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Abstract. Time series are time-stamped sequences of values which re-
present a parameter of the observed processes in subsequent time points.
Given a set of time series describing a set of similar processes, the model
of the behavior of processes is constructed as a range of classification
trees which describe the characteristics of each particular time point in
series. An algorithm for matching a sequence of values with the model
is used for searching common patterns in the sets of time series, and for
predicting the starting time points of undated time series. The algorithm
was developed and analyzed in the frame of the study of tree-ring time
series. The implementation and the empirical analysis of the algorithm
on the tree-ring time series are presented.

Keywords: Data mining, knowledge discovery, time-series, matching,
and pattern recognition.

1 Introduction

A set of processes can be observed by studying the values of a particular pa-
rameter of processes measured in the subsequent time points. The sequence of
values of the parameter for a particular process is called a time-series. The be-
havior of the processes recorded in time series can be revealed by investigating
the characteristic features of the time series.

A considerable research effort has been directed recently to the development
of methods for matching characteristic patterns in time series databases [2,7,
1,8,5]. The methods vary in the representation techniques for time series, the
algorithms for measuring similarity between the time series, and in the search
mechanisms used for mining the patterns. The problem which is related to mat-
ching subsequences in time series databases is the discovery of common patterns
from a set of time series [13,9]. This problem has to our knowledge received
less attention by KDD community, although it is of importance in practice for
identifying the common characteristics of similar processes in applications such
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as monitoring and diagnosing complex systems, stock market data analysis, and
medical diagnosis.

In this paper we address the problem of finding the common characteristics of
the time series which describe a set of similar processes. Our main contribution
is the proposal of a new algorithm for matching sequences of values with a set
of time series. The problem is seen as a machine learning problem [10]. Given a
description of a domain in the form of a set of training instances (time series), a
theory is constructed which describes the characteristic properties of the domain.
The representation of the theory is based on the “local” properties of time points
— the time points are described by the characteristics of values which occurred
close to the described time point. The algorithm for matching a sequence of
values with the sets of training time series is realized as the procedure for the
characterization of new instances by means of the computed theory. We show in
the paper that the algorithm can be employed for mining the common patterns
in a set of time series, and for determining the matching time points (dating) of
the undated sequence of values.

The rest of the paper is organized as follows. The following section presents
the matching algorithm. First, the problem of matching a sequence of values
with the set of time series is defined formally. Section 2.1 presents the procedure
for the construction of domain theory from the sets of time series. Further,
the algorithm for matching sequences of values against the theory is detailed
in Section 2.2. The experiments with the matching algorithm on tree-ring time
series are described in Section 3. The results of the experiments show that the
algorithm can be effectively used for dating tree-ring time series, a method which
is important for revealing the past climatic and other environmental conditions,
and for identifying the characteristic patterns in the behavior of a set of trees.
Section 4 gives an overview of the related work and its relations to the presented
work. Finally, the concluding remarks are given in Section 5.

2 Algorithm

A set of time series representing the values of a parameter of similar processes
is called a domain. The method for matching a sequence of values with a set of
time series is divided into two parts. First, the theory of domain is constructed,
and, second, the matching algorithm is used to determine the time points in the
time period of domain where an input sequence of values matches the domain
with a given precision. Let us now define the terminology used in the paper and
formally define the problem.

A time series s = (v1, . . . , vn) is a sequence of real numbers vi which describe
a property of entities from the domain in the subsequent time points. The time
interval between the subsequent events is constant, that is, t(vi+1) = t(vi) + δt
where δt depends on the particular application domain. The application domain
is described by a set of time series D = {s1, . . . , sm}. Each time series si ∈ D
and si = (vi1, . . . , vin) has n values with time points t(vij) = tj .
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The problem of matching sequences of values with the set of time series is
defined as follows. Let D be a domain as defined above, and let su = (u1, . . . , ur)
be a sequence of values where the time points t(ui) are not known. The mat-
ching procedure must find the time point tj ∈ [t1..tn] such that the sequence
su matches with the domain D starting at the time point tj . Let us now detail
the construction of the theory T describing the features of the domain, and the
algorithm for matching a sequence of values su with D by the use of theory T .

2.1 Construction of Domain Theory

The application domain D = {s1, . . . , sm} can be seen through the sequence of
time points t1, . . . , tn for which the values of each time series si are specified.
Given a time point tj ∈ [t1..tn], there exist one value si[tj ] (or, vij) for each time
series si ∈ D at time point tj . The set of values of time series in a particular time
point is denoted as D[tj ]. Formally, D[tj ] = {si[tj ]| i ∈ [1..m]∧ si ∈ D}. Further,
the values of time series from D in subsequent time points tj , . . . , tj+w is the
projection of D on the given sequence of time points resulting the subsequences
of time series from D. The projection of D on the time points tj . . . tj+w is defined
as D[tj ..tj+w] = {(si[tj ], . . . , si[tj+w])| i ∈ [1..m] ∧ si ∈ D}. The projection
D[tj ..tj+w] is called a window of D and w is the size of window.

...
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1800
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Classifiers
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Time
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Windows

Fig. 1. Rules: a) learning cases, b) construction of classifiers.

The main idea used for the construction of the domain theory is to describe
the characteristics of each particular time point in the domain by the properties
of the values which are local with regards to the described time points. In other
words, a time point tj can be described by the characteristics of values which
appeared some time before tj , the values which appeared at tj and some time
after tj . The values that are close to a time point tj include the values from the
window D[tj−bw/2c..tj+bw/2c|] where w is the size of window. The windows of time
series and the corresponding central time points are illustrated in Figure 1a.

Each window projected from the domain D is extended by adding to each
subsequence from the window the time point of the central value of subsequence
— such windows will be called dated windows D∗. The dated windows are used
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as the basis for the construction of the classifiers for the time points of central
values. More particularly, a range of dated windows is used as the input dataset
of a program for the construction of classifiers. Formally, a dataset is defined
as

⋃
j∈[b..(b+d)] D∗[tj−bw/2c..tj+bw/2c] where w is the size of window, d is the

number of windows in the range, and b is the index of the central time point of
first window. The construction of the range of dated windows is illustrated by
Figure 1a.

The time series from D can now be split into the overlapping partitions which
are used for the definition of datasets. Splitting of the set of time series from the
domain into partitions is illustrated by Figure 1b. Each dataset is used as the
input of the program for the construction of a classifier. Note that the classifiers
are in Figure 1b denoted by labels Ci. Each particular classifier describes the
properties of a range of time points. The complete set of time points of the
domain D is split into non-overlapping subsets such that each of them is covered
by one of the classifiers.

2.2 Matching Algorithm

Let D = (s1, . . . , sm) be a domain such that the time series si are defined for the
time points t1, . . . , tn. Further, let C1, . . . , Ce be the set of classifiers constructed
with windows of length w. The number of classifiers in the set is e = bn/cc where
c is the number of predicted classes by one classifier. Finally, let su = (u1, . . . , ur)
be a sequence of values. The task of the matching algorithm is to find the time
point tj ∈ [t1..tn] of the first value u1 of the sequence su such that the sequence
su matches with D starting at tj . The precision of matching is specified by the
set of parameters which will be presented shortly.

The matching algorithm extracts all possible windows of length w from the
input sequence su. Each of the extracted windows is classified by each of the
available classifiers. If the accuracy of the prediction is better than the predefined
constant Tg then the prediction is called a guess. After a guess is obtained, it
is verified using all other windows from su. The number of predictions which
match the initial guess and the collective probability of matching is computed.
A prediction which confirms with the initial guess will be in the sequel called a
hit. In the case that the number of hits is higher than the predefined constant Th,
and at the same time, the collective probability of the match is higher than the
predefined constant Tm, then we say that the sequence su matches the domain D
in the predicted time point. The algorithm which implements the above sketched
procedure is presented as follows.

Algorithm 1.
Input: Sequence of values su = (u1, . . . , ur) and a range of

classifiers R = (C1, . . . , Ce).
Output: Predictions (g, pg) for the starting time points of su.
Method:
1. foreach ( window o ⊂ su ) do
2. foreach ( classifier Ci ∈ R ) do
3. (g, pg) = predict(o, Ci);
4. if ( pg > Tg ) then
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5. (h, ph) = compute hits(R, su, g);
6. if ( h > Th ∧ ph > Tm ) then
7. print match(g, pg);
8. fi;
9. od;

We will now comment the above algorithm. The first foreach loop at line 1
iterates through all windows o extracted from su. Each of the windows o is
classified by each of the classifiers from R using the function predict(o, Ci) in
line 3. The result of a prediction is a pair (g, pg) where g is predicted time point
of the first value of su and pg is the probability that g is correct. In the case that
pg is greater than the threshold Tg (line 4) than g is a guess and the number
of confirmations of the guess (hits) is computed in the line 5. This is done by
classifying all the remaining windows of su. The procedure for the computation
of the confirmations of guess is detailed by Algorithm 2. The threshold Th defines
the required number of confirmations of guess g and the threshold Tm defines
the required collective probability for matching.

Algorithm 2.
Input: A set of classifiers R = (C1, . . . , Ce), a sequence of values

su = (u1, . . . , ur), and a guess g.
Output: Number of hits h and collective probability ph.
Method:
1. function compute hits(R, su, g);
2. begin
3. hits = 0; sump = 0;
4. foreach ( window o ⊂ su ) do
5. (p, pp) = classify(o, R, g);
6. if ( g = p ) then
7. hits = hits + 1;
8. sump = sump + pp;
9. fi;
10. od;
11. return( hits, sump/(r − w + 1) );
12.end;

The algorithm 2 verifies the guess g using all possible windows from su (line
4). In line 5 each window is classified using the function classify(o, R, g). The
classifiers which are used for the computation of the prediction are selected with
respect to the guess g — we suppose that g represents the correct matching point
and fix the position of su within the time interval of the domain D with respect
to the time point of the guess g. The result of the function classify is the time
point p of the first value of su and the probability pp that p is correct. Finally,
the number of hits and the sum of matching probabilities are augmented in lines
6-9 if prediction p agrees with the guess g. The collective probability returned
by the function is the average matching probability, that is, sump divided with
the number of classifications (r − w + 1).
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3 Analysis

The algorithm for matching sets of time series has been developed and analyzed
in the frame of the study of tree-ring time series. The algorithm was implemen-
ted using the C5.0 knowledge discovery tools [15] and the Perl programming
language. In this section we present the application domain, the implementation
of matching algorithm, and the analysis of matching algorithm on the tree-ring
time series. Two applications of the matching algorithm are analyzed: dating of
sequences, and pattern discovery. Let us first present the tree-ring application
domain, and the procedure for the acquisition of tree-ring data.

3.1 Tree-Ring Domain

The tree-ring time series are the sequences of values which represent the annual
increments of the tree trunks measured on cross sections obtained after the tree
is cut. The cross sections are taken from a stem height of 1.3 m. The annual
radial increments are measured along eight equidistant measurement radii with
a computer assisted image analysis system. The series used are the quadratic
means of the eight measurements.

The tree-ring time series used in the experiments presented in the following
sections are obtained from 50 European beech (Fagus sylvatica) sample trees
from two geographical areas in Germany. The initial tree-ring measurement series
have been detrended in order to eliminate individual tree specific variations in
the time series. The result of this standardization procedure are normalized time
series which are stationary in their mean and variance.

Tree rings reflect various influences of the environment on the growth of trees
such as, for example, the climatic changes, the characteristics of the ground, or
the events such as floods. A field of science which uses tree rings to analyze
temporal and spatial patterns of processes is Dendrochronology [4]. The most
widely used method for the study of tree-rings in Dendrochronology is called
cross-dating [11]. The method has been effectively used to reconstruct the past
climate for more thousands years.

3.2 Construction of Domain Theory

The domain which includes 50 tree-ring time series was split into two parts: the
training time series (80%) and the test time series (20%). The analysis presented
in this section is done on the set of training time series. The domain theory was
constructed from the training time series as presented in Section 2.1. The test
data was used for the experiments which are presented in the following two
sections.

The decision trees were constructed using the C5.0 data mining tool. The
rules extracted from the decision trees are used as the domain theory. The clas-
sifiers were built using the boosting technique [15]. Further, the cross-validation
method was used for the estimation of the classification accuracy of the domain



Algorithm for Matching Sets of Time Series 283

20

30

40

50

60

10

19801860

20

30

40

50

0
1860 1980

10

10

20

30

40

50

0
1860 1980

10

20

30

40

50

0
1860 1980

a)

b)

c)

d)

Fig. 2. Error rates of classifiers (in percents) constructed using the windows of size: a)
5, b) 10, c) 20, and d) 30.

theory. The results of the experiments with the construction of the domain theo-
ries are presented in Figure 2. In most cases 1-4 rules were computed for each of
the time points. A typical example of a set of rules describing a time point 1900
is as follows.
irp7 > 3.086, irp9 > 2.693, irp10 > 3.071, irp14 > 3.526 -> class 1900 [0.965]
irm10 > 2.861, irp10 <= 3.071, irp13 <= 3.267 -> class 1900 [0.916]
irm5 <= 2.835, irm3 <= 2.979, irp10 > 3.071 -> class 1900 [0.748]

The attributes in rules are named as follows. An attribute named irmX repre-
sents the value of an instance in a time point which occurred X time points
before the central time point. Similarly, an attribute named irpX represents the
value of an instance in a time point which occurred X time points after the
central time point. The classification accuracy of a rule is specified in the square
brackets at the end of rule. A rule is typically based on 2 to 4 attributes.

3.3 Dating

The problem of dating sequences of values is defined as follows. Given a set of
time series and an undated sequence of values, the time point t of the first value
of undated sequence has to be found such that the undated sequence matches
the set of time series at time point t with a given precision.

The experiments with dating were done by using 40 time series for the con-
struction of the theories, and 10 time series as the basis for the generation of
test sequences. The length of time series from the domain is from 100 to 250.
For the construction of the theories we used 110 subsequent time points (years)
which were defined for all time series. Further, four different theories were built
for the experiments, each of them with a different size of the window used for
the construction of the classifiers — the window sizes used were 5, 11, 21, and
31. The test sequences of lengths 21, 31, 51, and 71 were extracted from 10
test time series. The starting points of test sequences where chosen at random.
In the experiments we dated each test sequence from the above described four
groups of 10 sequences using different theories. For each run of the algorithm
we collected the actual and predicted year of first value in the sequence, the
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Table 1. Evaluation of matching algorithm for tree-ring dating

SeqL WinL NumM AvgH MinH MaxH AvgGP AvgMP
21 5 9 75.82 52.94 94.12 0.88 0.64
31 5 7 73 59.26 92.59 0.88 0.58
51 5 8 71.53 53.19 91.49 0.89 0.56
71 5 8 72.39 55.22 89.55 0.87 0.57
21 11 5 87.27 72.72 100 0.94 0.77
31 11 8 82.14 61.90 100 0.92 0.64
51 11 10 78.78 53.66 97.56 0.92 0.61
71 11 10 79.34 59.02 98.36 0.86 0.62
31 21 6 97 90.91 100 0.90 0.81
51 21 9 87.45 64.52 100 0.92 0.68
71 21 10 84.51 58.82 100 0.93 0.67
51 31 9 93.14 76.19 100 0.90 0.71
71 31 10 90.97 65.85 100 0.92 0.70

number of hits which confirmed the match, the probability of the first guess and
the collective probability of the match. Table 1 presents the results compressed
in a single line for each group of ten test sequences of the same length. For each
group we present: the length of sequences (SeqL); the size of window used for
the construction of theory (WinL); the number of correct matches (NumM); the
average, minimum and maximum number of hits (AvgH, MinH, and MaxH) ex-
pressed in percentages; the average probability of a guess (AvgGP) that leaded
to matching; and the average collective probability of a correct match (AvgMP).

The parameters of Algorithm 1 which define matching of a sequence with the
theory were as follows. The required percent of classifiers which agreed on the
prediction Th were 50%, the required probability of the initial guess Tg was 80%,
and the required collective probability of the match Tm was 40%. Note that the
thresholds Th and Tm were set relatively low in order to allow the matchings
based on the partial agreement between the subsequence and the theory; the
values of AvgH in Table 1 denote the average proportion of the agreement by
matchings. Finally, the prediction supported with the largest number of hits is
chosen among the results of Algorithm 1.

The percentage of correctly dated test sequences in the complete set of ex-
periments is 83.8%. However, the available set of time series describe the trees
from 2 different geographical areas which may be one of the reasons for 16.2%
incorrectly dated cases. This claim is supported by the fact that the incorrectly
dated subsequences are, in many cases, extracted from the distinctive subset of
10 test time series.

3.4 Pattern Recognition

In this section we present the application of matching algorithm for pattern
recognition. The patterns are represented as short sequences of values which
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capture the characteristics behavior of the observed parameter. The patterns
which are used in the experiments are drawn in Figure 3. While the sequences are
very specific representations of patterns, the rules which describe the properties
of the time points are general — there are only a few rules which describe a
particular time point. For this reason, the matching algorithm can find general
patterns which are supported by a subset of time series from the domain.

The patterns which are used in the experiments on the tree-ring data are of
length 5, 7 and 9 (years). We consider that in this domain the selected length
of patterns (sequences) can capture the characteristic episodes in the growth of
trees which may be the effects of the conditions in the environment. The first
line of patterns represents temporarily defeated growth of the trees. The second
and the third lines represent simple steps. Finally, the last line presents pattern
where the growth rate of trees increases temporarily and than again decreases
in the second part of the interval to the initial rate.

Fig. 3. Examples of patterns.

The theory which is constructed using the window of size 5 is used in all
experiments. Because of the low classification accuracy of the complete theories
constructed with the window of length 5 (Section 3.2), we used considerable
high threshold for the collective probability of match (70%) as well as the high
threshold for the required number of hits for a match (90%). Notice that the
high threshold for the collective probability of match implies high accuracy of
rules triggered for each particular time point in the pattern.

Let us now describe the results of the experiments presented in Table 2.
The columns of the table represent: the pattern number (PatN), the length
of the pattern (PatL), the number of matchings of the pattern with the theory
(NumM), the average probability of guesses which leaded to matching (AvgGP),
the average collective probability of the match (AvgMP), and the list of time
points (TPts) where the pattern appeared. The pattern number stated in Table
2 represents the ordering number of patterns from Figure 3. The ordering of
patterns is from left to right and then from the first to the fourth line (pattern
number 1 is in the upper left corner). Finally, note that the number of hits
obtained in matchings is not presented in the table since all possible hits were
achieved for each matching.

The algorithm found from 3 to 8 instances of each pattern of length 5 in
the domain. We can observe from the values of the column TPts that in some
cases the neighboring patterns (horizontally in Figure 3) appear on the same
time point which means that the occurrence of the pattern is more general. An
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Table 2. Evaluation of matching algorithm for pattern recognition

PatN PatL NumM AvgGP AvgMP TPts
1 5 8 0.89 0.89 1880,1888,1896,1912,1918,1929,1937,1963
2 5 7 0.86 0.86 1880,1888,1896,1929,1937,1948,1956
3 7 2 0.97 0.87 1896,1929
4 7 3 0.92 0.78 1900,1911,1921
6 9 2 0.94 0.81 1901,1912
7 5 5 0.91 0.91 1881,1889,1905,1913,1930
8 5 3 0.87 0.87 1889,1905,1913
9 7 3 0.88 0.85 1881,1930,1939
11 9 2 0.91 0.78 1898,1931
13 5 7 0.89 0.89 1892,1900,1911,1921,1928,1936,1953
14 5 4 0.89 0.89 1900,1928,1945,1955
15 7 5 0.93 0.78 1892,1900,1921,1936,1962
19 5 5 0.83 0.83 1884,1890,1899,1903,1926
20 5 4 0.85 0.85 1873,1884,1916,1926
21 7 2 0.93 0.79 1916,1932
22 7 3 0.92 0.86 1926,1931,1940

example when the similar patterns of the length 5, 7 and 9 are matched is the
step represented by patterns 7, 9 and 11. The steps of length 5 and 7 appear
in the year 1930 while the step of length 9 appears in the year 1931. The shift
of one year in the central points of patterns appears because the steps are on
the right side of the central time point in the patterns 7 and 9 while the step
is on the left side of the center in the pattern 11. The patterns of length 7 and
9 are less frequent than the patterns of length 5. This reflects the nature of the
processes — stable patterns in in the growth rate of trees are expected to appear
only in the period of few years.

The study of the occurrences of the patterns in the data showed the corre-
spondence between the collective probability of the match, and the support of
the pattern in the data. The higher the collective probability is more the pattern
is supported by the domain. Still, the support of the patterns in the data varies.
The computation of more accurate estimation for the support of patterns in data
would require the information about the support in data for each particular rule
triggered for the time points of patterns.

4 Related Work

We distinguish between two types of methods for matching subsequences of time
series. Firstly, a considerable research interest has been directed recently to the
development of methods for matching subsequences in time series databases.
These methods are defined to identify subsequences in particular time series. Se-
condly, methods for discovering characteristic subsequences of sets of time series
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have been recently proposed. These methods deal with the common features of
sets of time series and not with the characteristics of the individual time series.

Let us first overview the methods for matching subsequences in time series
databases and their relations to the proposed algorithm. As pointed out in [8],
the methods differ in the representation of the time series, the comparison of time
series, and in the search mechanisms. The representations of the time series used
by the methods are: the normalized series [2], the representation based on the
feature space obtained by Discrete Fourier Transformation [7], the piecewise li-
near models [8], and the piecewise linear models augmented with weights [9].
The methods for the identification of similar time series are: a simple distance
function [2], the probabilistic method for the computation of the similarity mea-
sure [8], Euclidean distance between the time series [7], and the longest common
subsequence of two series [6]. The search methods which were recently proposed
for matching subsequences in time series databases are based on: the dynamic
programming technique [2], the sequential scan for pattern identification [8], and
the index data structures based on feature representation of time series [7,8].

Let us now present some of the approaches to the discovery of the common
characteristic of the set of time series. The most widely known approach to
the identification of the common subsequences of the set of time series is the
algorithm for finding the longest common subsequences [13]. This algorithm
has been used recently for the computing the similarity of sequences [6,12]. The
main disadvantage of the algorithm is its exponential space and time complexity.
Finally, a method for the identification of distinctive time series from the set of
time series by using clustering has been introduced recently in [12].

5 Conclusions

An algorithm for matching sequences with the set of time series was presented in
the paper. The algorithm can be employed for locating the starting time points
of the undated sequences of values, and for locating the pattern templates which
are common to the set of sequences. The algorithm was successfully used for the
problems of dating and pattern recognition in tree-ring time series. We consider
that the matching algorithm is general enough to be effectively used for other
domains including stock market data, sensor data in engineering environments,
and medical measurements.
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