Coloured Ant System and Local Search to
Design Local Telecommunication Networks

Roberto Cordone® and Francesco Maffioli?

Y DEI - Politecnico di Milano
(cordone@fusberta.elet.polimi.it)
2 DEI - Politecnico di Milano
(maffioli@elet.polimi.it)

Abstract. This work combines local search with a variant of the Ant
System metaheuristic recently proposed for partitioning problems with
cardinality constraints. The Coloured Ant System replaces the classical
concept of trail with p trails of different “colours”, representing the as-
signment of an element to one of the classes in the partition. We apply
the method with promising results to the design of local telecommunica-
tion networks. The combination of the Coloured Ant System with local
search yields much better results than the two approaches alone.

1 Introduction

The design of local telecommunication networks (e. g. cable television companies
providing internet access [16]) often requires to link demand nodes to a wide area
network through a number of concentrator devices taking over the traffic flow.
The demand nodes form tree-shaped subnetworks, as a higher connectivity is
unjustified at this level. We model the situation as a Weight Constrained Graph
Tree Partition Problem (WC-GTPP). Let G (V, E) be an undirected graph of
n vertices and m edges. Given a cost function ¢ : E — IN on the edges of G
and a weight function w : V' — IN on its vertices, determine a spanning forest
F(V,X) of p trees T, (U, X,), such that the weight of each tree belongs to a
given interval [W~; W] and the cost of F' is minimum.

This paper adapts the Ant System to the WC-GTPP and combines it to
local search. As the purpose is to partition the vertices into p clusters, the ants
release trails of p different colours, instead of a single undifferentiated trail.
Hence the name of Coloured Ant System (CAS) [5]. The algorithm relaxes the
weight bound, penalizing its violations with a factor tuned by feedback. The CAS
interacts with Swinging Forest, a local search procedure moving vertices from
tree to tree. Once in a local optimum, the procedure splits trees to create slack
capacity and removes them, alternatively. At each iteration, the C'AS submits
the best current solution to local search before updating the trails. The two
approaches take advantage of each other: the CAS provides a smart initialization
to local search; local search provides a smart trail update to the CAS.

Sect. 2 briefly surveys the literature on local network design problems, and
gives some references on the Ant System and its variants. Sect. 3 describes the

CAS algorithm. Sect. 4 describes Swinging Forest and its interactions with the
CAS. The last section presents some computational results.

2 Survey

The field of local telecommunication networks (servers, cable TV companies,
etc...) poses a number of practical problems in which secondary devices must
be connected to a given number of primary ones, minimizing the total connection
cost and keeping a balance between the traffic of the disjoint subnetworks. Sim-
ilar trade-offs between cost and balance occur in electric or radio broadcasting
networks, as well as in electoral districting and Cluster Analysis.

Though fairly general, the WC-GTPP is a good model for these cases. It is
strongly ANP-hard, by direct reduction from SAT, and in general not approx-
imable [6], though a (2p — 1) algorithm exists if the number of vertices in each
tree is given and the triangle inequality holds [13]. Similar problems have been
deeply studied. In the Capacitated Minimum Spanning Tree problem (CMST)
all secondary devices are linked to a single primary one, with an upper bound on
the traffic in each branch [2]. The lower weight constrained minimum spanning
forest problem bounds from below the weight of the trees and does not fix their
number. These problems are strongly NP-hard, but approximable [1, 14].

The Ant System has been first proposed for the Travelling Salesman Prob-
lem [10], spreading to other problems in Combinatorial Optimization, such as
Graph Colouring [7] and the Quadratic Assignment Problem [15]. Several vari-
ants propose effective ways to manage the trail function in run-time. In partic-
ular, the Maz-Min Ant System limits it into a given interval [18], the Anit-Q
approach updates it by reinforcement learning mechanisms [8], the Ant Colony
System approach by moving averages [9]. The probability distribution of choices
can be based on the rank of the alternatives, instead of their absolute value [4].
In the field of routing problems, the Ant System combined with local search has
brought to strong improvements upon both approaches [11].

3 Coloured Ant System

The Ant System involves a population of agents (ants), who build in parallel
greedy solutions to a problem. Their behaviour is not trivially greedy: they
partly take random choices influenced by a trail function, which is shaped by
the results of previous runs. To reformulate the natural analogy for our problem,
an agent is a caste of ants divided into p colonies. Each colony builds a hive on
a different vertex and takes possession of a connected subgraph from it. The
colony patrols a network of edges, whose cost evaluates the necessary effort, to
control the food sources located on the vertices, whose amount is measured by
the weights. The global control effort must be minimum, the amount of food
owned by each colony neither too small nor too large. Each colony marks the
vertices with a trail of a typical “colour”. Season after season, they retire into the
hives and resume colonizing the graph, driven by costs, weights and the residual

trails. To correct bad initial choices, the ants periodically resettle their hives.
Several castes operate independently on the graph: ants of different colonies can
occupy the same vertex, if they belong to different castes. However, the castes
share the p hives and the trail information.

Algorithm 1 gives an outline of the method. First, it selects p starting hives.
Then, S agents build solutions gradually annexing all of the other vertices to
the hives. Solutions violating the weight bound are admitted, but their cost is
multiplied by a penalization factor 7. As the basic choice assigns a vertex v
to a tree T), the trails are released on the vertices and their colours refer to
the trees. The algorithm updates the trail function 7., in various points, both
strengthening and weakening it. Every I, iterations, the colonies resettle. The
process ends after I,y iterations or Ty .y seconds since the beginning, or Iy est
iterations since the discovery of the best known solution.

Algorithm 1. CAS(G,c,w,W,p)
{v1,...,vp} := StartingHives(G, ¢, p); { Choose p starting hives }
Trw = To Vr,Vo { Distribute p uniform trails }

=10 =17 :=1; ¢ := 4o0;

While i < Iax and @ —i* < Iyt and ElapsedTime() < Thax do
{ Periodically resettle the hives }
If i —dro0t > Lroot then ioot :=i; v, := RootVertex(U,) Vr;

{ Build S solutions in parallel }

Ul = {v,} Vr,Vs; { The ants retire }

While 3s : (V \ UTU,(-S)) # (0 do { While unassigned vertices exist. .. }
For s:=1 to Sdo

(0,7) := BestAnnexion(G,c,w, W, p, UT(S)); { ...take a choice... }
U;SS) = U,Es) u{o}; {...performit...}
775 = (1 — p)Tr5 + pTo; { ...and deter repetitions }
EndFor
EndWhile

{ Determine the best current solution }
F := BestSolution(G, c,w, W, p, UT(S));

Trw := (1 = p)Tpp + p/ecpmp Vr,Yv € UTS); { Intensify the trails }
If cr < ¢* then ¢* := cp; 1* :=1; { Update the best known solution }
=141

EndWhile;

3.1 The Greedy Heuristic

The basic greedy heuristic derives from Prim’s algorithm for the Minimum Span-
ning Forest problem [17]: find the unassigned vertex closest to a colony and as-
sign it, repeatedly, until the solution spans the whole graph. Instead of simply

considering the edge costs, the algorithm takes into account the violations of the
weight bound and the a posteriori information given by the trails. In other words,
instead of minimizing the connection cost ¢,, between vertex v and colony r

Cryp = MmN cyy (1)
uelU,

it maximizes a request factor f,

A—. (2)

where 7., is a penalization factor and 7., is the trail function.

The heaviest tree which could be thus obtained spans the whole graph minus
its p — 1 lightest vertices. Let wy be its weight, and wy, = min,ecy w, be the
weight of the lightest tree achievable. Therefore, the penalization factor:

3)

Wt W — —
Ty = 1 + 7 max <wUT + o, w”,O)

wy—Wt T W —wy

ranges from 1 for feasible assignments to 1 4+ 7 for the most unbalanced.
At each basic step of the greedy heuristic, the algorithm chooses at random,
based on a deterministic factor q, whether to obey a

— deterministic strategy (probability q): perform the assignment with the high-
est request factor f,

— stochastic strategy (probability 1 — ¢): choose at random to assign vertex v
to T, with a probability pr, = fro/ > b_1 > ucv fsus Proportional to fr,

As ¢ increases, the algorithm favours the choices with stronger request factors.

3.2 The Penalization Factor

We assume that, most of the time, the optimal solutions are close to the frontier
of the feasible space. So, when the current S solutions are prevailingly feasible,
7 should be decreased to drive the search to the unfeasible region; when they
are unfeasible, m should be increased. If S¢ current solutions are feasible,

Tk4+1 = Tk 2(5_2&)/5 . (4)

3.3 The Trail Function

The trail function saves information from previous runs in order to repeat the
good choices and avoid the wrong ones. Its effective management can be inter-
preted in terms of the diversification and intensification principles. On one hand,
it is profitable to avoid sticking in already explored regions. On the other hand,
it is profitable to focus on the regions close to the best known solutions, since
the optimal solution is often surrounded by suboptimal ones. A correct balance
of these complementary strategies is a key issue to create an efficient heuristic.

At the beginning, the ants release a uniform small trail 79 of each colour on
each vertex, as a sort of “ground value”. While the literature derives 7y from
the cost of a heuristic solution [9], we employ the cost of the minimum spanning
forest, cysr, which usually has the same order of magnitude:

1

T0 = . 5
0= (5)

Diversifying the Trail Function. During the greedy heuristic, if an agent assigns
vertex v to colony 7, it immediately updates the corresponding trail, drawing it
closer to the ground level:

Tro = (1 - P) Tro + PTO - (6)

The other agents consider this assignment less attractive and prefer different
solutions. Equation (6) describes the “evaporation” of the trail: the oblivion
factor p tunes the strength of greediness versus memory.

Intensifying the Trail Function. At the end of the greedy heuristic, the best per-
forming agent increases the trails corresponding to its solution X. This encour-
ages to repeat its choices in the following iterations, exploring similar solutions.
The better is X , the stronger is the effect on the trail:

Try = (1 - P) Tro + 1% (7)

CxXTx

3.4 The Root Choice

The position of the roots influences remarkably the final result. At first, we
choose them so as to cover the graph uniformly. Given a seed root, the second
root is the farthest vertex in the graph, the third is the vertex with the highest
total distance from the first two, and so on. Then, alternatively, we apply the
greedy heuristic with no random choices and a uniform trail, and we move the
roots to the centroids of the trees obtained. The process ends when the roots
stabilize or begin to repeat, but it is performed n times, using each vertex as the
seed. The best root assignment overall initializes the CAS. Every I,,0¢ iterations
of the CAS, the roots move the centroids of the trees in the best known solution.

4 The Swinging Forest Procedure

Local search is based on the concept of neighbourhood, a function associating to
each feasible solution F' a subset N (F) of “neighbour solutions”. Commonly, it
is the set of solutions obtained applying a given family of manipulations (moves)
to F. Local search procedures start from a current solution, assume one of its
neighbours as the incumbent solution, and replace the former with it.
Algorithm 2 outlines the behaviour of Swinging Forest. First, the Exchange
procedure improves the starting solution F moving vertices from tree to tree, one

by one or in pairs. This neighbourhood merges two related ones: A (F) includes
the feasible forests whose vertices belong, all but one, to the same trees as in
F; N5(F) includes those whose vertices belong, all but two, to the same trees.
We adopt a steepest descent strategy, exploring the whole neighbourhood and
choosing its best solution as the incumbent. The procedure ends when no neigh-
bour solution is better than the current one. Since the weight bound severely
limits these moves, the approach is not very effective.

Then, Swinging Forest splits one tree and reoptimizes the solution on and on,
until the number of trees pr reaches pyr. The aim is to redistribute the vertices
in spite of the weight bound, thanks to the slack capacity of the new trees. Then,
the algorithm tries to remove each tree displacing its vertices into the other ones.
When it has processed all trees, Fxchange reoptimizes the solution. This phase
ends when the number of trees reaches py,. Then, the algorithm splits some trees
to retrieve p. If during a whole period the cost has decreased, a new one starts. If
it has not or it is no longer possible to obtain p trees, the algorithm terminates.
Algorithm 2. SwingingForest(G,c,w, W, p, F)

c* = oo

While prp =p and cp < ¢* do
F := Exchange(G,c,w, W, F); { Steepest descent }
If cp < c* then F := F*; c:= c*;

