
Quantifying the Resilience of Inductive

Classi�cation Algorithms

Melanie Hilario and Alexandros Kalousis

CSD - University of Geneva, CH-1211 Geneva 4, Switzerland

hilariojkalousis@cui.unige.ch

Abstract. Selecting the most appropriate learning algorithm for a given

task has become a crucial research issue since the advent of multi-paradigm

data mining tool suites. To address this issue, researchers have tried to

extract dataset characteristics which might provide clues as to the most

appropriate learning algorithm. We propose to extend this research by

extracting inducer pro�les, i.e., sets of metalevel features which charac-

terize learning algorithms fromthepoin t of view of their representation

and functionality, e�ciency, practicality, and resilience. Values for these

features can be determined on the basis of author speci�cations, expert

consensus or previous case studies. However, there is a need to char-

acterize learning algorithms in more quantitative terms on the basis of

extensive, controlled experiments. This paper illustrates the proposed

approach and reports empirical �ndings on one resilience-related char-

acteristic of learning algorithms for classi�cation, namely their tolerance

to irrelevant variables in training data.

1 Background and motivation

It is by now a matter of consensus that there are no universally superior models
and methods for induction; the no-free-lunch theorems [19] and the conserva-
tion law of generalization performance [18] express basically the same thing, i.e.,
that no learning algorithm can systematically outperform others across the en-
tire range of application tasks. The key question then is not whether a learning
method is superior to others, but under which conditions a particular method
can signi�cantly outperform others on a given application problem/dataset. To
de�ne these conditions, researchers have attempted to isolate a set of data char-
acteristics which impact the performance of learning algorithms as measured by
a given evaluation metric [15][12]. While signi�cant progress has been made on
data characterization, the complementary task of extracting inducer characteris-
tics has been relatively neglected. Characterizing a learning algorithm is usually
reduced to classifying it as applicable or not to a given dataset [7]. We propose
to extend research in this area by building pro�les of learning algorithms, i.e., by
extracting salient characteristics which allow for meaningful mappings between
classes of algorithms and datasets. Rules expressing such mappings can be con-
structed either manually or automatically (via meta-learning). Such rules can
then be used in a prior model selection phase to restrict the space of candidate
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learning algorithms. This paper focuses on learning algorithms for classi�cation.
Section 2 gives an overview of characteristics that can be used to build algo-
rithm pro�les and highlights inadequacies of characterizations gleaned from the
literature. In particular, it focuses on characteristics that comprise a learning al-
gorithm's resilience and proposes an experiment-based approach to quantifying
these. Section 3 illustrates this approach via a study of ten learning algorithms
from the point of view of their sensitivity or tolerance to irrelevant variables. The
experimental setup is described and major �ndings are reported and discussed
in the light of related work. Section 4 summarizes and gives a preview of ongoing
and future work.

2 Characterizing learning algorithms

Our knowledge of model characteristics comes from three di�erent sources. First,
certain characteristics are given explicitly in algorithm speci�cations; they con-
cern the basic requirements, capabilities or limitations of an algorithm. Examples
of such author-speci�ed characteristics are the the types of data supported by the
algorithm. A second source is observed consensus of experts in machine learning
and data mining; however, when experts disagree or are simply in doubt, one
can turn to controlled experimentation. The goal of our work is to complete
the �rst two sources of knowledge by devising experimental strategies for char-
acterizing learning algorithms. For the purposes of this paper, we group these
characteristics along four dimensions: representation and functionality, e�ciency,
robustness and practicality.

2.1 Dimensions of algorithm characteristics

The �rst dimension along which learning algorithms can be described is represen-
tational power and functionality; this subsumes the types of data that can be pro-
cessed by an algorithm, its incrementality, its ability to handle (mis)classi�cation
costs, and its bias-variance pro�le. Standard statistical methods typically don't
handle symbolic representations while certain machine learning methods such
as AQ cannot handle real-valued data. Most classi�er inducers are non incre-
mental and unable to handle (mis)classi�cation costs, though researchers are
actively exploring ways of overcoming these limitations for certain algorithms.
The bias/variance pro�le of a learning method is a rough, qualitative indication
of the direction in which the algorithm tends to resolve the trade-o� between bias
and variance [9]. High-bias learners generate simple, highly constrained models
which are quite insensitive to data 
uctuations, so that variance is low (e.g.,
perceptrons, Naive Bayes). Algorithms with a high-variance pro�le can generate
arbitrarily complex models which �t data variations more readily (e.g., decision
trees, neural networks). Characteristics which re
ect a learning algorithm's e�-
ciency are its average training and execution time as well as space demands; this
dimension has been given increased attention with the advent of data mining
applications, where scalability of learning algorithms is of primary importance.
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An algorithm's practicality is the ease with which a user can use and under-
stand it as well as its results. Examples of characteristics along this dimension
are runtime parameter handling, the comprehensibility of the learning method,
and the interpretability of the learned classi�er. Assessment of an algorithm's
practicality depends very much on user preferences and priorities. Most of the
characteristics related to practicality can be described only by reporting users'
subjective evaluations. The resilience of a learning algorithm refers to its capa-
bility of ensuring reliable performance despite variations in training conditions
and especially in the training data. Resiliency characteristics express the sensi-
tivity or tolerance of an algorithm to data characteristics or pathologies that are
liable to a�ect performance adversely. Examples are an algorithm's scalability
and tolerance to noise, missing values, and irrelevant or redundant features. The
rest of this paper will focus on this group of inducer characteristics.

2.2 Quantifying inducer resilience

There have been previous attempts to evaluate, compare, or rank learning al-
gorithms along the feature dimensions described in the preceding section. Of-
ten, such characterizations are tentative approximations; they express qualitative
generalizations over broad classes of models or algorithms. For instance, while
it is generally recognized that neural networks typically take much more time
to train than decision trees, little is known about the average magnitude of
this di�erence, or about any potential bene�t that might be put in the balance
against this added cost. Predictive accuracy has been the dominant metric for
evaluating inductive algorithms, and only recently have e�ciency-related crite-
ria been taken into account [14]. The Statlog project included an attempt to
quantify learning algorithms' practicality, in particular the comprehensibility of
the underlying learning principle and the interpretability of results. However, a
gap remains to be �lled in our understanding of their resilience as de�ned above.
To �ll this gap, we have undertaken an extensive experimental study aimed at
devising a quantiative scale for evaluating and comparing the resilience-related
characteristics of classi�er inducers. In the rest of this paper we focus on one
characteristic which illustrates most clearly the need for quantitative metrics
with precise semantics, as opposed to previous binary or other categorizations
or rankings. We studied the impact of irrelevant attributes on the behavior of
ten learning algorithms: C5.0-tree, C5.0-rules, C5.0-boost [17], Naive Bayes and
instance-based learning from the MLC++ library [10], linear discriminants and
Ltree [8], multilayer perceptrons and radial basis function networks as imple-
mented in Clementine [4], and Ripper [5]. For each series of experiments, we
used 43 datasets from the UCI Repository [13].

3 Tolerance to irrelevant attributes

3.1 Experimental setup

To evaluate and compare the impact of irrelevant variables on classi�er inducers,
we adopted the following experimental setup using the ten learning algorithms
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and 43 datasets mentioned in Section 2.2. For each dataset, we generated corrupt
versions with 10%, 20%, 30%, 40%, and 50% irrelevant variables. To produce a
version with p% irrelevant variables from a dataset containing No original vari-
ables, we added Ni = int(:01p � (N0=(1 � :01p))) new variables whose values
were generated randomly following a uniform distribution. A couple of precau-
tionary measures were taken for the sake of experimental soundness. First, to
ensure that variation in performance is due only to the irrelevant variables and
not to side e�ects such as changes in the balance of variable types, we strove
to maintain the original distribution of numeric and symbolic variables when
adding irrelevant variables. Second, to mitigate fears that the random-valued
features might be serendipitously correlated or associated in any way with the
classes, we ascertained that the addition of such features e�ectively increased the
quantity of irrelevant information in the datasets. To do this, we measured the
mutual information between the class and each predictive (original or arti�cially
added) variable for each dataset after discretizing all continuous variables using
Fayyad and Irani's method [6]. Mutual information measures were averaged over
all predictors to produce a single measure for each dataset, then averaged over
all datasets with the same percentage of (additional) irrelevant variables to yield
a single average measure of mutual information over all datasets at each level of
corruption. The resulting curve (Fig. 1) shows that the average mutual informa-
tion between predictive variables and classes decreases monotonically with the
addition of random-valued features, thus con�rming their irrelevance. The ten

Fig. 1. Average mutual information as a measure of relevance

learning algorithms under study were run on each original dataset and its 5 cor-
rupted variants using strati�ed 10-fold cross-validation. Each algorithm was run
with its default settings. The performance of these algorithms on the original
versions provided the baseline against which to study degradation of learning
ability as the proportion of irrelevant variables increased. Performance measures
used were test-set error and total processing (training plus test) time.
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3.2 Results

The degradation in predictive accuracy is summarized in Figure 2.

Fig. 2. Generalization error vs percentage of irrelevant variables

As a �rst cut at interpreting these results, note that an algorithm's predictive
accuracy on the given datasets are quite independent of their resilience to irrel-
evant variables. For instance, boosted C5.0 tree attains the highest predictive
accuracy at all levels, but its error curve rises more rapidly than most of the
other algorithms in the study. On the other hand, the mean error of Naive Bayes
remains among the highest at all levels of irrelevance, yet it seems una�ected by
the proportion of irrelevant variables. To quantify sensitivity to irrelevance, it
is thus important to decouple the magnitude of the mean error from its varia-
tion in response to irrelevant variables. We considered three candidate measures:
the error increase errori � error0 for each level of irrelevance i was eliminated
because it does not su�ciently abstract away the magnitude of the error. An
alternative is the relative error increase (errori� error0)=error0, whose obvious
shortcoming is that for equal error increases, the sensitivity score increases with
lower values of error0 , thus penalizing algorithms with high predictive accuracy.
The third measure is simply the slope of the error curve which not only is exempt
from the previously mentioned drawbacks but has the additional advantage of a
clear semantics: sensitivity to irrelevance is de�ned quantitatively as the average
rate of increase in error (or some other performance metric) with increase in
the proportion of irrelevant variables. The resulting error-sensitivity scores and
ranks are shown in Table 1(a) and the corresponding regressed curves in Fig. 3.

A closer look at the error sensitivity scores reveals several distinct clusters
among the 10 algorithms. Naive Bayes is by far the most resistant to irrelevant
variables, maintaining a comfortable distance from Ripper, its closest runner-up.
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Algorithm (a) (b)
Error slope Rank Time slope Rank

Boosted C5.0 0.039 6 33.58 6

C5.0 rules 0.032 3 4.76 3

C5.0 tree 0.034 4 4.26 2

Clementine MLP 0.129 9 378.25 9

Clementine RBF 0.091 8 9595.93 10

Lindiscr 0.035 5 4.92 4

Ltree 0.041 7 14.57 5

MLC++ IB1 0.135 10 56.98 7

MLC++ NBayes 0.000 1 3.64 1

Ripper 0.017 2 98.67 8

Table 1. Degradation of learner performance with irrelevant variables

Decision trees (whether oblique like Ltree or orthogonal like C5.0 in its three
variants) and linear discriminants form a cluster with medium tolerance. Finally,
neural networks (MLP and RBFN) and IB1 display the highest sensitivity to
irrelevance with an average error increase close to or greater than 0.10%.

Fig. 3. Regressed error increase with irrelevant variables

The same approach was adopted using total training and test time as the per-
formance criterion. Time measures were standardized across di�erent machines
and expressed in Sun Sparc Ultra 10-equivalent CPU seconds (for 124 MB main
memory). The derivative of the run time curves was similarly used to quantify
the time-sensitivity of learning algorithms to irrelevant variables; the resulting
scores are shown in Table 1(b) and the regressed runtime curves in Fig. 4.
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Fig. 4. Regressed run time increase with irrelevant variables

The ranking of the di�erent algorithms undergoes a few changes with the shift
to the runtime metric, though a clear overall picture subsists after combining
insights based on both accuracy and computational cost. Naive Bayes is still a
clear winner with a mean degradation in speed of around 3 CPU seconds. Linear
discriminants and single-classi�er C5.0 trees and rules trail closely behind, but
boosting increases C5.0's speed degradation considerably. Ripper appears to stay
close to its baseline accuracy at a much higher computational cost. As with
predictive accuracy, the worst degradation is exhibited by the neural networks,
MLP and RBF 1. The runtime curves are represented using a logarithmic scale
in Figure 4 and show that Clementine-RBFN's training and test time grows
faster by an order of magnitude than Clementine-MLP and by several orders of
magnitude than the 8 other algorithms.

3.3 Discussion and related work

Results concerning IB1 con�rm expert consensus that instance-based learning
(and standard k- NN in general) is highly sensitive to irrelevant variables [1].
Previous work has shown that k-NN's 90% sample complexity (the number of
training examples needed to achieve 90% accuracy) grows exponentially with
the number of irrelevant features while that of Naive Bayes grows only linearly
[11]. This di�erence can be explained by the underlying inductive principles;
instance-based classi�cation identi�es nearest neighbors via distance measures
based on feature values, so that irrelevant features have as great an e�ect on clas-
si�er as the relevant ones. Thus a dramatic deterioration in both accuracy and

1 Of the 43 datasets used, the monks problems were left out in computing MLP run-

time since a bug in Clementine provokes an inde�nite loop in default mode.
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speed is understandable in IB1 and all k-NN based systems that use no feature-
weighting or other feature selection schemes. At the other extreme, Naive Bayes'
prediction criterion uses the class-conditional probabilities of feature values; in
the case of irrelevant features, class-conditional probabilities are equal to their
marginal probabilities and thus have no impact on the class posterior proba-
bilities. This explains why Naive Bayes su�ers no degradation in error and an
almost insigni�cant increase in processing time. C5's fair-to-good resistance to
irrelevant features con�rms previous results on its predecessors, ID3 and C4.5.
Past investigations suggest that, contrary to high expectations raised by its
feature selection strategy, ID3's predictive accuracy is seriously hampered by
irrelevant attributes [2]. More surprisingly, our experiments reveal that boost-
ing makes C5.0 slightly more sensitive to irrelevance with respect to accuracy
and signi�cantly more sensitive with respect to speed. We have yet to �nd a
plausible explanation for this phenomenon; since the number of iterations was
kept constant (10 by default), and since the average size of each generated tree
turned out to be roughly the same with and without boosting, we eliminated the
hypothesis that boosted C5.0 was attempting to over�t to irrelevant features.
Another surprise is the extreme sensitivity to irrelevance of the neural networks
used in this study. For Clementine-MLP, this contradicts predictions based on
the theory. MLPs are expected to be relatively una�ected by irrelevant features
since the hidden layer projects inputs into a subspace of much lower dimension-
ality within which approximation can take place [16]. Concretely, connection
weights from irrelevant inputs are expected to gradually tend towards zero as
the training process converges; thus the only adverse e�ect should be a signi�-
cant increase in training time. Unfortunately our experiments tend to show that
accuracy deteriorates signi�cantly with irrelevant inputs despite the dramatic
increase in computational costs. For Clementine-MLP, this could be explained
by over�tting to irrelevant inputs. In default mode, the number of hidden units
is determined automatically, and we observed that the average number of hid-
den units increased monotonically with the percentage of irrelevant variables,
doubling between the baseline and the 50% level (Table 2).

% of irrelevant variables 0% 10% 20% 30% 40% 50%

Number of hidden units 12.4 13.9 15.3 17.2 20.7 24.4

Table 2. Growth of MLP network complexity with irrelevant variables

On the other hand, Clementine-RBFN's sensitivity to irrelevance is pre-
dictable from the underlying approach [3]. First, in RBFNs hidden units rep-
resent basis functions whose parameters (e.g. centres) are selected using unsu-
pervised training methods such as K- means clustering. This implies reliance on
a distance measure which, as in the case of k-NN, gives equal importance to
all variables, whether relevant or not. In addition, each hidden unit has a local
receptive �eld, i.e., it in
uences network output only in the neighborhood of
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its center. While predictive accuracy gains from locality when the hidden units
re
ect actual clusters in the data, it deteriorates signi�cantly when these are
built/activated using distance measures distorted by irrelevancies. This degra-
dation could be alleviated by increasing the number of hidden units, which is
however set to 20 in Clementine default mode. In short, two essential features
of the RBFNs used|unsupervised K-means training and local receptive �elds
of hidden units plus a particularity of the Clementine default implementation|
explain the observed lack of resilience to irrelevant variables. While the ranks
of tested algorithms help to visualize overall trends and patterns, we decided to
keep the original quanti�cations of sensitivity to irrelevance in the algorithm pro-
�les. There were several reasons for this. The original sensitivity measures have
a precise semantics, as explained in Section 3. Converting them to ranks would,
�rst, result in loss of information and, second, complicate the task of adding a
new learning algorithm to the pro�led set. Finally, like other (meta-)datasets,
algorithm characterizations can be pre-processed and continuous attributes reen-
coded in ordinal or qualitative form as the need arises. To conclude this section,
it should be emphasized that the �ndings reported on the above algorithms can-
not be generalized beyond the speci�c implementations used, even when they
are con�rmed by the underlying theory.

4 Summary and future work

This paper argued for the need to build learning algorithm pro�les which can be
used in prior model selection for data mining. We distinguished four groups of
characteristics depending on whether they concern a learning algorithm's repre-
sentation and functionality, e�ciency, resilience, or practicality. We gave a quick
overview of each group of characteristics and proposed an experimental setup
for quantifying characteristics related to an inductive algorithm's resilience. We
illustrated the proposed approach on a study of tolerance to irrelevant variables.
Other studies (e.g., on scalability, bias/variance trade-o�, resistance to other
data idiosyncracies such as missing values and redundant features) have been
conducted and will be presented in forthcoming publications. Algorithm pro�les
built from such studies will be used, together with dataset characterizations,
to discover mappings between broad classes of learning tasks/data and mod-
els/algorithms.We shall attempt such mappings both manually or automatically,
i.e., via (static or batch) meta-learning. In a subsequent phase, the knowledge
thus built will be deployed to support the user in the model selection task; in
return, feedback from novel applications/ environments will be assimilated via
incremental meta-learning to dynamically re�ne or augment this experimentally
cumulated expertise.
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