Skip to main content

Expanding from Discrete to Continuous Estimation of Distribution Algorithms: The ID\( \mathbb{E} \)A

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1917))

Abstract

The direct application of statistics to stochastic optimization based on iterated density estimation has become more important and present in evolutionary computation over the last few years. The estimation of densities over selected samples and the sampling from the resulting distributions, is a combination of the recombination and mutation steps used in evolutionary algorithms. We introduce the framework named ID\( \mathbb{E} \)A to formalize this notion. By combining continuous probability theory with techniques from existing algorithms, this framework allows us to define new continuous evolutionary optimization algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Bäck and H-P. Schwefel. Evolution strategies I: Variants and their computational implementation. In G. Winter, J. Priaux, M. Gain, and P. Cuesta, editors, Genetic Algorithms in Engineering and Computer Science, Proc. of the First Short Course EUROGEN’95, pages 111–126. Wiley, 1995.

    Google Scholar 

  2. S. Baluja and R. Caruana. Removing the genetics from the standard genetic algorithm. In A. Prieditis and S. Russell, editors, Proc. of the 12th Int. Conf. on Machine Learning, pages 38–46. Morgan Kauffman Pub., 1995.

    Google Scholar 

  3. S. Baluja and S. Davies. Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space. In D.H. Fisher, editor, Proc. of the 1997 Int. Conf. on Machine Learning. Morgan Kauffman Pub., 1997.

    Google Scholar 

  4. J.S. De Bonet, C. Isbell, and P. Viola. MIMIC: Finding optima by estimating probability densities. Advances in Neural Information Processing, 9, 1996.

    Google Scholar 

  5. P.A.N. Bosman and D. Thierens. An algorithmic framework for density estimation based evolutionary algorithms. Utrecht University Technical Report UU-CS-1999-46. ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-1999/1999-46.ps.gz, 1999.

  6. P.A.N. Bosman and D. Thierens. Linkage information processing in distribution estimation algorithms. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith, editors, Proc. of the GECCO-1999 Genetic and Evolutionary Computation Conference, pages 60–67. M.K. Pub., 1999.

    Google Scholar 

  7. P.A.N. Bosman and D. Thierens. Continuous iterated density estimation evolutionary algorithms within the ID\( \mathbb{E} \)A framework. Utrecht Univ. Tech. Rep. UU-CS-2000-15. ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-2000/2000-15.ps.gz, 2000.

  8. P.A.N. Bosman and D. Thierens. IDEAs based on the normal kernels probability density function. Utrecht University Technical Report UU-CS-2000-11. ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-2000/2000-ll.ps.gz, 2000.

  9. D. Edwards. Introduction To Graphical Modelling. Springer-Verlag, 1995.

    Google Scholar 

  10. M. Gallagher, M. Fream, and T. Downs. Real-valued evolutionary optimization using a flexible probability density estimator. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith, editors, Proc. of the GECCO-1999 Gen. and Evol. Comp. Conf., pages 840–846. M.K. Pub., 1999.

    Google Scholar 

  11. D.E. Goldberg. Genetic Algorithms In Search, Optimization, And Machine Learning. Addison-Wesley, Reading, 1989.

    MATH  Google Scholar 

  12. G. Harik. Linkage learning via probabilistic modeling in the ECGA. IlliGAL Tech. Report 99010. ftp://ftp-illigal.ge.uiuc.edu/pub/papers/IlliGALs/99010.ps.Z, 1999.

  13. G. Harik, F. Lobo, and D.E. Goldberg. The compact genetic algorithm. In Proc. of the 1998 IEEE Int. Conf. on Evol. Comp., pages 523–528. IEEE Press, 1998.

    Google Scholar 

  14. J.H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press, 1975.

    Google Scholar 

  15. P. Larrañaga, R. Etxeberria, J.A. Lozano, and J.M. Peña. Optimization by learning and simulation of bayesian and gaussian networks. University of the Basque Country Technical Report EHU-KZAA-IK-4/99. http://www.sc.ehu.es/ccwbayes/postscript/kzaa-ik-04-99.ps, 1999.

  16. H. Mühlenbein and T. Mahnig. FDA-a scalable evolutionary algorithm for the optimization of additively decomposed functions. Evol. Comp., 7:353–376, 1999.

    Google Scholar 

  17. H. Mühlenbein, T. Mahnig, and O. Rodriguez. Schemata, distributions and graphical models in evolutionary optimization. Journal of Heuristics, 5:215–247, 1999.

    Article  MATH  Google Scholar 

  18. H. Mühlenbein and G. Paaß. From recombination of genes to the estimation of distributions I. binary parameters. In A.E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature-PPSN V, pages 178–187. Springer, 1998.

    Google Scholar 

  19. M. Pelikan, D.E. Goldberg, and E. Cantú-Paz. BOA: The bayesian optimization algorithm. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith, editors, Proc. of the GECCO-1999 Genetic and Evolutionary Computation Conference, pages 525–532. Morgan Kaufmann Pub., 1999.

    Google Scholar 

  20. M. Pelikan, D.E. Goldberg, and F. Lobo. A survey of optimization by building and using probabilistic models. IlliGAL Technical Report 99018. ftp://ftp-illigal.ge.uiuc.edu/pub/papers/IlliGALs/99018.ps.Z, 1999.

  21. M. Pelikan and H. Mühlenbein. The bivariate marginal distribution algorithm. In R. Roy, T. Furuhashi, K. Chawdry, and K. Pravir, editors, Advances in Soft Computing-Engineering Design and Manufacturing. Springer-Verlag, 1999.

    Google Scholar 

  22. M. Sebag and A. Ducoulombier. Extending population-based incremental learning to continuous search spaces. In A.E. Eiben, T. Back, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature-PPSN V, pages 418–427. Springer, 1998.

    Google Scholar 

  23. I. Servet, L. Trave-Massuyes, and D. Stern. Telephone network traffic overloading diagnosis and evolutionary computation technique. In J.K. Hao, E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers, editors, Proc. of Artificial Evolution’ 97, pages 137–144. Springer Verlag, LNCS 1363, 1997.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bosman, P.A.N., Thierens, D. (2000). Expanding from Discrete to Continuous Estimation of Distribution Algorithms: The ID\( \mathbb{E} \)A. In: Schoenauer, M., et al. Parallel Problem Solving from Nature PPSN VI. PPSN 2000. Lecture Notes in Computer Science, vol 1917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45356-3_75

Download citation

  • DOI: https://doi.org/10.1007/3-540-45356-3_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41056-0

  • Online ISBN: 978-3-540-45356-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics