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Abstract. Considering a fuzzy knowledge discovery system we have edaliz

we describe here the main features of such systems. First, we consider possible
methods to define fuzzy partitions on numerical attributes in order to replace
contiruous or synbolic attributes by fzzy ones. We explain ¢éim how to
generalize statistical indexes to evaluate fuzzy rules, detailing a special index,
the intensity of implication and its generalization to fuzzy rules. We describe
then one algorithm use to extract fuzzy rules. Since many fuzzy operators are
available, we propose a method to choose one fuzzy conjunction, one fuzzy
implication and one fzzy aggregation, and we explain howstbhoice may be
validated by comparing the results of the Generalized Modus Ponens applied on
the premises of the examples to the effective conclusions in the database. To
reduce the important number of fuzzy rules extracted, we consider also some
methods to aggregate fuzzy rules, showing that usage of classical reduction
schemes requires specific choices of fuzzy operators.

1 Introduction

Knowledge discovery has been defined as "The non-trivial process of identifying
valid, novel, potentially useful, and ultimately understandable patternsin data" [9]. To
realize a set of knowledge discovery tools, one has some major choicesto achieve: the
discovery process may be supervised or not, knowledge representation may use
decisiontrees, asgmnation rules, neural networks, ... Having to design such tools, we
have chosen, for simplicity remss, a supervesl process and a knowledge
representation by rules. However, considering that rules using intervals on continuous
attributes are often fficult to interpret and that stt threshdds are often too abrupt,
we have decided to usezfry logics.

Fuzzy logics may be considered as extensions of multivalued logics, allowing
usage of intermediate truth-valuestween false and true [18]. They allow expression
of knowledge in a more natural way that classical binary logics, using graduated
attributes as in “X is rather high” (for “X is high" is rather true) ... Fuzzy logics offer
many logical oprators [12], which permits a gd expressiveness of various
knowledge forms. In this paper, we detail the primary operations needed to extract
fuzzy knowledge from a database.

First, usage of fuzzy logics in knowledge discovery needs to convert numerical
attributes to their fuzzy representations; for this, it is necessary to define for each
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classical attribute, a mapping from its possible values to a set of truth-values for each
fuzzy attribute. This mapping is often realized by a fuzzy partition, or rather by a
fuzzy pseudo partition, and it is then possible to translate classical attributes by
valuations on their fuzzy correspondents. These operations are called fuzzification.

To extract rules from a database, one needs to evaluate each possible rule in order
to establish which rules must be kept; for this purpose, many indexes are available, of
which we have only retained three indexes: the confidence of arule, its support and a
less usua index, called the intensity of implication. After recalling the principles of
these indexes, we expose how they can be evaluated in fuzzy logics.

It is then possible to use a knowledge extraction algorithm using the same
principles as in classical logics. Our algorithm is an exploratory search in a tree of
possible rules, with evaluation of each rule. Fuzzy logics also alow specific methods,
based on genetic algorithms, to search the most representative set of weights for a
genera set of fuzzy rules, but we will not consider this possibility here.

Several evaluations of the fuzzy logical operators are possible. If one only wants to
extract rules for a human expert, the nature of the operators does not matter, but if
these rules are to be processed by an expert system, a choice of fuzzy operators is
necessary. To find the most adequate set of fuzzy operators, we expose a justified
restriction to only four possible sets of fuzzy operators and we give a method to find
amongst them, the more consistent with a database.

To reduce the huge set of rules that can then be extracted, one may want to use
classical reduction schemes. We show that to be valid in a fuzzy logic, classical
reduction schemes need specific choices of fuzzy operators. We conclude by recalling
the interest to use fuzzy attributes instead of numerical intervals for continuous
attributes in the database, and by considering some possible improvements of the
systems we have described.

2 The Process of “Fuzzification”

2.1 Definition of Fuzzy Partitions

Let usfirst recall that fuzzy logics evaluate the truth-value of a fuzzy proposition “X
is A”, as the degree to which X belongs to the fuzzy set A: Truth(“X is A") = ta(X) ,
Ha(X) being the membership (or characteristic) function of the fuzzy set A.

Fuzzy sets alow definition of fuzzy C-partitions or "pseudo partitions' in which
each value of a continuous attribute may be classified into several fuzzy classes, with
a total membership of 1. These fuzzy pseudo partitions alow conversion of
continuous attributes into fuzzy ones, giving then the truth-value of fuzzy
propositions. For a continuous attribute CA, varying from minCA to maxCA, one can
define afuzzy pseudo partition several ways ([5], [13]).

The simplest method divides the interval [minCA, maxCA] in n sub-intervals, with
a small percentage of coverage between two adjacent ones, and to give each sub-
interval a symbolic name related to their position; for instance one may divide the
interval [minCA, maxCA] in 5 sub-intervals with an overlap of about 20%, giving
then 5 fuzzy attributes, attributes such as: strong negative, rather negative, medium,
rather positive and strong positiyEig. 1) .
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Fig. 1. A fuzzy C-partition (a =1, strong negative; a =2, rather negative; o =3, medium;
o =4, rather positive; a =5, strong positive).

The fuzzy classes may also be defined by the experts; otherwise one may propose 3
or 5 classes as standard options. Different numbers of classes may also be used, but a
too high number of classes risks to heavily sow down the knowledge discovery
process.

Another kind of method extracts the number of classes and defines the fuzzy C-
classes from the database. It considers the values of the attributes giving the same
conclusion and, when possible, cluster these values in the same fuzzy sets, with a
membership value equal to the rate of samples that give this conclusion. These
methods often use histograms of the values of the attributes for each possible
conclusion. Moreover, it is possible to conceive a more satisfactory method by
generalizing to fuzzy logics optimal discretization methods such as those studied in
[20].

2.2 Fuzzification of a Database

Once the fuzzy classes have been defined for each continuous attributes, one may
convert the related value of each item, by mapping this value to the membership
values of each fuzzy class defined for the corresponding classical attribute (Fig. 2).

AlUa(CA)
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Fig. 2. Mapping from the value V of the continuous attribute CA
into membership values of fuzzy attributes (here, only 13 and 14 are non zero).
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3 Evaluation of Fuzzy Rules

3.1 Indexesto Evaluate Classical Rules

Several indexes may be used to evaluate classical rules, and we have chosen three of
them: the confidence, the support and aless usual index, the intensity of implication.

The confidence of a rule "if a then b" expresses the conditional probability of b
when a is true; it may be evaluated by 71z 0b/71a, calling 7a0b the number of
itemsverifying aandb and 72« the number of items verifying a.

The support of arule “if a then b” may be defined as the rate of occurrences of
items verifying a and b related to all items of the database; so, the support of the rule
iS Ma0b/NE , with 71a Ob the number of itemsverifying aandb and 7E thetota
number of itemsin the database.

The intensity of implicatiois an index expressing the quality of arule. Thisindex,
defined by R. Gras and A. Larher [8], is based on simple probability concepts: since
the cardinalities of two subsets A and B are determined by the objects of the database
belonging to A and B, we consider two random subsets X and Y having respectively
the same cardinalities as A and B. The implication all b is characterized by the

relation 40 B and its counter examples are associated to the subset 4 n B . We
compare the cardinality of 4 n E; (given by the database) with the random variable
given by the cardinality of X nY , supposing that there is no link between X and Y
(Fig. 3). If the cardinality of 4 n B isunusually small compared to the expectation of
the distribution on the cardinalities of X n Y, we accept “if a then b” asarule.

Fig. 3. Xand Y vary randomly in E.

The intensity of all b is therefore the complement to one of the probability for the
random variable "cardinality of X n Y " to be smaller than cardinality of 4 n B. It
may be defined by

é(a,b) =1- P[Card(X nY) < Card(An F)] (1)
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cadling n=Card(E), n,=Card(4), n =Card(4), n,=Card(B),
n;=Card(B), n,,=Card(4n B), n ;=Card(An B), the random variable
Card(X n'Y) obeys an hyper geometric distribution [7]:
Ck Cn—nb -k _ Clrc,a HJ:’/&E -k

P[Card(An Y)=k]=—¢ nfn‘b”a —
Cn Cl’lb

2
and
Card(4nB) C, [ChE ™"

2 =
i=0 Chb
i2ng —np

P[Card(X n Y)< Card(A n B)] = 3

The intensity of implication has interesting properties [6]. First, its value increases
with the size of the learning set, while other indexes stay constant; some new counter-
examples for a strong implication do not change much its value, but progressively
doubts come, and finally a few more counter-examples cause its fall. This index is
also well adapted to noisy data since a small number of counter-examples does not
necessary invalidate the implication; it also proscribes rules such as a /7 b when
proposition b is true for nearly all examples of the learning set (since it is not
surprising then that nearly all examples with a true are examples with b true).

