima in non-stationary environments. In 1999 Congress on Evolutionary Computation (pp. 1843–1850). Piscataway, NJ: IEEE Service Center.

    Chapter  Google Scholar 

  • Weicker, K., & Weicker, N. (1999). On evolution strategy optimization in dynamic environments. In 1999 Congress on Evolutionary Computation (pp. 2039–2046). Piscataway, NJ: IEEE Service Center.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weicker, K. (2000). An Analysis of Dynamic Severity and Population Size. In: Schoenauer, M., et al. Parallel Problem Solving from Nature PPSN VI. PPSN 2000. Lecture Notes in Computer Science, vol 1917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45356-3_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-45356-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41056-0

  • Online ISBN: 978-3-540-45356-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics