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Abstract. The use of bayesian networks for knowledge discovery requi-
res learning algorithms which emphasize not only the predictive power
but also the structural fidelity of the discovered networks.

Previous work on score-based methods for learning equivalence classes
of bayesian networks showed that they generally provide better results
than classical algorithms, that explore the space of bayesian networks.
However, they are considerably slower, mainly because they use more
complicated search operators and because they have to build instances
of the equivalence classes in order to check their consistency and in order
to calculate their score.

We propose here a new greedy learning algorithm that explores the space
of equivalence classes with a reduced set of operators and realizes the ve-
rification of the consistency and the computation of the score without
any need for instantiation. We show on five experimental tasks that this
algorithm is rather efficient, obtains better scores and discovers structu-
res closer to the “gold-standard” than classical greedy and tabu search
in the space of bayesian networks.

1 Introduction

Learning bayesian networks from data is one of the most ambitious approaches to
Knowledge Discovery in Databases. Unlike most other data mining techniques,
it does not focus its search on a particular kind of knowledge but aims to found
all the (probabilistic) relations which hold between the considered variables.

From a statistical viewpoint, a bayesian network efficiently encodes the joint
probability distribution of the variables describing an application domain. This
kind of knowledge allows making rational decisions involving any arbitrary subset
of these variables on the basis of the available knowledge about another arbitrary
subset of variables.

Moreover, bayesian networks may be represented in a graphical annotated
form which seems quite natural to human experts for a large variety of applica-
tions. The nodes of a bayesian network correspond to domain variables and the
edges which connect the nodes correspond to direct probabilistic relations bet-
ween these variables. Under certain assumptions [1], these relations have causal
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semantics (a directed edge A — B may be interpreted as A is a direct cause of
B), while most other data mining approaches deal exclusively with correlation.

There are two main approaches to learning bayesian networks with unknown
structure. The first one is to build the network according to the conditional
independence relations found in data (e.g., [1]). Traditionally, these methods aim
at discovering causal relations between the variables and, therefore, emphasize
the structural fidelity of the bayesian networks they learn. Unfortunately, they
suffer from the lack of reliability of high-dimensional conditional independence
tests.

The other approach to learning bayesian networks is to define an evaluation
function (or score) which accounts for the quality of candidate networks with
respect to the available data and to use some kind of search algorithm in order to
find, in a "reasonable” amount of time, a network with an ”acceptable” score (we
use the terms "reasonable” and ” acceptable” because this learning task have been
proven to be NP-hard for the evaluation functions mentioned in the following
section). These algorithms are less sensitive to the quality of the available data
and their results can be successfully used in various decision making tasks.

However, as we will see in the following section, the exploration of the space
of bayesian network structures by a greedy search algorithm may end with a
structure which fails to reveal some independence relations between the varia-
bles and, therefore, may be rather different from the true one. The space of
equivalence classes of bayesian network structures seems to be better suited for
this kind of search. Learning algorithms which explore this space have already
been proposed by some authors, as described in section Bl Unfortunately, these
algorithms are considerably slower than classical ones, mainly because they use
more complicated search operators, and because they have to build instances
of the equivalence classes in order to check their consistency and in order to
calculate their score.

Section @l introduces a new algorithm, EQ1, that explores the space of equi-
valence classes with a reduced set of operators and realizes the verification of the
consistency and the computation of the score without instantiating the equiva-
lence classes constructed during the search. The experimental results presented
in section[d confirm the fact that EQ1 is able to efficiently produce better results
than classical greedy and tabu search in the space of bayesian networks.

2 Heuristic Search in the Space of Bayesian Networks

Like in many other machine learning approaches, the quality of a bayesian net-
work with respect to the available data is evaluated on the basis of a score issued
from the information theory or from bayesian inference. Some of these scores,
like MDL [2] and BDe [3] have been proven to be asymptotically correct and
have some nice mathematical properties that can be exploited by the search
algorithms:

— the score of a bayesian network may be expressed as a sum of local scores
involving only a node and its parents;
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— the bayesian networks belonging to the same equivalence class (i.e., repre-
senting the same conditional independence relations) have the same score.

