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Abstract. Emerging patterns (EPs), namely itemsets whose supports change sig-
nificantly from one class to another, capture discriminating features that sharply
contrast instances between the classes. Recently, EP-based classifiers have been
proposed, which first mine as many EPs as possible (called eager-learning) from
the training data and then aggregate the discriminating power of the mined EPs
for classifying new instances. We propose here a new, instance-based classifier
using EPs, called DeEPs, to achieve much better accuracy and efficiency than
the previously proposed EP-based classifiers. High accuracy is achieved because
the instance-based approach enables DeEPs to pinpoint all EPs relevant to a test
instance, some of which are missed by the eager-learning approaches. High effi-
ciency is obtained using a series of data reduction and concise data-representation
techniques. Experiments show that DeEPs’ decision time is linearly scalable over
the number of training instances and nearly linearly over the number of attributes.
Experiments on 40 datasets also show that DeEPs is superior to other classifiers
on accuracy.

1 Introduction
The problem of classification has been studied extensively, using eager-learning appro-
aches or lazy instance-based approaches, in machine learning, pattern recognition, and
recently also in the data mining community. In this paper we introduceDeEPs, a new
instance-based classifier which makesDecisions throughEmergingPatterns. The notion
of emerging patterns (EPs) was proposed in [5] and is defined as multivariate features
(i.e., itemsets) whosesupports(or frequencies) change significantly from one class to
another. Because of sharp changes in support, EPs have strong discriminating power.
Two eager-learning classifiers based on the concept of EPs, CAEP [6] and the JEP-
Classifier [9], have been proposed and developed, using the novel idea of aggregating
the discriminating power of pre-mined EPs for classification. The newly proposed DeEPs
classifier has considerable advantages on accuracy, speed, and dimensional scalability
over CAEP and the JEP-Classifier, because of its efficient new ways to select sharp and
relevant EPs, its new ways to aggregate the discriminating power of individual EPs,
and most importantly the use of instance-based approach which creates a remarkable
reduction on both the volume (i.e., the number of instances) and the dimension (i.e., the
number of attributes) of the training data. Another advantage is that DeEPs can handle
new training data without the need to re-train the classifier which is, however, com-
monly required by the eager-learning based classifiers. This feature is extremely useful
for practical applications where the training data must be frequently updated. DeEPs
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can handle both numeric and discrete attributes and DeEPs is nicely scalable over the
number of training instances.

Given two classes of dataD1 andD2 and a test instanceT , the basic idea of DeEPs
is to discover those subsets ofT which are emerging patterns betweenD1 andD2, and
then use the supports of the discovered EPs for prediction. The test instanceT may
not contain any pre-mined EPs if the eager-learning approaches are used; in contrast,
using the instance-based approach, DeEPs will be able to efficiently pinpoint all relevant
EPs for classifyingT . The basic idea of DeEPs is made practical and scalable to high
dimension data because we use a series of data reduction and concise data represensation
techniques. We use the following example to illustrate the ideas behind DeEPs.

Example 1.Table 1, taken from [14], contains a training set, for predicting whether the
weather is good for some “Saturday morning” activity. The instances, each described by
four attributes, are divided into two classes: classP and classN .

Table 1.Weather conditions and Saturday Morning activity

ClassP (suitable for activity) ClassN (not suitable)
outlook temperature humidity windyoutlook temperature humidity windy
overcast hot high false sunny hot high false

rain mild high false sunny hot high true
rain cool normal false rain cool normal true

overcast cool normal true sunny mild high false
sunny cool normal false rain mild high true
rain mild normal false

sunny mild normal true
overcast mild high true
overcast hot normal false

Now, given the test instanceT={sunny, mild, high, true}, which class label should
it take? Basically, DeEPs calculates the supports (in both classes) of the proper subsets
of T in its first step. The proper subsets ofT and their supports are organized as the
following three groups:

1. those that only occur in ClassN but not in ClassP, namely,{sunny, high}, {sunny,
mild, high}, and{sunny, high, true}; their supports in ClassN are 60%, 20%, and
20% respectively.