While pr <pu do { Increase the number of trees }
F := TreeSplitting(G, c,w, W, F);
F := Exchange(G, c,w, W, F);

EndFor;

Stop := False;
While pr > p, and Stop = False do { Reduce the number of trees }
F' := TreeRemoval(G, c,w, W, F);
If ppr=pr and cp < cp
then Stop := True; else F := Exchange(G,c,w, W, F');
EndFor;

While pr <p do { Retrieve p trees }
F := TreeSplitting(G, c,w, W, F);
F := Exchange(G, c,w, W, F);
EndFor;
If pp=p and cp < c* then F*:=F;c" :=cp;
EndWhile;
Return F*;

Vertex Exchanges. An exhaustive search in Ny (F)UN> (F) takes O (n*p*y(m, n))
time, where v(m,n) is the time to evaluate the minimum spanning forest after a
move. For the sake of efficiency, we update the spanning forest as in [12], instead
of recomputing it from scratch. Moreover, a feasible move is usually such along
a sequence of steps. Keeping a list of the best feasible moves on each couple or
triplet of trees, one can perform the best move in the list, cancel those involving
the trees modified and evaluate them again. No other move need be considered.

Tree Splitting. The number of trees in the current forest is increased by splitting
one of them in two. The algorithm removes the most expensive edge in the forest:
at least one of the resulting trees (possibly both) has a large amount of weight
slack, which makes the new neighbourhood larger.

Tree Remowval. The procedure lists the vertices of a tree, from the leaves up to
the root, as this seems the most natural way to “prune” a tree. It evaluates
all feasible transfers of the first vertex and performs the best one, if any exists.
Then, it considers the second vertex, and so on. In the end, if the tree is empty or
the solution has improved, the new solution replaces the current one. Otherwise,
the original solution is retrieved. To make the removal easier, trees are processed
in increasing cardinality order and, in case of ties, in increasing weight order.

4.1 The Coloured Ant System and Swinging Forest

Local search is effective in finding good solutions, the Ant System in managing
intensification and diversification: they can gain much from each other. Our al-
gorithm improves the best solution found at each iteration of the CAS by local
search before using it to update the trails. This provides a smarter management
of the trail, which can drive the CAS better. Conversely, the best solution found
by the CAS is a smarter starting point for Swinging Forest. To limit the com-
putational burden, instead of applying Swinging Forest at each step, we simply
explore the A7 or the N7 UN5 neighbourhood. Swinging Forest runs only in the
end, on the best solution overall.

5 Computational Results

We led an experimental campaign on the CAS and Swinging Forest, both as
stand-alone algorithms and combined. They were run on a Pentium 450 MHz
with a Linux operating system. Benchmark instances for the WC-GTPP were
not available in the literature: we built them by adapting the CMST instances of
the OR-Library [3]. For each original instance, we set two values for the number
of trees p, so as to obtain tightly and loosely constrained instances. The T'C and
TFE problems have 41 or 81 vertices, homogeneous weights and euclidean costs.
Three upper bounds limit the weight of each tree: W+ = 3, 5 and 10 for n = 41,
W+ =5, 10 and 20 for n = 81. The CM problems do not satisfy the triangle
inequality and have non uniform weights. We consider two problem sizes: n = 50
and n = 100. There are three weight upper bounds: W* = 200, 400 and 800.
Each combination of family, size, weight bound and number of trees corresponds
to b instances, which leads to a total of 180.

5.1 Parameter Settings

In our experience, the CAS always runs n times, since the maximum number
of iterations I,y is set to n, the maximum number of non improving iterations

Table 1. Results of the CAS with different parameter settings.

q=0.0 q=0.2 q=0.5

Class [p=01p=02p=03p=01p=02p=03p=01p=02p=0.3
TC40 88% 88% 86% 83% 82% 81% 84% 85% 83%
TC80 44% 44% 43% 4.0% 4.0% 3.8% 35% 35% 3.3%
TE40 | 10.5% 10.4% 10.5% 9.9% 9.9% 9.6% 9.5% 9.3% 9.6%
TES0 | 12.5% 124% 11.9% 9.1% 89% 88% 86% 79% 7.6%
CM50 | 32.4% 32.6% 31.4% 31.9% 30.4% 32.3% 31.3% 31.7% 29.9%
CM100| 41.8% 41.6% 39.8% 37.5% 37.8% 37.1% 34.9% 34.2% 34.3%
Avg. 18.4% 18.4% 17.8% 16.8% 16.5% 16.6% 16.0% 15.8% 15.5%

Iyest and the maximum time T« to infinite. The number of agents S is set to
n. The penalization coefficient is at first mg = 100, but in few steps it shifts to
the correct range, usually stabilizing on a floating behaviour rather than a fixed
value. Experience shows that a frequent update of the roots is advantageous;
80, I10ot = 1. In the end, the minimum and maximum number of trees used by
Swinging Forest are set, respectively, to p,, = |p/1.1] and pm = [p/1.1].

5.2 Experience on the CAS Parameters

Table 1 sums up our experience on the deterministic factor ¢ and the oblivion
factor p. The first column reports the problem classes, the following ones the
average gap of the solution with respect to the minimum spanning forest lower
bound. We consider three values for g: 0.0 (the choice is taken at random propor-
tionally to the request factor), 0.2 and 0.5 (half of the time the choice is random,
the other half it is greedy). As for p, we compare a longer (p = 0.1) a medium
(p = 0.2) and a shorter memory (p = 0.3). The last two settings (¢ = 0.5 and
p = 0.2 or 0.3) perform consistently better. This is confirmed by the number
of best results obtained: ¢ = 0.0 determines 39, 45 and 41 best solutions out of
180, respectively for p = 0.1, 0.2 and 0.3; ¢ = 0.2 determines 58, 61 and 63 best
solutions, ¢ = 0.5 determines 79, 78 and 116. Rather likely, when p = 0.1 the
starting solutions influence too strongly the algorithm: roughly speaking, this
influence falls under 5% after 29 diversifying updates, since (1 — p)2° ~ 0.047
(see (6)). When p = 0.2 or 0.3, the same effect requires only 14 or 9 updates.

5.3 A Comparison between Algorithms

Table 2 compares the results of the algorithms described, namely the greedy
heuristic run deterministically with an infinite penalization factor, the C'AS with
q = 0.5 and p = 0.3, Swinging Forest initialized with the five best solutions
provided by the greedy heuristic (SF(5)) and the CAS followed by Swinging
Forest applied on the best known solution (CAS + SF). Each column reports
the average gap and the execution time T in seconds. For the CAS, it also
reports the time T}t Tequired to find the best solution, in seconds. This is often

Table 2. The CAS and Swinging Forest, combined, improve upon both methods.

Greedy CAS SF(5) CAS+SF(1)
Class Gap Tiot| Gap Thest Tiot| Gap Tiot| Gap Tiot
TC40 |11.5% 0.1| 8.3% 0.6 3.1] 6.1% 14.0| 4.1% 6.1
TC80 | 4.3% 0.8 3.3% 10.5 69.4| 1.6% 116.5| 1.5% 105.3
TE/0 (11.9% 0.1| 9.6% 0.6 3.1| 6.7% 15.5| 4.2% 6.6
TES0 110.3% 0.7 7.6% 15.3 71.1| 3.7% 282.6| 3.0% 123.9
CM50 (20.0% 0.2|129.9% 2.6 7.1/116.5% 59.2| 5.5% 22.9
CM100|39.4% 3.0|34.3% 49.9 224.7|14.7% 1208.3|13.3% 477.6
Avg. [16.2% 0.8{15.5% 13.3 63.1| 8.2% 282.7| 5.3% 123.7

Table 3. The interaction between the CAS and Swinging Forest.

CAS+SF CAS(N1)+SF CAS(N2)+SF
Class Gap Tiot| Gap Tiot| Gap Tiot
TC40 4.1% 6.1 4.0% 6.2| 2.9% 42.9
TC80 | 1.5% 105.3| 1.4% 106.3| 1.0% 786.9
TE40 | 4.2% 6.6| 3.7% 6.9 2.8% 43.8
TES0 3.0% 123.9| 2.8% 127.8| 2.2% 995.6
CMb50 | 5.5% 22.9| 6.4% 21.0| 4.4% 115.2
CM100|13.3% 477.6/15.5% 461.4{10.6% 2502.9
Avg. 5.3% 123.7| 5.6% 121.6| 4.0% 747.9

much lower, since the stopping conditions are not optimized. The first three
algorithms do not dominate each other. The greedy heuristic is very fast, but
unstable: in 7 cases out of 180 it could not find a feasible solution (this explains
the seemingly better results on the CM50 class). Swinging Forest performs better
than the CAS, but in a much longer time. By contrast, their combination clearly
gives the best results in much lower time.

5.4 Interaction between CAS and Swinging Forest

Table 3 takes these remarks further, by combining the CAS and local search more
strictly. In all of the three cases, Swinging Forest runs on the best solution found
by the CAS. In the second and third one, the best solution found at each iteration
of the CAS is improved by a steepest descent exploration of, respectively, Ny
(CAS(N1)+SF) and N1 UNy (CAS(N2)+SF). Exploring N7 seems to bring no
advantage, and even some loss on the CM50 and CMI100 classes, confirming
the poor quality of this neighbourhood. By contrast, the exploration of A; UN5
remarkably improves the results, while the computational time, though much
longer, is comparable to a multiple start (column SF(5) in Table 2).

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

K. Altinkemer and B. Gavish. Heuristics with constant error guarantees for the
design of tree networks. Management Science, 32:331-341, 1988.

A. Amberg, W. Domschke, and S. Vof3. Capacitated minimum spanning trees: Algo-
rithms using intelligent search. Combinatorial Optimization: Theory and Practice,
1:9-39, 1996.

J. E. Beasley. OR-Library. http:// mscmga.ms.ic.ac.uk/ info.html, 1999.

B. Bullnheimer, R. F. Hartl, and C. Strauss. A new rank based version of the ant
system: A computational study. Central European Journal for Operations Research
and Economics, 7(1):25-38, 1999.

R. Cordone and F. Maffioli. A coloured ant system approach to graph tree partition.
In Proceedings of the ANTS’ 2000 Conference, Brussels, Belgium, September, 2000.
R. Cordone and F. Maffioli. On graph tree partition problems. In Proceedings of
EURO XVII, Budapest, Hungary, July 16-19th, 2000.

D. Costa and A. Hertz. Ants can colour graphs. Journal of Operational Research
Society, 48:295-305, 1997.

M. Dorigo and L. M. Gambardella. A study of some properties of Ant-Q. Lecture
Notes in Computer Science, 1141:656—665, 1996.

M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1):53-66, April 1997.

M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by a
colony of cooperating agents. IEEE Transactions on Systems, Man, and Cyber-
netics Part B: Cybernetics, 26(1):29-41, 1996.

L. M. Gambardella, E. Taillard, and G. Agazzi. Ant colonies for vehicle routing
problems. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimiza-
tion. McGraw—Hill, 1999.

M. Gendreau, J.-F. Larochelle, and B. Sansd. A tabu search heuristic for the
Steiner tree problem. Networks, 34(2):162-172, September 1999.

N. Guttmann-Beck and R. Hassin. Approximation algorithms for minimum tree
partition. Discrete Applied Mathematics, 87(1-3):117-137, October 1st, 1998.

C. Imieliniska, B. Kalantari, and L. Khachiyan. A greedy heuristic for a minimum
weight forest problem. Operations Research Letters, 14:65—71, September 1993.
V. Maniezzo and A. Colorni. The ant system applied to the quadratic assignment
problem. IEEFE Transactions on Knowledge and Data Engineering, 1999.

R. Patterson, E. Rolland, and H. Pirkul. A memory adaptive reasoning technique
for solving the capacitated minimum spanning tree problem. Working paper, Uni-
versity of California, Riverside, September 4th, 1998.

R. C. Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, 36:1389, 1957.

T. Stiitzle and H. Hoos. The MAX-MZIN Ant System and local search for
the traveling salesman problem. In T. Béack, Z. Michalewicz, and X. Yao, edi-
tors, Proceedings of The IEEE Conference on Evolutionary Computation, I[EEE
World Congress on Computational Intelligence, pages 309-314, Piscataway, NJ,
1997. IEEE Press.

