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Abstract. This paper presents an adaptive tit-for-tat strategy and a study of its
behavior in spatial IPD games. The adaptive tit-for-tat strategy is shown
elsewhere to demonstrate high performance in IPD tournaments or individual
IPD games with other types of strategies, and obtains higher scores than the
pure tit-for-tat strategy. In spatial IPD games, the strategy exhibits stability and
resistance to perturbations, and those properties are more pronounced in
variations of the spatial game model that induce some degree of “noise” :
probabilistic winning, spatial irregularity and continuous time. The adaptive tit-
for-tat strategy is also compared to pure tit-for-tat and found to be more stable
and predominant in perturbed environments.

1 Introduction

A major research theme in theoretical biology and evolutionary computation is the
emergence and evolution of cooperative behavior between selfish agents. The
cooperation problem states that each agent has a strong personal incentive to defect,
while the joint best behavior would be to cooperate. This problem is traditionally
modeled as a special two-party game, the Iterated Prisoner’s Dilemma (IPD).
At each cycle of a long interaction process, the agents play the Prisoner’s Dilemma.
Each of the two may either cooperate (C) or defect (D) and is assigned a payoff
defined by the following table.

Agent Opponent Payoff
C C 3 (= Reward)
C D 0 (= Sucker)
D C 5 (= Temptation)
D D 1 (= Punishment)

Usual experiments with IPD strategies are either tournaments or ecological
experiments. In tournaments, each strategy plays against all others and scores are
summed in the end. In ecological experiments, populations of IPD strategies play in
tournaments and successive generations retain the best strategies in proportions
analogous to their score sums.
The first notable behavior for the IPD designed and studied by Axelrod [1][2] is the
Tit For Tat behavior (TFT, in short) :

Start by cooperating,
From there on return the opponent’s previous move



This behavior has achieved the highest scores in early tournaments and has been found
to be fairly stable in ecological settings. TFT demonstrates three important properties,
shared by most high scoring behaviors in IPD experiments.

· It is good (it starts by cooperating)
· It is retaliating (it returns the opponent’s defection)
· It is generous (it forgets the past if the defecting opponent cooperates again).

Further strategies include stochastic ones ([11]), the Pavlov strategy ([13]) that
cooperates when it has played the same move as its opponent etc. In the literature we
may also find studies in an evolutionary perspective ([6]), theoretical or applied
biological studies ([3][5][10]) and studies of modified IPD versions ([14]).
We have designed an adaptive tit-for-tat strategy that is analyzed in detailed elsewhere
([15]) and is shown to score better than pure tit-for-tat and most of the other known
strategies. Our initial motivation for this work was to find a strategy that would be
able to cooperate with cooperative behaviors and defect against defective behaviors,
while maintaining reversible, not permanent memory. This strategy would demonstrate
behavioral gradualness and possess the potential for stability in front of changing
worlds. In what follows, we are studying the issue of stability of the adaptive tit-for-tat
strategy in spatial games of the sort introduced by Nowak and May ([12]).

2 The Adaptive Tit-for-Tat Strategy

An adaptive tit-for-tat strategy should be essentially tit-for-tat in the sense of being
good, retaliating and forgiving. Moreover, it should demonstrate some behavioral
gradualness that would show as fewer oscillations between C and D. To this end, it
should use an estimate of the opponent’s behavior, whether cooperative or defecting,
and should react to it in a tit-for-tat manner. The estimate should be continuously
updated throughout the interaction with the opponent. The above may be modeled
with the aid of a continuous variable, the world’s image, ranging from 0 (total
defection) to 1 (total cooperation). Intermediate values will represent degrees of
cooperation and defection. The adaptive tit-for-tat model can then be formulated as a
simple linear model :

Adaptive tit-for-tat basic model
If (opponent played C in the last cycle) then

world = world + r*(1-world), r is the adaptation rate
else

world = world + r*(0-world)
If (world >= 0.5) play C, else play D

The usual tit-for-tat model corresponds to the case of r=1 (immediate convergence to
the opponent’s current move). Clearly, the use of fairly small r’s will allow more
gradual behavior and will tend to be more robust to perturbations. We have observed
that the adoption of two different rates, one for cooperation (rc) and one for defection
(rd), allows us to assume the right behavior against retaliating or irrational strategies.
Retaliating strategies are those that basically seek cooperation, but start by exploring
the opponent’s reaction to a few initial D moves. For example, the suspicious tit-for-
tat (or STFT) strategy starts by defecting, and then plays usual tit-for-tat. On the



contrary, irrational strategies are those that do not employ any feedback from the
game and play blindly using some innate law. For example, periodic strategies repeat
patterns of C’s and D’s, such as CDD, CCD, CDCD etc. We have shown ([15]) that a
high cooperation rate and a low defection rate allow us to converge to cooperation
against a retaliating agent, while the opposite setting allows us to converge to total
defection against an irrational agent, in both cases achieving maximum score. Thus,
we need a method for the adaptive tit-for-tat agent to discover whether the opponent
uses a retaliating behavior or is just irrational, so as to adopt the proper rate setting.
We have designed and examined several such variants for estimating the opponent’s
irrationality and we have finally found the following rule :

Adaptive tit-for-tat model
If (opponent played C in the last cycle) then

world = world + rc*(1-world), rc is the adaptation rate for cooperation
else

world = world + rd*(0-world), rd is the adaptation rate for defection
If (world >= 0.5) play C, else play D
Throughout an observation window, record how many times (n) the agent’s
move has coincided with the opponent’s move. At regular intervals (every
“window” steps) adapt the rates as follows :
If (n>threshold) then rc = rmin, rd = rmax

else rc = rmax, rd = rmin

The rule may be translated as :
If (the world is cooperative)* then rc = rmin, rd = rmax

else rc = rmax, rd = rmin

(*) recall that “my move = opponent’s move” is the so-called pavlovian
criterion of cooperation (Nowak and Sigmund [13])

Note that the agent drops its cooperation rate when the world is assumed cooperative,
and increases it otherwise, that is, it uses negative feedback at the rate regulation level.
Another alternative interpretation for a cooperative world is a world that tries to
manipulate the agent (so as to get it to respond with the same value found in the
world). In this case it makes sense to drop the cooperation (potential manipulation)
rate and become less adaptive to the world.
We have shown in simulations ([15]) that the adaptive tit-for-tat strategy with this
meta-regulation mechanism converges to the proper behavior and achieves the highest
score against both retaliating and irrational strategies, such as STFT and periodic
strategies, respectively.
The adaptive tit-for-tat strategy manages to differentiate between a retaliating strategy
and an irrational one that has initially the same behavior. For example it manages to
converge to total defection against CDCD, that resembles STFT in the beginning.
The meta-regulated model is insensitive to the initial value of its world variable,
provided that it is at least equal to 0.5 (remember that a tit-for-tat like behavior should
start by cooperating). However, even for a defective initial value of the world variable,
the adaptive agent may converge to cooperative behavior against the tit-for-tat agent.
The model is also insensitive to the exact values of rmax and rmin. Different values for
the two rates will only result in scaling or stretching of the resulting curve for the
world variable, the qualitative performance remaining intact. The same thing applies



to the values of the observation window and the threshold, although they must be
constrained so that the window will be sufficiently large and the threshold sufficiently
small compared to the window.

3 Spatial Games I : Basic Model

We have run spatial games ([12][9]) in two-dimensional grids consisting of diverse
agents, i.e., agents having different IPD strategies. In these games, all agents run a
finite IPD game against their neighbors at each cycle. After all games are finished, the
agent at each place assumes the winner strategy among itself and its neighbors, i.e.,
the strategy whose score sum is greatest. The spatial game continues in the next cycle
with the new generation of strategies and so on. Such experiments show the evolution
of different types of strategies in spatial grids. In our work, we assume the classical
IPD game with the typical payoff matrix already presented and we study the behavior
of our adaptive tit-for-tat strategy and its potential for stability.
Experiments starting with randomly placed agents of three kinds (ALLC, ALLD and
adaptive TFT) have been found to quickly settle on a stable configuration consisting
of high percentages of adaptive TFT and very low percentages of ALLC with
occasional small stable territories occupied by ALLD. Figure 1 shows such a stable
configuration with a stable ALLD territory and the corresponding experiment’s
evolution of strategies proportions in the population. As is obvious from figure 1,
ALLD’s safe territories lie always between ALLCs (that ALLD can exploit) and
adaptive TFTs (that ALLD cannot cheat).