2. those that only occur in ClassP but not in ClassN , namely,{sunny, mild, true};
its support in ClassP is 11%.

3. those that occur in both classes, namely,∅,{mild},{sunny},{high},{true},{sunny,
mild},{mild, high},{sunny, true},{high, true},{mild, true}, and{mild, high, true}.
Except for the patterns∅ and{mild}, all these subsets have larger supports in Class
N than in ClassP.

Obviously, the first group of subsets — which are indeed EPs of ClassN because
they do not appear in ClassP at all — favors the prediction thatT should be classified
as ClassN . However, the second group of subsets gives us a contrasting indication that
T should be classified as ClassP, although this indication is not as strong as that of
the first group. The third group also strongly suggests that we should favor ClassN
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asT ’s label, although the pattern{mild} contradicts this mildly. Using these EPs in a
collectiveway, not separately, DeEPs would decide thatT ’s label is ClassN since the
“aggregation” of EPs occurring in ClassN is much stronger than that in ClassP.

In practice, an instance may contain many (e.g., 100 or more) attributes. To examine
all subsets and discover the relevant EPs contained in such instances by naive enume-
ration is too expensive (e.g., checking2100 or more sets). We make DeEPs efficient
and scalable to high dimensional data by the following data reduction and concise data
representation techniques.

– We reduce the training datasets firstly by removing those items that do not occur in
the test instance and then by selecting themaximalones from the processed training
instances. (SetX is maximalin collectionS if there are no proper supersets ofX
in S.) This data reduction process makes the training data sparser in both horizontal
and vertical directions.

– We useborder [5], a two-bound structure like<L,R>, to succinctly represent all
EPs contained in a test instance. Importantly, we use efficient border-based algo-
rithms to derive EP borders from the reduced training datasets.

– We selectboundaryEPs, those inL (typically small in number, e.g., 81 in mus-
hroom), for DeEPs’ decision making. These selected EPs are “good” representati-
ves of all EPs occurring in a test instance. This selection method also significantly
reduces the number of EPs that are used for classification.

Detailed discussions of these points will be given in the next three sections. Table 2
illustrates the first stage of the sparsifying effect on both the volume and dimension of
DP andDN , by removing all items that do not occur inT . Observe that the transformed
DP andDN are sparse, whereas the originalDP andDN aredensesince there is a
value for every attribute of any instance. Sections 3 and 4 will discuss formally how to
select the maximal ones of the reduced training instances and how to utilize the reduced
training data to gain more efficiency with the use of borders.

Table 2.Reduced training data after removing items irrelevant to the instance{sunny, mild, high,
true}. A “*” indicates that an item is discarded.

Reduced ClassP Reduced ClassN
outlook temperature humidity windyoutlook temperature humidity windy

* * high * sunny * high *
* mild high * sunny * high true
* * * * * * * true
* * * true sunny mild high *

sunny * * * * mild high true
* mild * *

sunny mild * true
* mild high true
* * * *

Since EPs usually have very low supports, they are not suitable to be used indi-
vidually for classification. We will use thecompact summationmethod to aggregate
the discriminating power contributed by all selected EPs to form classification scores.
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Importantly, thecompact summationmethod avoids duplicate contribution of training
instances.

For continuous attributes, we introduce a new method, calledneighborhood-based
intersection. This allows DeEPs to determine which continuous attribute values are
relevant to a given test instance, without the need to pre-discretize data.

The remainder of this paper is organized as follows. Section 2 reviews the notions of
EPs and borders. Section 3 formally introduces the DeEPs classifier. Section 4 presents
border-based algorithms to implement the main ideas of DeEPs. Section 5 presents
the experimental results of DeEPs on 40 datasets, taken from the UCI Repository on
Machine Learning [2]. The experiments demonstrate the scalability and high accuracy
of DeEPs. Section 6 compares our DeEPs classifier with other classification models.
Section 7 concludes this paper.