Since the unconstrained learning of bayesian networks is NP-hard, most aut-
hors propose the use of heuristic search algorithms, which explore the space of
bayesian network structures. The transformation operators are the addition, the
suppression, and the reversal of edges, submitted to the constraint that the re-
sulting network contains no cycle (on the basis of score decomposability, these
operators ensure that no more than two local scores have to be re-evaluated in
order to evaluate the resulting network). The search strategy is based on some
general-purpose method (greedy search, simulated annealing or tabu search).
Unfortunately, there are many local optima in the space of bayesian networks
and heuristic search algorithms may easily be trapped in one of them. The main
reason for this difficulty is the equality of the score of equivalent networks. We
illustrate this statement by a learning task which is very simple but nevertheless
confusing for greedy search (fig. M). In this example, we have three variables

Fig. 1. Greedy search

distributed according to the bayesian network la (which is the only instance of
its equivalence class). Let us consider that there is enough data, such as the
evaluation function we use (which is asymptotically correct) assigns the best
score to the network la, among all possible network structures.

Suppose the search starts with the totally unconnected network of fig. [Tb.
Hopefully, the search algorithm will immediately find that adding edges between
A and C and between B and C improves the score of the network. Suppose, for
instance, that the addition of an edge between A and C produces the greatest
improvement of the score. Since the structures (A - C  B) and (A < C B)
belong to the same equivalence class (as described in the next section), the
addition of the edge A — C and the addition of the edge A < C have the same
impact on score at the beginning of the search. Therefore, there is a 50 % chancdl
that the search algorithm adds the first edge in the wrong direction (A « C). If

! From our experience with publicly available software, it appears that most program-
mers seem to neglect this issue and simply apply the first best operator found. Since
the order of evaluation of edge additions generally depends on node order and pu-
blicly available networks often declare nodes in their topological order, the results of
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it does so, the direction of the edge between B and C also becomes indifferent
from the score viewpoint, as the structures (A <+ C — B) and (A + C + B)
belong to the same equivalence class. Globally, there is a 25 % chance that the
network found after the second iteration is (A <— C' — B). In this case, since A
and B become dependent when C' is known (as shown by fig. 1a), an edge will
be added between these nodes (e.g., A — B). This makes the search stop in an
incorrect state, because no further single edge reversal or removal can improve
the score. In larger networks, this kind of early wrong decisions are very probable
and their effects can cumulate and make the final network very different from
the ideal one.

3 Heuristic Search in the Space of Equivalence Classes of
Bayesian Network Structures

Bayesian networks that represent the same conditional independence relations
form an equivalence class. All bayesian networks belonging to the same equiva-
lence class have the same skeleton (undirected graph resulting from ignoring the
directionality of edges) and the same v-structures (triples of nodes A, B, C such
that A and B are not adjacent and are connected to C by the edges A — C < B
(as in fig. [Th) [4]. Note the structure of fig. [Te does not represent a v-structure
and does not contain any v-structure.

Equivalence classes are generally represented as partially directed graphs
(essential graphs, completed pdags or patterns) defined as follows:

— edges that may appear in either direction in networks belonging to the same
equivalence class are represented as undirected edges;
— the other edges are represented as directed edges.

These conditions define a unique representation for equivalence classes but do
not ensure that the equivalence classes represented this way are legal (i.e., can
be instantiated).

In order to overcome the difficulties presented in the previous section, we can
realize the search in the space of equivalence classes. Intuitively, this approach
consists in allowing the addition of undirected edges when no direction is pre-
ferred by the score. Edge orientation is delayed until the interactions between
edges make possible the choice of a direction on the basis of the score. Since the
obtained partially directed graphs may be interpreted as equivalence classes, this
solution consists in a modification of the search space: the search algorithm ex-
plores the space of equivalence classes of bayesian networks instead of the space
of bayesian networks.

This kind of solution has already been studied in [5]. The conclusion of this
work was that the search in the space of equivalence classes generally provides
better results than the search in the space of bayesian networks but, unfortuna-
tely, it is much more time consuming.

these programs on “gold-standard” benchmarks are over-optimistic. Reversing the
order of nodes declarations can lead to serious degradations of their performance.
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One of the difficulties Chickering met in his work was the evaluation of equi-
valence classes. Since available evaluation functions have been designed to score
bayesian networks (and not equivalence classes), his solution consists in the ge-
neration of an arbitrary instance of the equivalence class to be evaluated and
the evaluation of this instance according to the classical formulas. Additionally,
Chickering’s algorithm relies on this procedure in order to prevent the construc-
tion of illegal equivalence classes (without instances).