Fig. 1. (a) A stable configuration of adaptive TFT, ALLC and ALLD, that has occurred after a
few cycles in a spatial IPD game (20x20 grid). Blue (Gray) = Adaptive TFT, White = ALLC,
Black = ALLD. ALLD has built a safe territory. Adaptive TFT has dominated to the detriment
of ALLD and ALLC has been invaded by ALLD. (b) Corresponding evolution of strategies.

The experiment has been repeated with populations of various strategies and it has
been found that most strategies die out quickly, i.e., in a few generations, while
ALLC, ALLD, pure TFT and adaptive TFT persist.
We have also repeated the experiments for initially regular configurations of strategies
and we have obtained similar results. Figures 2 to 5 show characteristic results for
some regular initial configurations. In figure 2, ALLD builds a stable territory, while
in figure 3 (with similar initial population composition) ALLD dies out. Figure 4
demonstrates the process of safe ALLD territory emergence through “chasing” by
adaptive TFT agents. Finally, figure 5 gives a type of almost regular configuration that



may lead to two completely different final stable configurations : either to a 100%
ALLD population, or to a 100% adaptive TFT population. In all cases, we have
observed the emergence of stable configurations of varying composition and form,
which may include ALLD blocks next to cooperative strategies.
In order to examine the potential of adaptive TFT as far as stability and resistance to
perturbations is concerned, we have performed two kinds of perturbation studies.
First, we have performed the “injection test”, where, after the population has
stabilized, we inject a number of ALLD agents in random places on the grid. In this
case, we have found that the system restabilizes to a new configuration, where the
adaptive TFT strategy has risen to higher values than its former stable value, and this
to the detriment of ALLC. Figure 6a gives the results of a typical run of this
experiment.
The second kind of test that we have performed is the “shuffle test”, where, after the
population has stabilized, we shuffle the agents of the population, i.e. we move each
one of them in a random place on the grid. In this case as above, we have found that
the system restabilizes to a new configuration, where the adaptive TFT strategy has
risen to higher values than its former stable value, and this to the detriment of ALLC.
Figure 6b gives the results of a typical run of this experiment. As is obvious from the
figure, the shuffling of the agents has the potential of leading ALLD agents to total
extinction. The conclusion from both these tests is that a perturbation of a stable
population -either in the form of injection of irrational agents or in the form of
shuffling of the agents- results in a rise of the adaptive tit-for-tat population. This
happens to the detriment of other strategies and most notably to the detriment of the
ALLC strategy.

Fig. 2. (a) Initial configuration of adaptive TFT, ALLC and ALLD in a spatial IPD game
(20x20 grid). (b) Final configuration. (c) Evolution of strategies in the population.

Fig. 3. (a) Initial configuration of adaptive TFT, ALLC and ALLD in a spatial IPD game
(20x20 grid). Note that the relative positions of ALLD and adaptive TFT blocks are inversed, in
comparison to the situation of figure 2. (b) Final configuration. (c) Evolution of strategies in the
population.



Fig. 4. Configuration of adaptive TFT, ALLC and ALLD in a spatial IPD game (20x20 grid).
(a-d) Configuration at t=0, t=6. t=12, t=18. (e) Evolution of strategies in the population.

Fig. 5. A regular configuration of adaptive TFT, ALLC and ALLD in a spatial IPD game
(20x20 grid). (a) Configuration leading to a 100% ALLD population. (b) Configuration leading
to a 100% adaptive TFT population. (c) Evolution of strategies in the population of the
configuration (b).