2 Preliminaries: EPs and Borders
In our discussion, the basic elements are theitems. Relational data in the form of vectors
(or tuples) are first translated as follows. For each relational attributeA with a continuous
domain and a given interval[l, h), “A ∈ [l, h)” is an item. IfA is a discrete attribute and
a is in the domain ofA, then “A = a” is an item. Vectors or tuples are now represented
as sets of items. Aninstanceis a set of items, and adatasetD is a set of instances. A
setX of items is also called anitemset. We say an instanceS containsan itemsetX, if
X ⊆ S. Thesupportof an itemsetX in a datasetD, suppD(X), is countD(X)

|D| , where
countD(X) is the number of instances inD containingX.

The notion ofemerging patterns(EPs) [5] and a special type,jumping emerging
patterns(JEPs), were proposed to capture differences between classes.

Definition 1. [5] ( EP andJEP) Given a real numberρ > 1 and two datasetsD1 and
D2, an itemsetX is called anρ-emerging pattern(EP) fromD1 to D2 if the support

ratio
suppD2 (X)
suppD1 (X) ≥ ρ. (Define0

0 = 0 and 6=0
0 = ∞.) Specially, ajumpingEP (JEP) of

D2 is such an EP which occurs inD2 (or, whose support inD2 is non-zero) but does not
occur inD1 (or, whose support inD1 is zero).

We have already seen three JEPs ofDN and one JEP ofDP in Example 1.
Informally, a border is a concise structure used to describe a large collection of

sets. For example, the border<{{1}}, {{1, 2}, {1, 2, 3, 4, 5, 6}}> is bounded by itsleft
bound{{1}} and itsright bound{{1, 2}, {1, 2, 3, 4, 5, 6}}. This border represents the
collection of all sets which are supersets of{{1}} and are subsets of either{1, 2} or
{1, 2, 3, 4, 5, 6}. This collection of sets is denoted[{{1}}, {{1, 2}, {1, 2, 3, 4, 5, 6}}].
More details about the definitions of borders can be found in [5].

3 The DeEPs Classifier

Our DeEPs classifier needs three main steps to determine the class of a test instance: (i)
Discovering border representations of EPs; (ii) Selecting the more discriminating EPs;
(iii) Determining collective scores based on the selected EPs for classification.

We present algorithms for each of the three steps in the subsequent subsections.We
begin by presenting algorithms to handle datasets with only two classes and then gene-
ralize DeEPs in Section 3.4 to handle datasets with more classes.
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3.1 Discovering Border Representations of EPs

This step aims to learn discriminating knowledge from training data and represent them
concisely, by first reducing the data and then discovering all JEPs (and optionally other
EPs). Assume we are given a classification problem, having a setDp = {P1, · · · , Pm}
of positive training instances, a setDn = {N1, · · · , Nn} of negative training instances,
and a set of test instances.

For each test instanceT , the DeEPs classifier uses the three procedures below to
discover border representations of the EPs from the training data.

1. Intersecting the training data with T : T ∩P1, · · ·,T ∩Pm andT ∩N1, · · ·,T ∩Nn.
We will discuss how to conduct intersection operation, usingneighborhood-based
intersectionmethod, when continuous attributes are present.

2. Selecting the maximal itemsets fromT ∩ P1, · · ·, T ∩ Pm, and similarly from
T ∩ N1, · · ·, T ∩ Nn. Denote the former collection of maximal itemsets asRp and
the latter asRn.

3.a Discovery of jumping emerging patterns. Mining those subsets ofT which occur
in Dp but not inDn, i.e., all the JEPs inDp (positive class), by takingborder
differenceoperation[{∅},Rp]− [{∅},Rn]. On the other hand, mining those subsets
of T which occur inDn but not inDp, i.e.,all the JEPs inDn (negative class), by
similarly takingborder differenceoperation[{∅},Rn] − [{∅},Rp].

3.b Discovery of common emerging patterns. Mining those subsets ofT which occur
in bothDp andDn, namely,commonT = [{∅},Rp]∩ [{∅},Rn], and then selecting
those itemsets whose supports change significantly fromDp to Dn or from Dn to
Dp. This step is optional, and is omitted if decision speed is important.

Using intersection and maximal itemsets to reduce volume and dimension of
training data . First, with the intersection operation in step 1, the dimension of the
training data is substantially reduced, because many values of the original training data
do not occur in the test instanceT . Second, with the maximal itemset selection step,
the volume of the training data is also substantially reduced since itemsetsT ∩ Pi

are frequently contained in some other itemsetsT ∩ Pj . Then,Rp can be viewed as a
compressedDp, andRn a compressedDn. We use the mushroom dataset to demonstrate
this point. The original mushroom data has a volume of 3788 edible training instances,
with 22 attributes per instance. The average number of items (orlength) of the 3788
processed instances (by intersection with a test instance) is 11, and these processed
instances are further compressed into 7 maximal itemsets. Thus we have achieved a
reduction from 3788 to 7 in volume and from 22 to 11 in dimension in the mushroom
data. Table 2 of Section 1 also briefly illustrated this 2-directional sparsifying effect.
Therefore, this data reduction mechanism narrows our search space. This compression
effect is made possible by the instance-based learning approach and it lays a foundation
for the high accuracy and high efficiency of DeEPs.

Using border algorithms to efficiently discover EPs. Step 3.a is used to efficiently
discover the JEP border representations. Note that<{∅},Rp> or <{∅},Rn> can still
represent large collections of sets, despite the tremendous effect of reduction as dis-
cussed above. To enumerate all itemsets covered by these borders is costly. Theborder
differenceoperation avoids the expensive enumeration, by manipulating the boundary
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elementsRp andRn, to output<jumpLp, jumpRp> or <jumpLn, jumpRn> as a
succinct border representation of the discriminating features (JEPs) ofT in the positive
class or in the negative class. The border difference operation itself is reviewed later
in Section 4. Similarly, by manipulating the boundary elements inRp andRn, we can
representcommonT by the border<{∅}, commonR>. The above three borders are
border representations of the EPs that DeEPs needs.

Neighborhood-based intersection of continuous attributes. For datasets contai-
ning continuous attributes, we need a new way to intersect two instances. We introduce
a method calledneighborhood-based intersection. It helps select the most relevant in-
formation from the training instances for classifying the test instanceT , and avoids
pre-discretizing the training instances. Supposeattri A is a continuous attribute and
its domain is[0, 1]. (We can normalize allattri A values in the training instances to
the range of[0, 1] if its domain is not[0, 1].) Given a test instanceT and a training
instanceS, T ∩ S will contain theattri A value ofT , if the attri A value ofS is
in the neighborhood[a1 − α%, a1 + α%], wherea1 is the normalizedattri A value
for T . The parameterα is calledneighborhood factor, which can be used to adjust the
length of the neighborhood.

We observed that different neighborhood factorsα can cause accuracy variance, alt-
hough slight, on the test data. Whenα is too large, it may happen that many originally
different instances from different classes can be transformed into an identical binary
instance; consequently, the inherent discriminating features among these instances dis-
appear.Whenα is too small, nearly identical attribute values may be considered different,
and thus useful discrimination information in the training data might be missed. Briefly,
we select a suitableα for each dataset by using part of training data as a guide; the details
are given in [10]. This is also a research topic in our future work.

3.2 Selecting the More Discriminating EPs
We observed that the number of JEPs (or optional EP candidates) that occur in a test
instance is usually large (e.g., of the order of106 in mushroom, waveform, ionosphere,
and sonar data). It is expensive to aggregate the contributions of all those EPs. To
solve this problem, we select more discriminating EPs by taking advantage of border
representation of EPs: We select the mostgeneralJEPs among all JEPs, namely those in
jumpLp andjumpLn, as the necessary EPs, and select itemsets in the right bound of
commonT , namelycommonR, as optional EPs. By the mostgeneralJEPs, we mean
that their proper subsets are not JEPs any more. Partial reasons of this selection are given
in [9]. Whether the optional EPs are used depends on how much time a user is willing
to spend in classifying instances. With less time, we only select those EPs that must be
included; with more time, we can consider the optional EPs for inclusion.

3.3 Determining Collective Scores for Classification
We determine the collective score ofT for any specific classC by aggregating the
supports of the selected EPs in classC, using ourcompact summationmethod.

Definition 2. The compact summation of the supports inDC of a collection of sel-
ected EPs is defined as the percentage of instances inDC that contain one or more
of the selected EPs; this percentage is called thecompact scoreof T for C, that is,
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compactScore(C) = countDC
(SEP )

|DC | , whereSEP is the collection of selected EPs and
countDC

(SEP ) is the number of instances inDC that contain one or more EPs in
SEP .

The main purpose of this aggregation is to avoid counting duplicate contribution of
training instances.

DeEPs makes the final decision only when the compact scores, formed by compact
summation, for all different classes are available. Then the DeEPs classifier will simply
assign toT the class for whichT ’s score is largest. We use majority rule to break ties.

3.4 Handling Datasets Containing More than Two Classes
We have already discussed how DeEPs is applied to the problems with two classes. In
the following, the DeEPs classifier is generalized to handle more classes. For example,
given a test instanceT and a training database containing 3 classes of dataD1, D2, and
D3, we only need to discover the border representation of the JEPs (and optionally EPs)
from (D2 ∪ D3) to D1, those from(D1 ∪ D3) to D2, and those from(D1 ∪ D2) to D3.
The compact scores for these three classes can be calculated based on three groups of
the boundary EPs. We choose the class in which the biggest compact score is obtained
asT ’s class label.

4 Algorithms for DeEPs
We need three algorithms,maxSelector, intersecOperation, anddiffOperation
[11], for DeEPs to find the desired EPs.maxSelector is used to select the maximal ones
from a collection of sets.intersecOperation anddiffOperation are used to conduct
border intersectionandborder differencerespectively; they are needed to discover border
representations ofcommonT and of JEPs. As the latter two algorithms only manipulate
the bounds of borders to handle huge collections, they are highly efficient and scalable
in practice.

The diffOperation algorithm [11] is essential to the efficiency of DeEPs. It is
used to discover the border representation of the JEPs ofT in each class. Given two
borders<{∅},R1> and<{∅},R2>, theborder differenceoperation, implemented by
diffOperation, is used to derive the border of[{∅},R1] − [{∅},R2].

More details about these three algorithms can be found in [11,5] and in our technical
report [10].

5 Performance Evaluation: Accuracy, Speed, and Scalability
We now present the experimental results to demonstrate the accuracy, speed, and scalabi-
lity of DeEPs. We have run DeEPs on 40 datasets taken from the UCI Machine Learning
Repository [2]. The accuracy results were obtained using the methodology of ten-fold
cross-validation (CV-10).These experiments were carried out on a 500MHz PentiumIII
PC, with 512M bytes of RAM.

5.1 Pre-processes
The experiment’s pre-processes include: (i) download original datasets, sayD, from
the sources; (ii) partitionD into class datasetsD1,D2, · · · ,Dq, whereq is the num-
ber of classes inD; (iii) randomly shuffle eachDi, i = 1, · · · , q, using the function
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random shuffle() in Standard Template Library [4]; (iv) for eachDi, do CV-10 par-
tition; (v) if there exist continuous attributes, scale all the values in the training datasets
of each attribute into the values in the range of[0, 1], and then use the same parameters
to scale the values in the testing datasets. This step is used to prepare forneighborhood-
based intersection of continuous attributesand to prepare for the conversion of training
datasets into binary ones. In this paper, we use the formulax−min

max−min to scale every
valuex of the attributeattri A, wheremax andmin are respectively the biggest and
the smallest values ofattri A in thetraining data.