This procedure is much more time-consuming than the evaluation of a bayes-
ian network because it needs some additional time to generate an instance from
the equivalence class and because more than two local scores may have to be
evaluated in order to evaluate the generated instance. Furthermore, Chickering’s
algorithm uses a complex set of transformation operators, that produce a great
number of candidate graphs at each iteration of the search.

4 The EQ1 Algorithm

EQL1 is a learning algorithm that explores the space of equivalence classes with a
reduced set of operators and realizes the verification of the consistency and the
computation of the score without instantiating the equivalence classes construc-
ted during the search.

EQ1 greedily uses the following transformation operators:

— Operator 1 : addition of a directed edge X — Y between two nodes which
are not adjacent;

— Operator 2 : addition of a v-structure X — Y < Z between three nodes
in configuration X Y — Z, where X and Z are not adjacent (addition of a
directed edge together with the orientation of a previously undirected edge);

— Operator 3 : addition of an undirected edge X —Y between two nodes which
are not adjacent.

Since "repair” operators (edge deletions and reversals), generally used in
traditional learning algorithms, are mainly needed for correcting the errors of
edge orientation made in the early phases of the search, we decided not to use
them in EQ1.

4.1 Constraints on the Transformation Operators

As discussed earlier, not all partially directed graphs represent legal equivalence
classes. A partially directed graph G represents a legal equivalence class if and
only if it satisfies the following conditions [6]:

1. G is a chain graph (i.e., it contains no directed or partially directed cycle);

2. every chain component of G is chordal (i.e., on every undirected cycle of
length > 4 there are two non-consecutive nodes connected by an undirected
edge - a chord);
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3. the configuration A — B — C' does not occur as an induced subgraph of G;
4. every edge A — B must occur in at least one of the four configurations of
fig.[2 as an induced subgraph of G.
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a

Fig. 2. Possible configurations for directed edges

It can be easily verified that this characterization entails the following con-
straints on the transformation operators of EQ1 :

— Operator 1 : X and Y must have different sets of parents. X — Y may not
introduce any directed or partially directed cycle.

— Operator 2 : X — Y may not introduce any directed or partially directed
cycle (after the orientation of Y + 7).

— Operator 8 : X and Y must have the same (possibly empty) sets of parents.
If X —Y introduces an undirected cycle, it must also introduce an undirected
triangle.

Furthermore, the addition of a v-structure may require the orientation of
some previously undirected edges, in order to satisfy the third condition of the
above theorem. Similarly, the addition of a directed edge (e.g., C — B in fig.
Bh), or of an undirected edge (e.g., A — C in fig. @b or C — D in fig. Bd) may
request the removal of the orientation of some previously directed edges (A — B
in fig.Zh, A - B and C — B in fig. Bb, A —» B, C — B and D — B in fig.
2H) in order to satisfy the fourth condition of the theorem. The addition or the
removal of an edge orientation may have cascading effects.

Since these additions or removals of edge orientations do not have any influ-
ence on the evaluation of the transformations (presented in the next subsection),
they are implemented as post-processing operations, performed by EQ1 only for
the best found transformation, which is really applied on the current graph.

4.2 Scoring the Transformations

Since an equivalence class contains instances with the same score, we can define
the score of an equivalence class as being the score of any of its instances. In
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the following, score(G) denotes the score of the (directed or partially directed)
graph G. Remember the score of a bayesian network is decomposable on nodes.
score(X | P) denotes the score of node X with the set of nodes P as parents.
Pag(X) (“parents” of X in G) denotes the set of nodes Y such that X < Y
belongs to graph G. Brg(X,Y) (“common brothers” of X and Y in G) denotes
the set of nodes Z such that X — Z and Y — Z belong to G.

