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Abstract. Sac is a functional array processing language particularly
designed with numerical applications in mind. In this field the runtime
performance of programs critically depends on the efficient utilization of
the memory hierarchy. Cache conflicts due to limited set associativity are
one relevant source of inefficiency. This paper describes the realization of
an optimization technique which aims at eliminating cache conflicts by
adjusting the data layout of arrays to specific access patterns and cache
configurations. Its effect on cache utilization and runtime performance is
demonstrated by investigations on the PDE1 benchmark.

1 Introduction

Sac is a functional array processing language, which tries to combine generic,
high-level program specifications with efficient runtime behaviour [20,21]. Par-
ticularly in the field of numerical applications, the efficient utilization of the
memory hierarchy plays a key role in achieving good performance [14]. However,
for many numerical application programs it can be observed that small variations
in problem sizes may have a significant impact on runtime performance. This
is due to systematic cache conflicts which may occur for unfavourable combina-
tions of array access patterns and array data layout in the presence of limited
cache associativity [2].

Assuming the runtime performance of a program is poor for one problem
size, but turns out to be significantly better for a marginally larger problem size,
it is a rather straightforward idea to mimick the data layout associated with
the larger problem size when actually dealing with the smaller one. In doing
so, the originally dense representation of arrays is manipulated by the introduc-
tion of dummy elements in one or another dimension, so-called array padding
[1]. The array padding optimization implemented in Sac basically consists of
three steps. First, Sac code within with-loops, the predominant Sac language
construct for the specification of aggregate array operations [7], is thoroughly
analysed for array accesses, and the arrays involved are associated with accurate
access patterns. Second, an inference heuristic estimates the cache utilization and
identifies an appropriate amount of padding where necessary. Cache phenomena
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such as spatial and temporal reuse are taken into account. Third, the data lay-
out modification proposed by the inference heuristic is realized as a high-level
transformation on intermediate Sac code.

The remainder of this paper is organized as follows. After a more detailed
problem identification in Section 2, Sections 3, 4, and 5 describe the three steps
of the implementation. Their effect on runtime performance is demonstrated by
means of the PDE1 benchmark in Section 6. Section 7 sketches some related
work while Section 8 concludes.

2 Problem Identification

We have chosen the benchmark PDE1 as an example in order to investigate
and quantify the potential impact of the problem size on runtime performance.
PDE1 implements red/black successive over-relaxation on 3-dimensional grids.
The benchmark itself as well as various implementation opportunities for Sac
are discussed in [8]. In our experiments we have systematically varied the size
of the 3-dimensional grid from 163 until 5283 in uniform steps of 16 elements
in each dimension. With double precision floating point numbers, this involves
array sizes between 32KB and 1.1GB. All experiments have been done on a SUN
Ultra Enterprise 4000 system. Figure 1 shows the average times required to re-
compute the value of a single inner grid element. It can be observed that these
times significantly vary for the problem sizes investigated. While 155nsec are
sufficient to update an inner element of a grid of size 163, it takes up to 866nsec
to complete the same operation in a grid of size 2563. Although exactly the same
sequence of instructions is executed for each inner grid element regardless of the
problem size, the time required to do so varies by a factor of 5.6.

Such extreme variations in runtime performance can only be attributed to
different degrees of cache utilization caused by varying data layouts introduced
by different problem sizes. In order to substantiate claims like this, the Sac
compiler and runtime system are equipped with a tailor-made cache simulation
feature. On demand, a trace of all array accesses during program execution is
generated. This allows for a complete simulation of the cache behaviour, yielding
statistical information regarding the effectiveness of cache utilization. Each pro-
cessor of the SUN Ultra Enterprise 4000 multiprocessor system is equipped with
a 16KB L1 data cache and a 1MB L2 unified cache. Both are direct-mapped and
use cache lines of 32 and 64 bytes, respectively. Figure 2 shows the percentage of
L1 cache hits for the various problem sizes investigated as well as the percentage
of memory requests satisfied by any of the two cache levels. It actually turns out
that the extreme performance variations observed in Fig. 1 largely coincide with
similar variations in simulated cache hit rates.