5.2 Accuracy, Speed, and Scalability

We compare DeEPs with five other state-of-the-art classifiers: C4.5 [15], Naive Bayes
(NB) [7], TAN [8], CBA [12], and LB [13].

Table 3reports results of the experiments. Column 1 lists the name of the datasets;
column 2 lists the numbers of instances, attributes, and classes; columns 3 and 4 present
the average accuracy of DeEPs, when the neighborhood factorα is fixed as 12 for all
datasets, and respectively whenα is dynamically selected within each dataset (as explai-
ned in [10]). Note that for the datasets such as chess, flare, nursery, splice, mushroom,
voting, soybean-l, t-t-t, and zoo which do not contain any continuous attributes, DeEPs
does not needα. Columns 5, 6, 7, 8, and 9 give the accuracies of CBA, C4.5, LB, NB,
and TAN respectively; these results are exactly copied from Table 1 in [13] for the first
21 datasets. For the remaining datasets, we select for CBA and C4.5 thebestresult from
Table 1 of [12]. A dash indicates that we were not able to find previous reported results
and “N/A” means the classifier is not applicable to the datasets. The last column gives
the average time used by DeEPs to test one instance.

The results for DeEPs were obtained by selecting only the left bounds of JEPs,
without selecting any optional EPs. Our experiments also show that selecting optional
EPs can increase accuracy but degrade speed.

We now discuss the case when the neighborhood factor is fixed as 12 for all datasets.
We highlight some interesting points as follows:

– Among the first 21 datasets where results of the other five classifiers are available,
DeEPs achieves the best accuracy (the numbers in bold font) on 9 datasets. C4.5,
LB, NB, and TAN achieve the best accuracy on 3, 5, 4 and 3 datasets respectively.
It can be seen that DeEPs in general outperforms the other classifiers.

– For the remaining 16 datasets where results of CBA and C4.5 are available, DeEPs
achieves the best accuracy on 7 datasets. CBA and C4.5 achieve the best accuracy
on 6 and 3 datasets respectively. In addition, DeEPs can reach 100% accuracy on
mushroom, 99.04% on nursery, and 98.21% on pendigits.

Discussions on speed and scalability of DeEPs can be found in our technical report
[10] and omitted here for space reasons.

6 Related Work
CAEP [6] and the JEP-Classifier [9] are two relatives to DeEPs. The former two are
eager-learning based approaches, but DeEPs is instance-based. For more comparison,
the readers are refered to [6,9,10].
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Table 3.Accuracy Comparison.

Datasets #inst, attri, class DeEPs CBA C4.5 LB NB TAN time (sec.)
α = 12 dynamicalα

