
Unified Algorithm for Undirected Discovery of

Exception Rules

Einoshin Suzuki1 and Jan M. Żytkow2

1 Electrical and Computer Engineering, Yokohama National University,
79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan.

suzuki@dnj.ynu.ac.jp
2 Computer Science Department, UNC Charlotte, Charlotte, N.C. 28223.

zytkow@uncc.edu

Abstract. This paper presents an algorithm that seeks every possible
exception rule which violates a common sense rule and satisfies several
assumptions of simplicity. Exception rules, which represent systematic
deviation from common sense rules, are often found interesting. Discov-
ery of pairs that consist of a common sense rule and an exception rule,
resulting from undirected search for unexpected exception rules, was suc-
cessful in various domains. In the past, however, an exception rule repre-
sented a change of conclusion caused by adding an extra condition to the
premise of a common sense rule. That approach formalized only one type
of exceptions, and failed to represent other types. In order to provide a
systematic treatment of exceptions, we categorize exception rules into
eleven categories, and we propose a unified algorithm for discovering all
of them. Preliminary results on fifteen real-world data sets provide an
empirical proof of effectiveness of our algorithm in discovering interest-
ing knowledge. The empirical results also match our theoretical analysis
of exceptions, showing that the eleven types can be partitioned in three
classes according to the frequency with which they occur in data.

Keywords: Exception/Deviation Detection, Rule Discovery, Exception
Rule, Rule Triplet

1 Introduction

Exceptions and/or deviations, which focus on a very small portion of a data set,
have long been ignored or mistaken as noise in machine learning. The goal of data
mining is broader, however. Exceptions were always interesting to discoverers, as
they challenged the existing knowledge and often led to the growth of knowledge
in new directions. In addition to predictions, decision optimization is important
in data mining [5]. We strongly believe that exception and/or deviation can
improve the quality of decisions, and their detection deserves more attention.

An increasing number of studies is devoted to exception/deviation detection.
Examples of such studies are outlier discovery [4], OLAP operator for explaining

D.A. Zighed, J. Komorowski, and J. Zytkow (Eds.): PKDD 2000, LNAI 1910, pp. 169−180, 2000.
 Springer-Verlag Berlin Heidelberg 2000

increase/decrease of a continuous attribute [7], and exception rule discovery [6,
8, 10–13].

Exception rules are typically represented as deviational patterns to common
sense rules of high generality and accuracy. Exception rule discovery can be
classified as either directed [6, 8] or undirected [10–13]. A directed method finds
a set of exception rules which deviate from the given common sense rules. In
distinction, common sense rules are not given to an undirected method, which
finds a set of pairs of a common sense rule and an exception rule. The advantage
of an undirected method is that it can discover highly unexpected patterns since
it also discovers common sense rules [14].

In undirected discovery of exception rules two natural questions arise: “what
other kinds of exception rules can be defined?” and “is there an efficient algo-
rithm to discover all of them?” In this paper we give a constructive answer to
both questions. We first define all kinds of exception rules that occur in situa-
tions described with three literals. Next we present an efficient algorithm, which
is not restricted to binary attributes and thus can be applied to a broad range
of ordinary data sets. We finally demonstrate the effectiveness of our approach
with experiments using fifteen data sets.

2 Categories of Exception Rules

2.1 A Rule and a Negative Rule

Let a data set contain n examples, each expressed by m attributes. Let a literal
be a conjunction of atoms, while an atom is either a value assignment for a
nominal attribute or a range assignment for a continuous attribute. An atom
can be also a missing value assignment for any attribute.

In this paper, we define a rule as u → v, where u and v are literals. We
follow the definition of ITRULE [9] and define the generality condition and the
accuracy condition of u → v as the right-hand sides of (1), where θS and θF are
thresholds given by the user, and P̂r(u) is the ratio of examples that satisfy u
in the data set:

u → v ⇔ P̂r(u) ≥ θS (generality) & P̂r(v|u) ≥ θF (accuracy) (1)

In association rule discovery[1], support P̂r(uv) is used instead of P̂r(u), where
uv represents u ∧ v, but the idea of generality is essentially the same.