All formulas used by EQ1 for scoring the transformations can be derived
on the basis of the following argument: Let G and G’ be the partially oriented
graphs corresponding to the current equivalence class and to the transformed
equivalence class. We will see in the following paragraphs that, for all transfor-
mation operators, we can build some instances I of G and I’ of G’ such that all
nodes have the same parents in I and I’, except for a single node, Y. It follows
that the difference between the scores of G’ and G is equal to the difference
between the score of Y in I’ and the score of Y in I. All transformations can
therefore be evaluated by computing the score of a single node in two different
configurations.

First consider the addition of a directed edge X — Y (Operator 1). We can
build I such that all undirected edges adjacent to Y in G, Y — Z, are oriented
as Y — Z in I. Let I’ be the directed graph obtained by adding X — Y to I. It
can be easily verified that I’ is an in instance of G’. We have, therefore :

Ascore(G',G) = score(Y | Pag(Y),X) — score(Y | Pag(Y))

If the addition of the edge X — Y is done together with the orientation of a
previously undirected edge Y — Z, which becomes Y < Z (Operator 2), we build
I such that Y — Z is already oriented as Y < Z and all the other undirected
edges adjacent to Y in G, Y — W, are oriented as Y — W. An instance of G’,
I, can be obtained from I by adding the edge X — Y. We have, therefore :

Ascore(G',G) = score(Y | Pag(Y), Z, X) — score(Y | Pag(Y),Z)

Let us now consider the addition of an undirected edge X — Y (Operator
3). Since instances have only directed edges, I’ must be produced from I by
adding a directed edge, for instance X — Y. In order to avoid directed cycles
in I’, we have to orient all edges Y — Z, where Z is a common brother of X
and Y, as Y + Z. This will not introduce any spurious v-structure in I and I’,
because X and Y have the same parents in G and all their common brothers
are interconnected (c¢f. constraints on Operator 2). All other undirected edges
adjacent to Y in G, Y —W, are oriented as Y — W. The formula used for scoring
this transformation is, therefore:

Ascore(G',G) = score(Y | Pag(Y), Brg(X,Y), X)
—score(Y | Pag(Y), Brg(X,Y))
5 Experimental Results

In order to evaluate the performances of EQ1l, we have compared it experi-
mentally to greedy search and tabu search in the space of bayesian networks
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(GreedyBN and TabuBN). TabuBN uses a tabu list of 10 states and stops after
10 consecutive iterations without score improvement.
All algorithms use the MDL score (see [2] for more details and justification):

score(G) = Z(log(n)—i—log (|PZ1> + || Pa;]| (]| X:]| — 1)@ +NH(X;|Pa;))

i=1

where X5, -+, X,, are the nodes of G, Pa; = Pag(X;) are their sets of parents,
| Pa;| is the number of parents of X;, || X;|| is the number of values of X;, || Pa;|
is the number of different instantiations of the set of variables Pa;, N is the
number of examples and H(X;|Pa;) is the conditional entropy of X;, given Pa;.

The comparison has been realized on learning tasks involving five publicly
available bayesian networks of various sizes: Cancer (5 nodes, 5 edges), Asia (8
nodes, 8 edges), CarStarts (18 nodes, 17 edges), Alarm (37 nodes, 46 edges),
Huailfinder (56 nodes, 66 edges).

In order to improve the statistical significance of the experimental results,
we have compared the algorithms on thirty different data sets for each net-
work (1,000 examples for the small networks Cancer and Asia, and 10,000 for
the others, generated according to the probability distributions modeled by the
networks).

The first criterion we have evaluated is the score. Tables [I] and 2] present:

— the network used to generate the examples;

— the means of the score of the compared algorithmﬂ;

— the number of data sets on which the first algorithm obtained a score inferior,
equal or superior to the score of the second one (the MDL score has to be
minimized);

— the probability p that the means of the score of the two algorithms are equal
(paired t-test);

— the algorithm which obtained the better mean of the score, if p < 0.01.