The design of cache memories is essentially based on two assumptions: tem-
poral locality and spatial locality [9]. A program exhibits temporal locality if it is
likely that once a memory address is referenced in the code, it will be referenced
again soon. Therefore, data is loaded into the fast cache memory in order to sat-
isfy subsequent requests without slow main memory interaction. Spatial locality
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Fig. 1. PDE1: average time required to re-compute a single grid element
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means that once a memory address is referenced, adjacent addresses are likely to
be referenced soon. For this reason, caches are internally organized in so-called
cache lines, which typically comprise between 16 and 128 bytes of contiguous
memory. All data transfers between main memory and cache involve entire cache
lines rather than single bytes or words of memory. Application programs do only
benefit from caches to the extent to which they exhibit spatial and temporal
locality.

However, spatial and temporal locality are mainly characteristics of a given
program, and hence, do not explain the observed performance variations. In
fact, it is a limitation in cache memory hardware that is responsible for this:
very limited set associativity. In order to efficiently distinguish cache hits from
cache misses, any given memory address can only be mapped to one of very
few locations in the cache, which are directly derived from the memory address
itself. Today’s caches usually provide set associativities between one and four.
As a consequence, data may be flushed from the cache before potential reuse is
actually exploited, although the cache is sufficiently large to allow the reuse in
principle. These so-called conflict misses may seriously limit cache utilization,
as can be seen in Figs. 1 and 2. Since concrete memory addresses decide over
cache conflicts, they are extremely sensitive against memory layout variations,
in particular, whenever regularly structured data is accessed in regular patterns,
which is typical for numerical codes involving large arrays.

Various different cache effects have been identified [22], e.g., a spatial reuse
conflict occurs whenever not all array elements referenced in a single iteration of
an inner loop can simultaneously be held in the cache. The number of different
array elements which are mapped to the same cache set exceeds the cache’s set
associativity and, hence, cache lines are flushed from the cache before potential
reuse can be realized in the following iteration. A temporal reuse conflict occurs
when potential reuse between two references to the same array element cannot
be exploited because another array reference interferes and causes the first one
to be flushed from the cache before the potential reuse actually occurs. Conflicts
are classified as either arising from references to the same array, so-called self-
interference conflicts, or to different arrays, so-called cross-interference conflicts.

Thorough elimination of cache conflicts is crucial for keeping the runtime
performance consistent over a range of problem sizes [13]. This can be achieved
by a well-aimed manipulation of the data layout of arrays. Self-interference con-
flicts can be eliminated by modifying the internal representation of arrays, cross-
interference conflicts by adjusting array base addresses. The latter approach is
very difficult to realize in a language like Sac, which allocates and de-allocates
all data structures dynamically. Therefore, we concentrate on self-interference
conflicts in the following. One way to manipulate the internal representation of
arrays is array padding, a well-known optimization technique that adds dummy
elements to an array in one or another inner dimension [1]. For example, an
array whose original shape is [100,100] may be transformed into an array of
shape [100,102] by adding two columns of dummy elements. Padding an array
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alters the memory addresses of different elements in different ways and, hence,
allows to indirectly manipulate their associated relative cache locations.

However, applying array padding manually has some serious drawbacks. It
requires both a lot of effort and expert knowledge by programmers, who in this
case are solely responsible to identify where which amount of padding might
have a positive impact on runtime performance. Moreover, explicit array padding
increases program complexity and makes programs less readable and more error-
prone. Last but not least, array padding renders program specifications machine-
dependent because each combination of problem size, access pattern, and cache
configuration typically requires a different amount of padding.

In contrast, array padding as a compiler optimization may be well-suited
to achieve more consistent performance over a wide range of problem sizes and
cache configurations. However, things are not as simple in low-level languages
such as C or Fortran. Since these languages’ semantics guarantee a certain
(unpadded) data layout, thorough program analysis is required in order to prove
that padding does not alter the meaning of a program. Here, the design of
high-level languages like Sac pays off. Since they completely abstract from any
concrete data layout, language implementations are free to exploit the benefits
of varying data layouts as an additional optimization technique.

3 Array Access Analysis

Accurate analysis of array access patterns is one of the prerequisites for reasoning
about cache conflicts. Severe cache conflicts typically arise from regular array
references within loops, i.e., two or more references systematically conflict with
each other in every iteration of the loop. Therefore, the analysis described in
this section focusses on regular array references in with-loops. The with-loop
is a Sac-specific language construct for the specification of aggregate multi-
dimensional array operations; a thorough description may, for instance, be found
in [7]. An array reference is considered being regular if and only if it can be
written in the form

val = Array [ s ∗ i + d ] ;

where s denotes a constant stride vector, d a constant offset vector, and i the
with-loop’s index variable. Note that * here denotes the element-wise product of
two vectors. In other words, locations of regular array references are defined by
dimension-wise affine functions of the with-loop’s index variable. Figure 3 shows
an example with-loop featuring a few different regular array references. All
array references that cannot be converted to this affine pattern, are considered
irregular. They are likely not to conflict in a systematic way with other references,
irregular or regular. Therefore, they are just ignored in the sequel.

All array references in the example shown in Fig. 3 are regular with respect
to the above definition. This can be inferred during a rather simple bottom-up
traversal of the with-loop body. Compact array access information is accumu-
lated, as outlined in Fig. 4. The array access pattern AP is a set of triples;
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int[100,100] A;
int[200,150] B;
int[120,120] C;
...
A = with ([1,1] <= iv < [100,100])

{
a = B[ iv - 1];
b = C[ iv];
c = B[ iv + 2];
d = C[ [42, 42]];
e = B[ [2, 1] * iv];
tmp = iv + [1, 1];
f = B[ [2, 1] * tmp];
val = a + b + c + d + e + f;

}
genarray([100,100], val);

Fig. 3. Examples of regular array references in a with-loop

AP = { < B, [ 1, 1], [-1,-1] > ,
< C, [ 1, 1], [ 0, 0] > ,
< B, [ 1, 1], [ 2, 2] > ,
< C, [ 0, 0], [42,42] > ,
< B, [ 2, 1], [ 0, 0] > ,
< B, [ 2, 1], [ 2, 1] > }

Fig. 4. Array access pattern derived from example with-loop in Fig. 3

each triple represents exactly one regular array reference found in the with-
loop body. The access triples themselves consist of the name of the referenced
array, the stride vector s and the offset vector d.

As already pointed out, the technique presented in this paper focusses on self-
interference cache conflicts, i.e. conflicts between references to the same array.
References to different arrays, although occurring in a single with-loop, may be
handled separately. Furthermore, only array references which are characterized
by identical stride vectors s may actually interfere with each other in a systematic
and, hence, expensive manner. These considerations lead to the division of an
access pattern into disjoint so-called conflict groups. Each conflict group then
contains exactly one subset of array references which are likely to systematically
interfere with each other.

The example access pattern AP in Fig. 4 results in the introduction of four
conflict groups, as outlined in Fig. 5. Each conflict group is represented by a pair
consisting of the type of the referenced array and a sequence of offset vectors. The
stride vectors are no longer needed. Whether or not two references of the same
conflict group cause a cache conflict solely depends on their relative distance in
memory, which is invariant against their strides. Last but not least, no cache
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CG1 = < int[200,150] , < [-1,-1], [ 2, 2] > >
CG2 = < int[120,120] , < [ 0, 0] > >
CG3 = < int[120,120] , < [42,42] > >
CG4 = < int[200,150] , < [ 0, 0], [ 2, 1] > >

Fig. 5. Conflict groups derived from access pattern AP in Fig. 4

conflicts may occur in conflict groups consisting of a single array reference only.
As a consequence, all such conflict groups, e.g. CG2 and CG3 in Fig. 5, are simply
ignored. The number of conflict groups can further be reduced by the elimination
of multiple occurrences of identical ones and of those that are subsets of others.

4 Padding Inference Heuristic

This section presents the central padding inference algorithm. It associates each
array type occurring in a Sac program or module with a padding recommenda-
tion appropriate for avoiding spatial and temporal self-interference cache con-
flicts. The basic idea is to pad all arrays of a given type (consisting of base type
and shape) in a uniform way if at all. This helps to avoid costly transforma-
tions between unpadded and padded or even differently padded representations
of arrays which originally had identical types and, hence, data layouts. Such
transformations are limited to module boundaries, providing programmers with
some means of control over array padding.

In addition to the conflict groups implicitly derived from Sac code, as de-
scribed in Section 3, the inference scheme presented here is based on the specifi-
cation of a cache configuration, which must explicitly be stated at compile time.
It consists of the cache size and the cache line size, both in bytes, as well as the
cache’s set associativity. Furthermore, an upper limit must be set on memory
consumption overhead caused by array padding.