Fig. 6. Perturbation tests in a population of adaptive TFT, ALLC and ALLD in a spatial IPD
game (20x20 grid). (a) Injection of ALLD agents at t=10, after the system has stabilized (t=7).
(b) Agent shuffling at t=35, after the system has stabilized (t=28).

4 Spatial Games II : Model Extensions

We have also performed experiments with the modified game models of May et al. [9]
because they represent some kind of “perturbed game models”. First, we have
experimented with games of probabilistic winning, where the winner strategy in an
agent’s neighborhood is not determined in an absolute way, as the one achieving the
highest score. Instead, it is determined probabilistically according to its score (the



higher the score, the higher the probability of determining the strategy as winner). In
this case as before, the system settles to a configuration, where the adaptive TFT
strategy rises to high values to the detriment of ALLC. There are, however, three
major differences.
· The system does not settle definitely to a configuration, but keeps changing all the

time, while the relative proportions of the various strategies are stable around
some value.

· The stabilization of the system is much slower than that of absolute winning and a
little “noisy”, which shows in irregularity of the resulting curves.

· The ALLD strategy gets always extinct, because of symmetry breaking : All
ALLD agents are eventually replaced by suboptimal ALLC or adaptive TFT
neighbors.

Figure 7 gives the results of probabilistic winning in a random and a regular initial
configuration.

Fig. 7. Evolution of strategies in a population of adaptive TFT, ALLC and ALLD in a spatial
IPD game (20x20 grid) with probabilistic winning. (a) A random initial configuration such as
the one of figure 1. (b) A regular initial configuration such as the one of figure 5.

Next, we have experimented with games of spatial irregularity, where the opponents
of an agent are not necessarily its immediate neighbors or not all of them. In our
implementation, an agent has 50% probability of playing against each one of its
immediate neighbors, so that practically at each round it plays against half of them,
chosen randomly. In this case the general conclusions of previous game models apply
as well. A detailed analysis in the same spirit as that of probabilistic winning reveals
the following :
· The stabilization of the system is slower than that of absolute winning but quicker

than that of probabilistic winning. The stabilization is steady, as that of absolute
winning, and not “noisy”, as that of probabilistic winning.

· The ALLD strategy gets always extinct, because every ALLD agent is eventually
replaced by an ALLC or adaptive TFT neighbor that has achieved a higher score
in its own different spatial tournament.

Figure 8 gives the results of spatial irregularity in a random and a regular initial
configuration.
Finally, we have experimented with continuous-time games ([7][9]), where agents do
not play against their opponents simultaneously and are not updated synchronously,
but they play and are updated one after the other in random order. In this case the
general conclusions of previous game models apply as well. A detailed analysis in the
same spirit as that of probabilistic winning reveals the following :



· Stabilization is comparable in speed and “noisy”, as in probabilistic winning.
· However, the ALLD strategy is not always extinct, but manages to build safe

territories, although a little less often than in the default game model.
Figure 9 gives the results of continuous-time games in a random and a regular initial
configuration. The conclusion from the above three studies is that a perturbed game
model results in higher adaptive tit-for-tat population proportions. This happens to the
detriment of other strategies and most notably to the detriment of the ALLC strategy.

Fig. 8. Evolution of strategies in a population of adaptive TFT, ALLC and ALLD in a spatial
IPD game (20x20 grid) with spatial irregularity. (a) A random initial configuration such as the
one of figure 1. (b) A regular initial configuration such as the one of figure 5.

Fig. 9. Evolution of strategies in a population of adaptive TFT, ALLC and ALLD in a spatial
IPD game (20x20 grid) with continuous time. (a) A random initial configuration such as the
one of figure 1. (b) A regular initial configuration such as the one of figure 5.