Table 1. GreedyBN vs. EQ1

HNetwork HGreedyBN[ EQ1[<[ :[ >[ D [Best“
Cancer 3266.29| 3261.57| 0/15(15|1.12E-05|EQ1
Asia 3343.20| 3335.82| 0(14(16|2.06E-04|EQ1
CarStarts 33563.80| 33517.19| 0| 4(26|2.69E-07|EQ1
Alarm 139719.52|139198.80| 5| 0|25/2.76E-06| EQ1
Hailfinder || 720712.31{720038.42| 0| 0|30({3.07E-11|EQ1

2 Since this work deals exclusively with the optimization of evaluation functions pro-
posed elsewhere, only the scores obtained on train sets are reported. Nevertheless,
we have also evaluated the scores on independent test sets and observed the same
patterns of relative behavior of the algorithms as those reported in tables [l and Bl



104 P. Munteanu and D. Cau

Table 2. TabuBN vs. EQ1

HNetwork H TabuBN[ EQ1[<[ :‘ >[ P [Best“
Cancer 3262.61| 3261.57| 0|27| 3|8.32E-02
Asia 3336.69| 3335.82| 1{24| 5|1.05E-01
CarStarts || 33553.79| 33517.19| 0|11{19|1.32E-05|EQ1
Alarm 139558.87|139198.80| 6| 0|24|2.72E-04|EQ1
Hailfinder ||720383.23|720038.42| 4| 2(24/9.94E-06| EQ1

These results clearly show that EQ1 is statistically more successful than
GreedyBN, and overpasses even TabuBN on non-trivial tasks.

The differences between scores do not seem very important but they represent
different local optima that may correspond to rather different structures. In order
to appreciate the fidelity of the discovered structures, we have compared them
with the networks used for generating the data sets (“gold-standards”).

Table [3 present these comparisons on the basis of:

— the number of edges of the skeleton of the learned network that do not exist
in the skeleton of the “gold-standard” (A+);

— the number of edges of the skeleton of the “gold-standard” that do not exist
in the skeleton of the learned network (A-);

— the number of v-structures of the learned network that do not exist in the
“gold-standard” (VS+);

— the number of v-structures of the “gold-standard” that do not exist in the
skeleton of the learned network (VS-);

In order to make easier the interpretation of this table, the best results for
each of these criteria are presented in bold face.

Table 3. Structural differences

GreedyBN TabuBN EQ1
Network || A4+] A-[VS+[ VS-| A+] A-[VS+|VS-|| A+] A-[ VS4+[Vs-
Cancer  [[0.40] 0.50[ 0.50[0.00][ 0.40] 0.10] 0.10[0.03[[ 0.40[ 0.00[ 0.00]0.03

Asia 1.50| 0.83| 0.80| 0.43|| 1.40| 0.47| 0.27|0.27|| 1.23| 0.23| 0.17|0.17
CarStarts || 3.40| 2.80/10.27| 1.67|| 3.40| 1.97| 9.10|1.57|| 2.90| 0.10| 7.33|0.00
Alarm 2.73/14.10|17.60| 5.43| 2.67|12.53|15.83|5.00|| 2.07| 4.13| 5.90|1.27

Hailfinder |121.90|25.73|23.70| 5.33(|21.70|20.87|19.03|5.30(|20.83|17.23(16.37|4.60

Once again, EQ1 is clearly more successful than the other two algorithms,
notably on the Alarm network.

The last table present the comparison of the average execution times of the
three algorithms. They are all programmed in Java, using the same base classes,
the same methods for computing scores and the same caching schemas. The
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Table 4. Execution times

“Network “Greedy[ Tabu[ EQlH

Cancer 1.21 1.27( 0.96
Asia 2.32 2.81| 2.15
CarStarts 53.48| 62.29] 64.25
Alarm 319.55| 496.47|364.80
Hailfinder || 695.00{1490.02|811.84

tabu list of TabuBN is implemented as a hash table. The comparison has been
realized on a PIII 500Mhz CPU. The results are given in seconds.

The execution times of EQ1 are comparable to those of GreedyBN and glo-
bally smaller than those of TabuBN. These results are very contrasting with
those reported by Chickering [5] (his equivalence class learning algorithm was
10 to 20 times slower than greedy search in the space of bayesian networks).

6 Conclusion

The main result presented in this paper is that the efficiency of the search in the
space of equivalence classes of bayesian networks can be considerably improved if
the verification of the consistency and the computation of the score of candidate
structures can be made locally, without instantiation.

This paper also confirm the interest of exploring the space of equivalence
classes, even with a reduced set of transformation operators, both from the
viewpoint of the score and of the structural fidelity of the learned networks.
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