In this paper, we also introduce a negative rule as u 6→ v, where θI is a
threshold given by the user.

u 6→ v ⇔ P̂r(u) ≥ θS & P̂r(v|u) ≤ θI (2)

2.2 Rule Triplets

Let y and z be literals, and x and x′ be atoms with the same attribute but
with a different value. Suzuki [11] has considered the discovery of rule triplets

170 E. Suzuki and J.M. Zytkow

that consists of a common sense rule y → x, an exception rule yz → x′ and a
reference rule z 6→ x′. Representation of discovered rules is given by

(y → x, yz → x′, z 6→ x′) (3)

This pattern can be interpreted as “If y and z then x′ and not x. This is an
interesting exception since usually if y then x, and if z then not frequently x′.”

This kind of pattern holds together several pieces of knowledge, including
exception rules as unexpected, surprising, anomalous and thus interesting addi-
tions to other rules.

We use the term “common sense rule” because it well-represents a user-given
belief in the direct method of search for exceptions, where common sense rules
are given in the input. In undirected search, however, there may be little common
sense in “common sense rules,” as we are concerned with relations between rules,
and we do not deal with user’s knowledge.

We will now seek a systematic generation of patterns similar to (3), starting
from the simplest cases. We formalize the situation as a rule triplet, where a
common sense rule is represented by y → x, and an exception rule and a reference
rule are represented by a negative rule α 6→ β and a rule γ → δ respectively.

t(y, x, α, β, γ, δ) = (y → x, α 6→ β, γ → δ) (4)

Four meta-level variables α, β, γ, and δ can be instantiated in different
ways, with the use of literals x, y, and z, to form different specific patterns
of exceptions, analogous to (3). This rule triplet has a generic reading “it is
common that if y then x, but we have exceptions that if α then not frequently
β. This is surprising since if γ then δ”. Note that this terminology differs from (3)
in that an exception rule and a reference rule are represented by a negative rule
and a rule respectively. Of course, that meta-level reading does not communicate
any specific exception, anomaly and surprise, but we will seek those features in
different instances of the pattern. Here we only justify this definition by stating
that a violation (exception rule) of two rules (common sense rule and reference
rule) can be interesting.

In order to systematically categorize exception rules, we restrict our attention
to rule triplets with three free literals x, y, z. Number three is chosen since it
represents the simplest situation which makes sense: a rule triplet with two
literals would likely to be meaningless since it tends to be overconstrained, and
a rule triplet with more than three literals would likely to be more difficult to
interpret.

We assume that a conjunction of two literals can appear only in the premise
of an exception rule. This restriction is justified because a conjunction of two
literals in the premise makes a good candidate for an exception to a rule that
holds one of those literals in the premise.

β, γ, δ ∈ {x, y, z} (5)
α ∈ {x, y, z, xy, yz, zx} (6)

171Unified Algorithm for Undirected Discovery of Exception Rules

Since a literal z is not contained in a common sense rule, it must occur both
in an exception rule and in a reference rule, otherwise a triplet situation will
reduce to the case of two literals x and y. Possible candidates for a reference rule
are then restricted to (γ, δ) ∈ {(y, z), (z, y), (z, x), (x, z)}. If we pair each of these
four with the common sense rule y → x, we realize that the case of (γ, δ) = (x, z)
is equivalent (isomorphic) to (γ, δ) = (z, y), one case can be produced from the
other by renaming the variables. Therefore, we neglect (γ, δ) = (x, z) in this
paper, so that

(γ, δ) ∈ {(y, z), (z, y), (z, x)}. (7)

2.3 Rule Triplets without Conjunctions

In this section, we consider the simplest triplets. We categorize rule triplets that
do not contain conjunctions of literals. In such a case, possible candidates for an
exception rule are restricted to the following four:

(α, β) ∈ {(y, z), (z, y), (z, x), (x, z)}. (8)

Since there are three possible candidates for a reference rule from (7), there
are twelve candidates for rule triplets without conjunctions. Note that first, how-
ever, three candidates that satisfy (α, β) = (γ, δ) show a contradictory relation,
i.e. (α 6→ β, α → β), and must be removed. Second, consider the three can-
didates that satisfy (α, β) = (δ, γ). In such a case, the exception rule α 6→ β
and its reference rule β → α jointly mean proper inclusion of α in β, which is
not sufficient for an exception from a common sense rule y → x. We therefore
remove these three candidates. Third, as shown in figure 1, t(y, x, x, z, y, z) is
equivalent to t(y, x, z, x, y, z) if we exchange x and z. Similarly, t(y, x, z, y, z, x)
is equivalent to t(y, x, y, z, z, x) if we exchange z and y. We conclude that there
are 12−3−3−2 = 4 kinds of rule triplets without conjunctions. We define type 1,
2, 3, and 4 as shown in figure 1. They are defined by the following instantiations
of α, β, γ, and δ:

(α, β, γ, δ) ∈ {(z, x, y, z), (z, x, z, y), (x, z, z, y), (y, z, z, x)}. (9)

Considering the remaining four types of triplets in figure 1, we can argue that
all are interesting as each of them represents a kind of violation. For example,
type 1 represents a surprise (z 6→ x) for an expected overlap relation between z
and x which can be naturally derived from two rules (y → x and y → z). Further,
we can interpret type 3 and 4 as showing mild exceptions. Type 2, however,
shows a violation of transitivity, and can thus be regarded as demonstrating the
strongest deviations in these rule triplets.

2.4 Rule Triplets with a Conjunction

In this section we categorize rule triplets of which premise of an exception rule is
a conjunction of two literals. In such a case, possible candidates for an exception

172 E. Suzuki and J.M. Zytkow

y x
z x
y z

y

x z

y x
x z
y z

y

z x

y x
z x
z y

y

x z

y x
x z
z y

y

z x

y x
y z
z x

x

z y

y x
z y
z x

x

y z

the same if we exchange
"x" and "z"

the same if we exchange
"y" and "z"

type1 type2 type3 type4

Fig. 1. Rule triplets without conjunctions.

rule are restricted to the following three:

(α, β) ∈ {(xy, z), (xz, y), (yz, x)}. (10)

Since there are three possible candidates for a reference rule from (7), there
are nine candidates for rule triplets with a conjunction. Note that, as shown in
figure 2, t(y, x, yz, x, y, z) is equivalent to t(y, x, xy, z, y, z) if we exchange x and
z. In addition, t(y, x, xz, y, z, x) is equivalent to t(y, x, xy, z, z, x) if we exchange
y and z. We here conclude that there are 9 − 2 = 7 kinds of rule triplets with a
conjunction. We define type 5, 6, · · ·, and 11 as shown in figure 2:

(α, β, γ, δ) ∈ {(xy, z, y, z), (xz, y, y, z), (xy, z, z, y), (xz, y, z, y),
(yz, x, z, y), (xy, z, z, x), (yz, x, z, x)}. (11)

the same if we exchange
"x" and "z"

z

y x
xy z
y z

xy

y

y x
xz y
y z

zx

x

y x
yz x
y z

zy

z

y x
xy z
z y

xy

y

y x
xz y
z y

zx

x

y x
yz x
z y

yz

z

y x
xy z
z x

xy

y

y x
xz y
z x

xz

x

y x
yz x
z x

zy

the same if we exchange
"y" and "z"

type5 type6 type7 type8 type10 type11type9

Fig. 2. Rule triplets with a conjunction. A rectangle on the top center for each triplet
represents a conjunction of literals in the top right and left.

By examining Figure 2, we can interpret type 6, 7, and 10 as interesting
triplets, but we can hardly see them as exceptions. Type 5, 8, 9, and 11, however,
are different. In each of the four cases the exception rule logically contradicts

173Unified Algorithm for Undirected Discovery of Exception Rules

at least one of the other rules. The situations of type 5, 8, 9, and 11 can only
occur if those records that make exceptions to each of the rules in the triplet are
distributed in a very specific way, so that the thresholds set by θF and θI can be
met. It is an interesting empirical questions whether the triplets derived from
data are going to match those expectations.

3 Unified Algorithm for All Exception Rules

In this section we propose an algorithm for discovering all the rule triplets which
we categorized in the previous section.

3.1 Depth-First Search for Rule Triplets

Association rule discovery [1] assumes a transaction data set, which has only
binary attributes. Each attribute can take either “y” or “n” as its value, and
most of the attribute values are “n”. The sparseness of the data set allows to
employ breadth-first search. Note that if the breadth-first search was employed
for an ordinary data set, the number of large item-sets would be huge. In such
a case, space efficiency would be so poor that any breadth-first algorithm would
be impractical.

On the other hand, ITRULE [9] assumes an ordinary data set, which can
have an attribute with more than two values, and have no assumption on the
distribution of attribute values. Since sparseness of the data set is not assumed,
it employs a depth-first search.

In this paper, we assume an ordinary data set and propose an algorithm which
performs depth-first search for triplets of literals a, b, c. We leave an algorithm
for a transaction data set for future work. Let d be a candidate for a rule triplet
and ! be a logical negation. A threshold vector θ represents (θS , θF , θI), and |a|
is the number of atoms in a literal a. Without loss of generality, we assume that
every attribute is allocated a unique positive integer i(a). The main routine of
the algorithm is given below, followed by the supporting procedures. Some of
them are presented in the next sections.

Algorithm: rule triplet discovery(θ, M, D, R).
Input: threshold vector θ, maximum length of literals M , data set D.
Output: a set of discovered rule-triplets R.
begin
R, a, b, c := φ. //initialization
foreach a, b, c ∈ the atom set of D such that i(a) < i(b) < i(c) //search

begin
d := (a, b, c). //generation of an initial rule triplet
evaluateRt(d, θ, D, R). //evaluation
if(! Prune(d, θ, D, R)) //pruning

extend(d, true, true, θ, M, D, R) //search for depth ≥ 2
end

end

174 E. Suzuki and J.M. Zytkow

The routine of search for depth ≥ 2 is given as follows.

Procedure: extend(d, fa, fb, θ, M, D, R).
Input: literal triplet d, flag fa, flag fb, θ, M, D.
Output: R.
begin
if (|a| > M) or (|b| > M) or (|c| > M) //limit of search depth

return
if (fa) //can extend literal ai

foreach ai ∈ the atom set of D such that ai does not appear in d
begin
d′ = (aai, b, c) //add an atom to ai

extendSub(d′, true, true, θ, M, D, R)
end

if (fb) //can extend literal bi

foreach bi ∈ the atom set of D such that bi does not appear in d
begin
d′ = (a, bbi, c) //add an atom to bi

extendSub(d′, false, true, θ, M, D, R)
end

foreach ci ∈ the atom set of D such that ci does not appear in d
begin
d′ = (a, b, cci) //add an atom to ci

extendSub(d′, false, false, θ, M, D, R)
end

end

Procedure: extendSub(d, fa, fb, θ, M, D, R).
Input: d, fa, fb, θ, M, D.
Output: R.
begin
evaluateRt(d). //evaluation
if(! Prune(d)) //pruning

extend(d, fa, fb) //search for depth+1
end

Recall that the number of atoms in a literal a is |a|. We consider |a|, |b|, |c| ≤
M as the search restriction in the above algorithm. For illustration, figure 3
shows the traversal order in the search tree when M = 2. Time efficiency of this
algorithm is O(m3M), where m is the number of attribute in D. This is justified
since this algorithm is complete in the sense that it discovers all rule triplets.
This inefficiency is remedied by the pruning procedure, which will be described
in section 3.4.

175Unified Algorithm for Undirected Discovery of Exception Rules

(1,1,1)

(2,2,2)

(1,2,2)(2,1,2)(2,2,1)

(1,1,2)(1,2,1)(2,1,1)

1

2

3 4

5

6

7

8

Fig. 3. Traversal order in a search tree when M = 2, where each circled figure represents
the order, and a node represents (|a|, |b|, |c|).

3.2 Selection of an Atom for a Continuous Attribute

In this section, we explain how to select an atom given an attribute x [13].
If x is nominal, the algorithm considers all single-value assignments to x as
atoms. On the other hand, if x is continuous, the algorithm considers single-
range assignments to x as atoms, and these ranges are obtained by discretizing
x.

Discretization of a continuous attribute can be classified as either global (done
before hypothesis construction) or local (done during hypothesis construction)
[3]. It can be also classified as either supervised (considers class information) or
unsupervised (not using class information) [3]. In this paper, we employ a global
unsupervised method due to its time efficiency.

The equal frequency method, when the number of intervals is k, divides n
examples so that each bin contains n/k (possibly duplicated) adjacent values.
The equal frequency method belongs to unsupervised methods and is widely
used [3]. We obtain the minimum value and the maximum value of a range by
the global equal-frequency method.

In order to exploit the stopping conditions presented in the previous section,
ranges are selected as follows. Let the k intervals be π1, π2, · · · , πk in ascending
order. Note that there are two possible ranges, π1 to πk−1 and π2 to πk, as
a range which consists of k − 1 adjacent intervals. Our algorithm first selects
these two as ranges, then selects the ranges of k− 2 adjacent intervals, i.e. π1 to
πk−2, π2 to πk−1, and π3 to πk. Pruning conditions (13) which will be presented
in section 3.4 are employed in ignoring unnecessary ranges. This procedure is
iterated by decrementing the number of adjacent intervals in a range until no
ranges are left for consideration.