australian 690, 14, 2 84.78 88.41* (5) 85.5184.2885.6585.6585.22 0.054
breast-w 699, 10, 2 96.42 96.42 (12) 95.2895.4296.8697.00 N/A 0.055
census-inc 30162, 16, 2 85.93 85.93* (12) 85.67 85.4 85.1184.12 N/A 2.081
chess 3196, 36, 2 97.81 97.81 98.12 99.5 90.2487.1592.12 0.472
cleve 303, 13, 2 81.17 84.21* (15) 77.2472.1982.1982.78 N/A 0.032
diabete 768, 8, 2 76.82 76.82* (12) 72.9 71.7376.6975.1376.56 0.051
flare 1066,10,2 83.50 83.50 83.1181.1681.5279.4682.64 0.028
german 1000, 20, 2 74.40 74.40 (12) 73.2 71.7 74.8 74.1 72.7 0.207
heart 270, 13, 2 81.11 82.22 (15) 81.8776.6982.2282.2283.33 0.025
hepatitis 155, 19, 2 81.18 82.52 (11) 80.2080.00 84.5 83.92 N/A 0.018
letter 20000, 16, 26 93.60 93.60* (12) 51.76 77.7 76.4 74.94 85.7 3.267
lymph 148, 18, 4 75.42 75.42 (10) 77.3378.3984.5781.8683.76 0.019
pima 768, 8, 2 76.82 77.08* (14) 73.1 72.5 75.77 75.9 75.77 0.051
satimage 6435, 36, 6 88.47 88.47* (12) 84.85 85.2 83.9 81.8 87.2 2.821
segment 2310, 19, 7 94.98 95.97* (5) 93.51 95.8 94.1691.8293.51 0.382
shuttle-small 5800, 9, 7 97.02 99.62* (1) 99.48 99.5 99.38 98.7 99.64 0.438
splice 3175, 60, 3 69.71 69.71 70.03 93.3 94.6494.6494.63 0.893
vehicle 846, 18, 4 70.95 74.56* (15) 68.7869.82 68.8 61.1270.92 0.134
voting 433, 16, 2 95.17 95.17 93.5495.6694.7290.3493.32 0.025
waveform 5000, 21, 3 84.36 84.36* (12) 75.34 70.4 79.4378.5179.13 2.522
yeast 1484, 8, 10 59.78 60.24* (10) 55.1 55.7358.1658.0557.21 0.096

anneal 998, 38, 6 94.41 95.01 (6) 98.1 94.8 – – – 0.122
automobile 205, 25, 7 67.65 72.68 (3.5) 79.00 80.1 – – – 0.045
crx 690, 15, 2 84.18 88.11* (3.5) 85.9 84.9 – – – 0.055
glass 214, 9, 7 58.49 67.39 (10) 72.6 72.5 – – – 0.021
horse 368, 28, 2 84.21 85.31* (3.5) 82.1 83.7 – – – 0.052
hypo 3163, 25, 2 97.19 98.26 (5) 98.4 99.2 – – – 0.275
ionosphere 351, 34, 2 86.23 91.24 (5) 92.1 92.00 – – – 0.147
iris 150, 4, 3 96.00 96.67* (10) 92.9 95.3 – – – 0.007
labor 57, 16, 2 87.67 87.67* (10) 83.00 79.3 – – – 0.009
mushroom 8124, 22, 2 100.0 100.0 – – – – – 0.436
nursery 12960, 8, 5 99.04 99.04 – – – – – 0.290
pendigits 10992, 16, 10 98.21 98.44 (18) – – – – – 1.912
sick 4744, 29, 2 94.03 96.63 (5) 97.3 98.5 – – – 0.284
sonar 208, 60, 2 84.16 86.97* (11) 78.3 72.2 – – – 0.193
soybean-small 47, 34, 4 100.0 100.0* (10) 98.0098.00 – – – 0.022
soybean-large 683, 35, 19 90.08 90.08 92.23 92.1 – – – 0.072
tic-tac-toe 958, 9, 2 99.06 99.06 100.0 99.4 – – – 0.032
wine 178, 13, 3 95.58 96.08* (11) 91.6 92.7 – – – 0.028
zoo 101, 16, 7 97.19 97.19 94.6 92.2 – – – 0.007

Both being instance-based, DeEPs and the k-nearest-neighbor (k-NNR) classifier [3]
are closely related. Their fundamental differences are: k-NNR uses the distances of the
k nearest neighbors of a test instanceT to determine the class ofT ; however, DeEPs
uses the support change of some selected subsets ofT .
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7 Conclusions
In this paper, we have proposed a new classifier, DeEPs. The DeEPs classifier uses the
instance-based, lazy approach to the mining of discriminating knowledge in the form of
EPs. This strategy ensures that good representative EPs that are present in a new instance
can be efficiently found and can be effectively used for classifying the new instance. Our
experimental results have shown the classification accuracy achieved by DeEPs is very
high. Our experimental results also have shown DeEPs’ decision is quick and DeEPs is
scalable over the number of training instances and nearly scalable over the number of
attributes in large datasets.
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