5 Spatial Games III : Adaptive TFT versus Pure TFT

Because the adaptive TFT strategy has been shown better than pure TFT in individual
games against other strategies as well as in tournaments ([15]), we have examined
their relative strength in front of perturbations. There are two notable results in this
direction. First, we have performed experiments with arbitrary initial populations
including a fair amount of pure and adaptive TFT agents, in the basic game model. As
has been already explained, these systems settle eventually to a stable configuration.
After such systems stabilize, we inject at regular intervals a number of agents of
arbitrary strategy. At each such “injection”, the adaptive TFT strategy rises rapidly to
the detriment of ALLC and pure TFT. In figure 10a, the initial configuration is a
random one that contains 20% STFT, 20% ALLC, 20% CDCD, 20% ALLD, 10%
pure TFT and 10% adaptive TFT agents. The system settles at t=5. At t=10, t=15 and
t=20, we inject 10% CDCD, 10% lunatic (random) and 10% STFT agents,
respectively. As is obvious from the figure, at each perturbation the proportion of the



adaptive TFT rises to the detriment of ALLC and pure TFT. Hence, perturbations
strengthen the adaptive TFT and weaken the pure TFT strategy.
A second observation concerns the relative evolution of adaptive TFT and pure TFT
in initial configurations consisting of ALLC, ALLD, pure TFT, adaptive TFT and
irrational agents (such as CDCD and STFT). In such experiments, it has been
observed that the pure and the adaptive TFT strategies stabilize to different values
even if starting from the same initial value. More specifically, when the two strategies
start from about the same initial value, they settle to a configuration such that the
adaptive TFT strategy is of a significantly higher value than the pure TFT strategy, as
figure 10b shows. This is an early indication of some sort of Baldwin effect ([4][8])
that deserves further study.

Fig. 10. (a) Evolution of strategies in an initial population that contains 20% STFT, 20%
ALLC, 20% CDCD, 20% ALLD, 10% pure TFT and 10% adaptive TFT agents in a spatial IPD
game (20x20 grid). At t=10, t=15 and t=20, we inject 10% CDCD, 10% lunatic (random) and
10% STFT agents, respectively. (b) Evolution of strategies in an initial population that contains
7% STFT, 38% ALLC, 7% CDCD, 32% ALLD, 8% pure TFT and 8% adaptive TFT agents in a
spatial IPD game (20x20 grid). See text for comments on Baldwin effect.

6 Conclusion

We have presented an adaptive tit-for-tat strategy for the IPD game and have studied
its stability and resistance to perturbations in spatial IPD games on a 2D grid. The
adaptive TFT strategy uses a continuous estimate of the opponent’s behavior that it
regulates between two bounds. Moreover, at a meta level, it regulates the rates of the
previous level regulation, so that it manages to achieve maximum scores in individual
games against other strategies and in tournaments. The behavior of the adaptive TFT
strategy in spatial IPD games is studied systematically and several perturbation studies
are performed, in an attempt to identify the strategy’s features and advantages. In
typical spatial IPD games between adaptive TFT, ALLC and ALLD on a 2D grid, a
population settles to a certain configuration, where adaptive TFT rises to high
percentages in the population, while ALLC and ALLD fall to very low values.
Surprisingly at first hand, ALLD manages occasionally to survive in such
environments and build stable blocks between large ALLC and adaptive TFT areas.
As far as the form of resulting final configurations is concerned, even slightly
dissimilar initial configurations may lead to completely different final configurations
(cf. fig. 5), thus exhibiting some form of chaotic behavior.



Similar results are also obtained in the case of perturbed or noisy game models
(probabilistic winning, spatial irregularities and continuous-time games), with
differences in convergence speed and steadiness. The relative strength and dominance
of adaptive TFT compared to pure TFT is finally demonstrated in a number of
experiments that involve subtle perturbation schemes. In all cases, persistent
perturbations of various forms strengthen the adaptive TFT and weaken pure TFT and
ALLC, while they lead to extinction of irrational strategies in the population. Adaptive
TFT demonstrates thus a selective advantage in perturbed environments, because it is
fairly stable and resistant to perturbations.
Future work includes a study of parameterized games, in the same spirit as May et al.
[9] and an extension of the IPD spatial game model to a two-species game, each one
having as a goal to dominate the whole grid.
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