When focussing on a single array type, which consists of a scalar base type
and an original shape SHP , we may easily compute the cache size CS and the
cache line size CLS in array elements. These figures, rather than the external
specifications in bytes, are used by the inference scheme. Moreover, we com-
pute the number of cache sets, NSET := CS/(CLS ∗ CA) where CA denotes
the cache’s set associativity. With this internal cache specification at hand, all
conflict groups associated with the array type under consideration are then suc-
cessively analysed with respect to potential cache conflicts. Padding recommen-
dations are accumulated in a vector PAD, which is initially set to 0, i.e., we
start out with recommending no padding at all.

First, spatial reuse conflicts are addressed. Let us consider a conflict group
CG representing array references R1, . . . , Rn. For each reference Ri, the offset
vector Di is converted into a scalar offset with respect to the array shape SHP
extended by the padding vector PAD recommended so far:

∀ i ∈ {1, . . . , n} : OFFSETi := ADDR( Di , SHP + PAD) ,



238 Clemens Grelck

where ADDR(vec, shp) is a function that computes the offset of vec in the row-
major unrolling of an array with shape shp, i.e.

ADDR(vec, shp) :=
|shp|∑

k=0

(veck ∗
|shp|∏

m=k+1

shpm) .

For reasons of simplicity it is desirable to avoid negative offsets. Since our interest
is also limited to relative distances of cache locations, computed offsets can easily
be shifted by a constant value. The easiest way to avoid negative offsets is to
generally arrange the elements of a conflict group in ascending lexicographical
order with respect to their offset vectors, and to subtract OFFSET0 from each
scalar offset, i.e.

∀ i ∈ {1, . . . , n} : OFFSETi := OFFSETi − OFFSET0 .

With the shifted offsets at hand, we now determine the respective cache sets

∀ i ∈ {1, . . . , n} : SETi := (OFFSETi/CLS) mod NSET .

For each reference Ri, we compute the number NPSCi of potential spatial reuse
conflicts with other references. Two references Ri and Rj potentially conflict with
each other if and only if

((|SETi − SETj | < 2 ∨ (|SETi − SETj | = NSET − 1))

∧ (|OFFSETi − OFFSETj | > 2 ∗ CLS) ,

i.e., they reference non-adjacent memory addresses which are mapped to identical
or directly adjacent cache sets. The latter serves as an additional buffer that
allows to completely abstract from relative placements of references within cache
lines. In a direct-mapped cache (CA = 1), any potential conflict actually is a real
conflict. However, in general, a conflict occurs whenever the number of potential
conflicts equals or exceeds the cache’s set associativity CA, i.e., the number of
spatial reuse conflicts associated with each array reference is defined as

∀ i ∈ {1, . . . , n} : NSCi := max(0, NPSCi − CA + 1) ;

the total number of spatial reuse conflicts within the conflict group is defined as

NSC :=
n∑

i=0

NSCi .

If there are no conflicts, i.e., NSC = 0, we are done and PAD is the rec-
ommended padding for this conflict group with respect to spatial reuse. If the
number of conflicts is reduced relative to the best padding found so far, the
current padding and the number of spatial reuse conflicts associated with it are
stored as new currently best solution. As long as there are still conflicts, we try
to solve them with additional padding, i.e., the padding vector PAD is to be up-
dated. For this purpose, we first identify dimensions that are eligible for padding.
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Assigning the index 0 to the outermost dimension and counting upwards, the
minimum padding dimension is determined as MINPADDIM := d + 1, where
d is the outermost dimension with Di[d] �= Dj [d] for any pair of conflicting ar-
ray references Ri and Rj . The maximum padding dimension is simply chosen
as MAXPADDIM := |SHP | − 1. Among all eligible dimensions the outermost
one is chosen, where (SHP + PAD)[d] is maximal. This choice of PADDIM
guarantees that padding overhead grows in minimal steps. Padding is preferably
applied to outer dimensions in order to reduce the negative impact of the loop
overhead introduced by it.

The padding vector PAD is incremented by 1 in dimension PADDIM and,
assuming this additional padding does not exceed the given limit on mem-
ory consumption overhead, the cache behaviour is re-evaluated with this new
padding vector as described so far. Otherwise, SHP is reset to 0 in dimen-
sion MINPADDIM and, provided that MINPADDIM ¡ MAXPADDIM ,
padding in the next dimension is increased by 1. The entire process is repeated
until either all spatial reuse conflicts are eliminated or all padding vectors eligible
with respect to the memory consumption overhead limit have been investigated.
In the latter case, the best padding found during the process is stored as recom-
mended padding.

With spatial reuse conflicts eliminated as far as possible, we may now focus
on temporal reuse conflicts. As a first step, we determine for each reference Ri

if there is a chance for temporal reuse from reference Ri+1 in the presence of
simple cache capacity constraints. This is the case if and only if

OFFSETi+1 − OFFSETi < (NSET − 2) ∗ CLS .

Note here that all references are sorted with increasing offsets. For each pair
of adjacent references Ri and Ri+1 which may benefit from temporal reuse, we
then compute the number of potential temporal reuse conflicts NPTC. An array
reference Rj , j �= i ∧ j �= i + 1 represents a potential temporal reuse conflict if
it is mapped to a cache set ”in between“ those associated with Ri and Ri+1, i.e.

(SETi ≤ SETj) ∧ (SETj ≤ SETi+1) ⇐⇒ SETi ≤ SETi+1 ,

(SETi ≤ SETj) ∨ (SETj ≤ SETi+1) ⇐⇒ SETi > SETi+1 .

In analogy to spatial reuse conflicts, the term ”potential“ is to be understood
with respect to set associativity, i.e., the number of actual temporal reuse con-
flicts NTC is defined as

∀ i ∈ {1, . . . , n} : NTCi := max(0, NPTCi − CA + 1)

for each reference and in total as

NTC :=
n∑

i=0

NTCi .

Whenever the current padding fails to eliminate all temporal reuse conflicts,
a new padding vector candidate is determined in a similar way as for resolving
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spatial reuse conflicts. However, eligible padding dimensions are restricted in
a slightly different way. The minimum eligible padding dimension is defined
as MINPADDIM := d + 1, where d denotes the outermost dimension with
Di[d] �= Dj [d] �= Di+1[d] for any triple of conflicting array references Ri, Rj , and
Ri+1. The maximum eligible padding dimension MAXPADDIM is given as
the outermost dimension d where Di[d] �= Di+1[d] holds for the same references
Ri and Ri+1 as above. The basic idea behind these choices for MINPADDIM
and MAXPADDIM is to select a padding dimension which, on the one hand, is
sufficiently large so that the relative cache locations of adjacent references with
potential temporal reuse remain untouched, but, on the other hand, is sufficiently
small, so that padding actually alters the relative cache locations between these
adjacent references and the conflicting reference in between.

In contrast to the choice of a padding dimension for the elimination of spatial
reuse conflicts, an eligible padding dimension to avoid temporal reuse conflicts
not necessarily exists. In this case, array padding does not resolve this conflict,
and the inference heuristic stops at this point. Otherwise, a new padding vector
candidate is chosen exactly as in the context of solving spatial reuse conflicts and
temporal reuse conflicts are re-evaluated iteratively until either all are eliminated
or the padding overhead constraint is exhausted.

An alternative implementation different from the above inference heuristic is
to evaluate all potential padding vectors eligible with respect to the given con-
straint on additional memory consumption. For each such padding vector, the
number of spatial and temporal reuse conflicts as well as the associated over-
head are computed. Afterwards, the padding vector which causes the minimal
number of conflicts is selected. If there are several equally suitable padding vec-
tors, the one which causes the least overhead is chosen. If there are still multiple
candidates, the one which incurs the least padding in inner dimensions is taken
eventually. While this alternative implementation is guaranteed to find the most
suitable padding with respect to the number of cache conflicts, memory con-
sumption overhead, and loop overhead, it generally requires considerably more
computational effort. However, since this effort is made at compile time rather
than at runtime, it may be tolerable in many situations.

5 Padding Transformation

The padding inference algorithm described in the previous section results in
the definition of a function PadT ype, which for each array type found in the
program or module under consideration yields the recommended padded type.
Types for which a manipulation of the internal data layout is not recommended
are simply returned by PadT ype as they are. This section focusses on the actual
realization of the padding recommendation, which in the sequel will be formalized
by means of a transformation scheme APT . It defines a high-level source-to-
source transformation on simplified and type-annotated intermediate Sac code.
The former means that nested expressions are lifted to separate assignments to
temporary variables; the latter provides a function T ype, which associates each
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APT [[ rettypes fun ( args ) { vardecs instrs } Rest ]]
=⇒ APT [[ rettypes ]] fun ( APT [[ args ]] ) {

RepArgs[[ args ]] APT [[ vardecs ]]
APT [[ instrs ]]

} APT [[ Rest ]]

APT [[ type , Rest ]]
=⇒ PadT ype[[ type ]] , APT [[ Rest ]]

APT [[ type argname , Rest ]]
=⇒ PadT ype[[ type ]] argname , APT [[ Rest ]]

RepArgs[[ type argname , Rest ]]
=⇒ type argname ; RepArgs[[ Rest ]] — T oBePadded[[ type ]]
=⇒ RepArgs[[ Rest ]] — otherwise

APT [[ type varname ; Rest ]]
=⇒ PadT ype[[ type ]] varname ;

type varname ; APT [[ Rest ]]
— T oBePadded[[ type ]]

=⇒ type varname ; APT [[ Rest ]] — otherwise

Fig. 6. Transformation scheme APT on function definitions

variable with a Sac data type. The transformation scheme APT is based on two
additional auxiliary functions: Shape[[ type ]] yields the shape part of an array
data type type as a vector, and T oBePadded[[ type ]] decides whether or not a
padding is recommended for a given type, i.e.

T oBePadded[[ type ]] := PadT ype[[ type ]] �= type .
Figure 6 shows the effect of the compilation scheme APT on function defini-

tions. The formal parameters of a function are traversed, and whenever padding
is recommended for a return or argument type, the original type specification is
replaced by the respective padded type. A similar transformation is applied to
the local variable declarations. As already pointed out in Section 4, the trans-
formation of a padded array into its unpadded representation is necessary in
certain situations, e.g. at module boundaries. Since we do not have any a priori
knowledge as to whether or not such a transformation will actually be required,
additional variable declarations are introduced for each padded original local
variable1. The same is done for padded formal parameters by means of the aux-
iliary compilation scheme RepArgs.

The effect of APT on applications of user-defined and of built-in functions
is defined in Fig. 7. Whereas nothing is to be done in the case of locally defined
functions, the application of an imported function may require a change in the
representations of argument as well as of result arrays. This is described by the
three auxiliary compilation schemes Rename, Pad, and UnPad defined in Fig. 8.

1 Superfluous variable declarations are eliminated by subsequent optimization steps.
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APT [[ vars = fun ( args ); Rest ]]
=⇒ vars = fun ( args ); APT [[ Rest ]]

APT [[ vars = module:fun ( args ); Rest ]]
=⇒ UnPad[[ args ]]

Rename[[ vars ]] = module:fun ( Rename[[ args ]] );
Pad[[ vars ]] APT [[ Rest ]]

APT [[ var = dim( array ); Rest ]]
=⇒ var = dim( array ); APT [[ Rest ]]

APT [[ var = shape( array ); Rest ]]
=⇒ var = Shape[[ T ype[[ array ]] ]] ;

APT [[ Rest ]]
— T oBePadded[[ T ype[[ array ]] ]]

=⇒ var = shape( array ); APT [[ Rest
]]

— otherwise

APT [[ var = psi( array , vec ); Rest ]]
=⇒ var = psi( array , vec ); APT [[ Rest ]]

APT [[ var = modarray( array , vec , val ); Rest ]]
=⇒ var = modarray( array , vec , val ); APT [[ Rest ]]

APT [[ var = reshape( vec , array ); Rest ]]
=⇒ UnPad[[ array ]]

Rename[[ var ]] = reshape( vec , Rename[[ array ]] );
Pad[[ var ]] APT [[ Rest ]]

Fig. 7. Transformation scheme APT on function applications

Rename[[ var , Rest ]]
=⇒ var , Rename[[ Rest ]] — T oBePadded[[ T ype[[ var ]] ]]
=⇒ var , Rename[[ Rest ]] — otherwise

Rename[[ const , Rest ]]
=⇒ const , Rename[[ Rest ]]

Pad[[ var , Rest ]]
=⇒ var = Pad( var ); Pad[[ Rest ]] — T oBePadded[[ T ype[[ var ]] ]]
=⇒ Pad[[ Rest ]] — otherwise

UnPad[[ var , Rest ]]
=⇒ var = UnPad( var ); Pad[[ Rest ]] — T oBePadded[[ T ype[[ var ]] ]]
=⇒ Pad[[ Rest ]] — otherwise

UnPad[[ const , Rest ]]
=⇒ Pad[[ Rest ]]

Fig. 8. Auxiliary schemes Rename, Pad, and UnPad



Improving Cache Effectiveness in SAC 243

Sac supports only a very limited number of built-in operations on arrays. For
instance, dim and shape retrieve an array’s dimensionality and shape, respec-
tively. Since padding has no effect on dimensionality, any application of dim may
simply remain as it is. In contrast, an application of shape must be replaced by
the shape corresponding to the original type of the argument array. The function
psi selects the element of array specified by the index vector vec. The offset in
memory specified by vec is computed using the function ADDR(vec, shp) de-
fined in Section 4. However, this function also computes the correct offset of
an array element in a padded array representation when providing the padded
shape as second argument. Hence, no code transformation is required for the se-
lection of elements regardless of whether or not an array is padded. The built-in
function modarray yields an array that is identical to its first argument except
for the element denoted by the second argument, which is replaced by the third
argument. Since T ype[[ var ]] = T ype[[ array ]] and hence

PadT ype[[ T ype[[ var ]] ]] = PadT ype[[ T ype[[ array ]] ]] ,

modarray can be applied to padded arrays without additional measures. The last
remaining built-in function is reshape, which creates an array that consists of
the same elements as the argument array, but is associated with the new shape
defined by the argument vec. Applications of reshape are restricted to argu-
ments where the given array’s original shape and the new shape are compatible,
i.e., they refer to arrays with the same number of elements. However, as soon as
one of the two shapes is padded, this restriction is violated. Even if both shapes
are padded, it is rather unlikely that the padded shapes comply with the com-
patibility restriction. As a way out, both the argument array as well as the result
array have to be converted between padded and unpadded representations.

The transformation of an array from a padded into an unpadded representa-
tion or vice versa is subject to the three auxiliary compilation schemes Rename,
Pad, and UnPad defined in Fig. 8. Whenever a padded array is encountered
where an unpadded representation is required, it is transformed by means of a
predefined generic function UnPad. In a similar way, arrays which are created in
an unpadded representation for some reason, but whose types are recommended
to be padded according to PadT ype, are transformed into the corresponding
padded representation using the predefined generic function Pad.

Aggregate array operations are defined in one way or another by means of
with-loops in Sac itself. The effect of the compilation scheme APT on with-
loops is described in Fig. 9. Apart from recursively applying APT to the in-
structions within the body of a with-loop, only a single code transformation is
actually required. The expression that defines the shape of the result array in a
genarray-With-loop is replaced by the corresponding padded shape.

Assuming a generator depends in one way or another on the shape of a
padded array, all applications of the built-in function shape would have been
abstracted out of the generator itself. These applications are then replaced by
the original shapes of the arrays they refer to (see Fig. 7). As a consequence,
array padding does not alter the generators of with-loops in any way. Should
padding apply to the result array of a genarray-With-loop or modarray-With-
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APT [[ var = with ( generator ) { instrs } genarray( shp , val ); Rest ]]
=⇒ var = with ( generator ) { APT [[ instrs ]] }

genarray( Shape[[ T ype[[ var ]] ]] , val ); APT [[ Rest ]]

APT [[ var = with ( generator ) { instrs } modarray( old , iv , val ); Rest ]]
=⇒ var = with ( generator ) { APT [[ instrs ]] }

modarray( old , iv , val ); APT [[ Rest ]]

APT [[ var = with ( generator ) { instrs } fold( fun , neutral , val ); Rest ]]
=⇒ var = with ( generator ) { APT [[ instrs ]] }

fold( fun , neutral , val ); APT [[ Rest ]]

Fig. 9. Transformation scheme APT on with-loops

loop, the additional dummy elements are automatically initialized according to
the default rule of the with-loop without any additional measures required.

While the padding transformation of with-loops, as outlined in Fig. 9, is
simple and elegant on a conceptual level, it unfortunately introduces superfluous
and avoidable runtime overhead. Initializing dummy array elements according
to the with-loop’s default rule leads to additional memory accesses that, by
definition, do not contribute to the program result. This observation gives way
to an additional optimization which distinguishes between dummy and regular
array elements in the intermediate representation of with-loops. The internal
format of multi-generator with-loops, as described in [7], provides a suitable
framework for this purpose.