3.3 Evaluation of a Literal Triplet

The algorithm in section 3.1 searches for triplets of literals, and rule triplets
made of those literal triplets. Note that there are six one-to-one correspondence
from a set {A, B, C} to a set {x, y, z}, and there are eleven categories of rule
triplets from section 2.3 and 2.4. In the procedure “evaluateRt(d)”, our algorithm
considers these 6 ∗ 11 = 66 possibilities for a literal triplet, and outputs if it
satisfies the conditions for a rule triplet.

176 E. Suzuki and J.M. Zytkow

A rule triplet is evaluated as follows (see section 2.1):

t(y, x, α, β, γ, δ) ⇔ (P̂r(y) ≥ θS, P̂r(x|y) ≥ θF, P̂r(α) ≥ θS, P̂r(β|α) ≤ θI,

P̂r(γ) ≥ θS, P̂r(δ|γ) ≥ θF) (12)

Some of these conditions occur more than once in testing different types of
rule triplets. Our algorithm applies such conditions only once in order to avoid
redundant calculations.

3.4 Pruning

Assume the current literal triplet represents a rule triplet t(y′, x′, α′, β′, γ′, δ′).
It is straightforward to prove that if at least one of (13) holds, no rule triplets
t(y, x, α, β, γ, δ) in the children nodes satisfy all conditions in the right-hand side
of (12). Note that here y expands y′.

P̂r(y′) < θS, P̂r(x′y′) < θSθF, P̂r(α′) < θS, P̂r(γ′) < θS, P̂r(γ′δ′) < θSθF(13)

As described in section 2.3 and 2.4, there are eleven types of rule triplets. Our
algorithm checks the above conditions for all these types. Similarly as in the
previous section, our algorithm checks the above conditions for six one-to-one
mappings from a set {A, B, C} to a set {x, y, z} in the procedure “Prune(d)”.

4 Experimental Evaluation

We here analyze empirically the statistics of the searched nodes and the discov-
ered rule-triplets. We have chosen UCI data sets [2] since they have served for
a long time as benchmark data sets in the machine learning community. In our
experiments, we deleted attributes that have only one value in a data set. Table
1 shows characteristics of the data sets employed in the experiments.

In applying our algorithm, the number k of discretization bins was set to 4.
Other parameters were set to θS = 0.025, θF = 0.7, θI = 0.6, and M = 2. Table
2 shows the results of experiments. Data sets are sorted on the “rule triplets”
column, i.e. with respect to the number of discovered rule triplets.

From this table we see a rough correlation between the number of searched
nodes and the number of discovered rule triplets. By inspecting Table 1 we see
that the number of discovered rule triplets typically increases as the number
of attributes, continuous attributes, and values of nominal attributes increase.
Data sets “vote”, “mushroom”, “credit”, and “shuttle” are exceptions, and we
consider that this is due to the distribution of attribute values.

Table 2 shows that pruning is effective, since without pruning the nodes
increase by 5 % (“nursery” and “diabetes”) to 285 % (“mushroom”). This is due
to the fact that a considerable number of nodes in a search tree tend to have
small probabilities for their literals and are thus pruned.

Numbers of discovered rule triplets per types reveal interesting tendencies.
From Table 2, we see that type 3, 4, 6, 7, 10 are extremely numerous: they are

177Unified Algorithm for Undirected Discovery of Exception Rules

Table 1. Characteristics of the data sets employed in the experiments, where “ ex.”,
“ att.”, “c.”, and “ val.” represent the number of examples, the number of attributes,
the number of continuous attributes and the number of possible values for the nominal
attributes respectively.

data set ex. att. (c.) val. data set ex. att. (c.) val.

car 1,728 7 (0) 3 - 4 australian 690 15 (6) 2 - 14

nursery 12,960 9 (0) 2 - 5 credit 690 16 (6) 2 - 15

postoperative 90 9 (1) 2 - 3 vote 435 17 (0) 2 - 3

yeast 1,484 9 (6) 2 - 10 hepatitis 155 20 (6) 2 - 3

diabetes 768 9 (8) 2 german 1,000 21 (6) 2 - 10

abalone 4,177 9 (8) 3 mushroom 8,124 22 (0) 2 - 12

breastcancer 699 10 (9) 2 thyroid 7,200 22 (6) 2 - 3

shuttle 58,000 10 (9) 7

more than 1 ∗ 105 in 11 data sets. Type 1 is also numerous since it is more than
1 ∗ 105 in 3 data sets. On the other hand, type 2 and 9 are modest in number:
they never exceed 1 ∗ 105 in any data sets, and exceed 1 ∗ 104 in 9 data sets.
Finally, type 11, 8, and 5 are rare in this order: type 11 exceeds 1∗ 104 in 1 data
set, and type 8 and 5 never exceed 1 ∗ 104 in any data sets. Similar tendencies
were observed for M = 1. Interestingly, we anticipated the exceptionality of type
2, 5, 8, 9, and 11 as stronger than the other types in section 2.3 and 2.4. We are
currently investigating this tendency analytically.

5 Conclusion

In this paper, we formalized discovery of interesting exception rules as rule-
triplet discovery, and we categorized rule triplets with three literals into eleven
types. We also analyzed these eleven types according to their interestingness.
Moreover, we proposed an efficient algorithm for simultaneous discovery of all
these types based on literal-triplet search and sound pruning.

Our algorithm has been applied to fifteen data sets, and confirmed the anal-
ysis on the interestingness of the eleven types. Experimental results clearly show
the effectiveness of pruning in reducing the number of searched nodes. The on-
going work focuses on relating these rule-triplet types with domain-dependent
interestingness in collaboration with experts in various domains. A general in-
terestingness measure for rule triplets represents a promising avenue for future
research.

References

1. R. Agrawal, H. Mannila, R. Srikant et al.: Fast Discovery of Association Rules, Ad-
vances in Knowledge Discovery and Data Mining, AAAI Press, Menlo Park, Calif.,
pp. 307–328 (1996)

178 E. Suzuki and J.M. Zytkow

Table 2. Number of searched nodes and discovered rule triplets for each data set.
Here, “unp.” represents the number of nodes without pruning divided by the number
of nodes with pruning.

data set nodes rule type1 type2 type3 type4 type5 type6
(unp.) triplets type7 type8 type9 type10 type11

car 1.06E5 0 0 0 0 0 0 0
(1.11) 0 0 0 0 0

nursery 1.12E5 71 31 0 0 0 0 40
(1.05) 0 0 0 0 0

postoperative 4.75E4 2.63E4 238 131 1.44E3 1.06E4 2 1.57E3
(1.42) 1.44E3 2 122 1.05E4 126

vote 6.41E5 1.90E5 5.94E3 2.05E3 3.10E4 5.11E4 0 2.96E4
(1.69) 2.53E4 2 845 4.39E4 10

breastcancer 1.35E6 1.65E6 3.50E4 2.19E4 1.98E5 5.14E5 45 1.93E5
(1.14) 1.81E5 1 1.64E4 4.93E5 120

mushroom 8.64E6 2.92E6 9.68E4 7.50E3 1.22E5 1.18E6 28 2.18E5
(3.85) 1.15E5 226 6.11E3 1.16E6 4.92E3

credit 6.53E6 4.25E6 4.87E4 1.33E4 2.27E5 1.75E6 45 2.51E5
(2.09) 2.21E5 67 1.18E4 1.71E6 2.43E3

abalone 3.25E6 4.41E6 2.62E5 8.53E3 4.87E5 1.32E6 29 6.49E5
(1.08) 3.86E5 11 5.76E3 1.29E6 1.72E3

diabetes 3.97E6 4.78E6 3.42E4 2.24E4 3.43E5 1.86E6 91 3.23E5
(1.05) 3.38E5 54 2.20E4 1.83E6 4.39E3

yeast 3.44E6 5.09E6 2.66E4 1.42E4 4.00E5 1.93E6 0 3.88E5
(1.41) 3.99E5 9 1.31E4 1.91E6 1.25E3

australian 6.81E6 5.54E6 5.74E4 1.58E4 3.28E5 2.24E6 61 3.57E5
(1.45) 3.22E5 96 1.44E4 2.19E6 3.28E3

shuttle 5.47E6 7.39E6 1.36E5 6.64E4 6.27E5 2.63E6 233 6.88E5
(1.15) 6.05E5 972 5.64E4 2.57E6 7.91E3

hepatitis 1.78E7 1.65E7 1.97E5 8.59E4 1.07E6 6.46E6 1.50E3 1.21E6
(1.51) 1.06E6 2.66E3 7.28E4 6.33E6 7.22E4

german 2.05E7 1.76E7 7.03E4 3.39E4 8.28E5 7.55E6 35 8.52E5
(1.32) 8.24E5 102 3.08E4 7.40E6 8.48E3

thyroid 7.00E6 1.88E7 6.12E4 5.78E4 1.98E6 6.43E6 30 1.92E6
(1.56) 1.96E6 150 5.45E4 6.34E6 1.96E3

179Unified Algorithm for Undirected Discovery of Exception Rules

2. C.L. Blake and C.J. Merz: “UCI Repository of Machine Learning Databases”,
http://www.ics.uci.edu/~mlearn/MLRepository.html, Dept. of Information and
Computer Sci., Univ. of California Irvine (1998).

3. J. Dougherty, R. Kohavi, and M. Sahami: Supervised and Unsupervised Discretiza-
tion of Continuous Features, in Proc. Twelfth Int’l Conf. Machine Learning (ICML),
pp. 194–202 (1995).

4. E.M. Knorr and R.T. Ng: Algorithms for Mining Distance-Based Outliers in Large
Datasets, in Proc. 24th Ann. Int’l Conf. Very Large Data Bases (VLDB), pp. 392–
403 (1998).

5. T.M. Mitchell: “Machine Learning and Data Mining”, CACM, Vol. 42, No. 11,
pp. 31–36 (1999).

6. B. Padmanabhan and A. Tuzhilin: “A Belief-Driven Method for Discovering Unex-
pected Patterns”, Proc. Fourth Int’l Conf. Knowledge Discovery and Data Mining
(KDD), AAAI Press, Menlo Park, Calif., pp. 94–100 (1998).

7. S. Sarawagi: Explaining Differences in Multidimensional Aggregates, in Proc. 25th
Int’l Conf. Very Large Data Bases (VLDB), pp. 42–53 (1999).

8. A. Silberschatz and A. Tuzhilin: “What Makes Patterns Interesting in Knowledge
Discovery Systems”, IEEE Trans. Knowledge and Data Eng., Vol. 8, No. 6, pp. 970–
974 (1996).

9. P. Smyth and R.M. Goodman: “An Information Theoretic Approach to Rule In-
duction from Databases”, IEEE Trans. Knowledge and Data Eng., Vol. 4, No. 4,
pp. 301–316 (1992).

10. E. Suzuki and M. Shimura : Exceptional Knowledge Discovery in Databases Based
on Information Theory, Proc. Second Int’l Conf. Knowledge Discovery and Data
Mining (KDD), AAAI Press, Menlo Park, Calif., pp. 275–278 (1996).

11. E. Suzuki: “Autonomous Discovery of Reliable Exception Rules”, Proc. Third Int’l
Conf. Knowledge Discovery and Data Mining (KDD) , AAAI Press, Menlo Park,
Calif., pp. 259–262 (1997).

12. E. Suzuki and Y. Kodratoff: “Discovery of Surprising Exception Rules based on In-
tensity of Implication”, Principles of Data Mining and Knowledge Discovery, LNAI
1510 (PKDD), Springer, Berlin, pp. 10–18 (1998).

13. E. Suzuki: “Scheduled Discovery of Exception Rules”, Discovery Science, LNAI
1721 (DS), Springer, Berlin, pp. 184–195 (1999).

14. E. Suzuki and S. Tsumoto: “Evaluating Hypothesis-Driven Exception-Rule Discov-
ery with Medical Data Sets”, Knowledge Discovery and Data Mining, LNAI 1805
(PAKDD), Springer, Berlin, pp. 86–97 (2000).

180 E. Suzuki and J.M. Zytkow

	Unified Algorithm for Undirected Discovery of Exception Rules
	Introduction
	Categories of Exception Rules
	A Rule and a Negative Rule
	Rule Triplets
	Rule Triplets without Conjunctions
	Rule Triplets with a Conjunction

	Unified Algorithm for All Exception Rules
	Depth-First Search for Rule Triplets
	Selection of an Atom for a Continuous Attribute
	Evaluation of a Literal Triplet
	Pruning

	Experimental Evaluation
	Conclusion
	References