6 Performance Evaluation

Figure 10 shows the effect of applying the array padding optimization outlined in
Sections 3, 4, and 5 to the PDE1 benchmark. Given the same problem sizes as in
the initial investigations described in Section 2 and the upper limit on memory
consumption overhead set to 10%, the padding inference heuristic decides to
pad 25 out of the total of 33 problem sizes under consideration. In 16 cases,
it recommends a padding of [0,1,0] (323, 963, 1603, 2243, 2723, 2883, 3043,
3363, 3683, 4003, 4163, 4323, 4643, 4803, 4963, 5283) and in 7 cases a padding
of [0,2,0] (643, 1283, 1923, 2563, 3203, 3843, 4483). For the problem size 3523

a padding of [0,22,0] and for 5123 a padding of [0,5,1] is chosen. Figure 10
shows the effect of array padding on the simulated cache performance of the
PDE1 benchmark. In fact, array padding succeeds in keeping the L1 cache hit
rate on a consistently high level between 84% and 88% across all problem sizes.
It also manages to avoid the sharp drops in the overall cache hit rate, which can
be observed for the problem sizes 2563 and 5123 in the original figures.

Figure 11 shows the effect of array padding on the runtime performance of
the PDE1 benchmark. First of all, it can be observed that for none of the prob-
lem sizes the padding heuristic yields a performance degradation. In contrast,
improvements can be observed whenever the padding transformation actually is
applied, some of them being quite considerable. In particular, for the problem
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sizes 643, 2563, and 5123 the average time needed to re-compute a single grid
element can be reduced by 53%, 64%, and 63%, respectively. Also, the variance
in runtimes is significantly decreased. With array padding consistent runtimes
are achieved over the whole range of problem sizes investigated.

7 Related Work

In most functional programming languages, lists rather than arrays are the pre-
dominantly used data structure. The most prominent exception is the language
Sisal. However, Sisal represents arrays as vectors of vectors rather than as con-
tiguous data, and this storage format renders optimizations like array padding
obsolete. So, we are not aware of any similar optimization technique in the area
of functional languages.

In high-performance computing based on imperative languages, still predom-
inantly Fortran, data locality has long been identified as an important issue
[23]. Much research has been focussed on program transformations that reorder
the sequence in which single iterations within a nesting of loops are actually
executed [5,19,12]. Loop transformations such as permutation, reversal, or in-
terchange, are used to adjust the iteration order to a given array data layout
in order to achieve unit stride memory accesses in inner loops and, hence, to
exploit spatial locality. Loop tiling, also called loop blocking, is a combination
of loop skewing and subsequent loop permutation. It seeks to improve temporal
locality in loop nestings by reducing the iteration distance between subsequent
accesses to the same array element [10,4,18]. Moreover, loop fusion allows to
exploit locality of reference across multiple adjacent loop nestings [11].

Often, superior cache performance can be achieved if both the iteration order
as well as the memory layout are subject to compiler transformations. Examples
are the combination of array transposition with loop permutation [3] or that of
array padding with tiling in order to increase tile sizes and, thus, to reduce the
additional loop overhead inflicted by tiled code [15]. Whereas these approaches
mostly focus on capacity misses, conflict misses due to limited set associativity
have been identified as another important source of performance degradation
[22]. Their quantification has been achieved by so-called cache miss equations,
i.e. linear Diophantine equations, that specify the cache line to which an array
reference in a loop will be mapped [6]. Due to the complexity and expense of such
accurate investigations, simpler heuristics that address both self-interference as
well as cross-interference cache conflicts in Fortran loop nestings, have been
proposed recently [16,17].

8 Conclusion

This paper presents an algorithm that successfully eliminates spatial and tem-
poral reuse conflicts in Sac programs by implicitly adjusting array data layouts
to access patterns and cache configurations. Cache simulation as well as runtime
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performance investigations on the PDE1 benchmark show that this optimiza-
tion technique allows for substantial reductions in program runtimes for certain
problem sizes and, moreover, achieves a decidedly more consistent runtime per-
formance over a wide range of problem sizes.
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