3.2 Adaptation of Classical Indexesto Fuzzy Rules

Two categories of indexes evaluate fuzzy rules; indexes based exclusively on fuzzy
set theory ([1], [13]) or indexes developed in classical logic and generalized to fuzzy
knowledge ([14], [16], [19]). Choosing this second class, we have generalized the
threeindexes for classical rules by applying a concept from fuzzy probability of fuzzy
events [17], for which the number of elements that satisfy a proposition |0 associated
to afuzzy set P with membership function £, is the crisp cardinality of the fuzzy set
P: Card(P) = 3 pr(x).
x0E

For a crisp implication a /7 b on two fuzzy propositions a and b, linked to fuzzy
sets A and B with membership functions i, and L, we generalize the three indexes by
using cardinalities of fuzzy setsinstead of cardinalities of crisps sets[2]. With afuzzy
conjunction T (T-norm) and afuzzy complement f4(x) =1- p4(x), one can write:

na=Card(A) = Y p(x), nd=Card(A)= 5 pd(x)= ¥ (1- a(x)),
_ xOE xOE xOE
nB=Card(B)= Y uB(x) = S (1-us(x)),
xOE AIE

nAnB=Card(An B)= Y udn B(x) = 3 T(uA(x), uB(x)))
xOE xUOE

nanB=Card(An B)= S an B(x)= ¥ T(ua(x),d- uB(x)))
xOE xOE
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The confidence of a rule, its support and its intensity of implication are then
expressed by the same formulas as above, but they use these cardinalities of the fuzzy
setsinstead of the cardinalities of crisp sets.

4. A Knowledge Extraction Algorithm

Our agorithm uses a depth first strategy to evaluate all the rules that can be
constructed from a set of propositions. To limit the number of rules to evaluate, we
restrict the number of propositions in the premise of arule; thus, we use 4 thresholds
a, B, y 0 and one rule is kept if its confidence C is greater than a, its support Sis
greater than g, its intensity of implication | over yand if the length L of its premise
has at most J propositions.

Let uscal E={e,e, .. e} thelearningset, R theset of rulesretained,
P={p, P, ---» P} the set of propositions describing the examplesin E,
P’ the set of propositions associated to the possible conclusions,
D={a,a, .., &} theset of attributes in the possible propositions of the premise,
F,..sion thefuzzy partition associated to the attribute of the classifying decision;
the algorithm is then:

Al gorithm Know edge Extraction
(LR=0O
(2)For all values v, UF,

lecision do

(3) Let T, the tree of rules in Pwth conclusion
{adecision = vi}

(4) Let B, the set of observations in Ewith proposition
{ adeuisi()n = vi} true

(5) CurrentNode = Forward( 7, R

(6) Wiile the tree T has not been totally searched do

(7) Let r: Premise — p, JP', the rule associated to
Curr ent Node

(8) Let A the set of exanples in E for which Prenise
is true

(9) Conmpute C S,/ fromthe cardinalities of the sets
E, A and B

(10) Let L, the length of Prenise

(11) If (Ca) and (S=£) and (/=) and (L<9)

(12) Then R = R [ { Premisse — p, }

(13) End If

(14) If (S <pB) or (L >0 or (CurrentNode term nal)

(15) Then Current Node = Backward( 7, Current Node)

(16) El se Current Node = Forward( 7, Current Node)

(17) End |f

(18) End Wile
(19) End For
End.
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5. The Choice of Fuzzy Operators

The knowledge extraction algorithm highlights a set of interesting rules, but needs
another mechanism to evaluate the fuzzy implications. Fuzzy operators accept many
possible definitions [12]. A fuzzy conjunction (fuzzy "and") may be chosen inside
several classes of T-norms, such as:

Zadeh's minimum: Hanp(x)=min(u,(x), 1p(x))

probabilistic intersection: Hanp(x) =, (x)* pp(x))

L ukasiewicz's intersection: Hanp(x)=max(u,(x)+up(x)—10) .
Asafuzzy implication, one may use:

Reichenbach’s Han p(x,3) =1= g (x) + p g (x)* t1p ()

Zadeh's Har p(x,y) = max(1- p,(x), min(u, (x), 4y (1))

KlesneDienes  far 5 (¥,3) = MaX(1~ g (¥), £5(1)

Likasiowiczs  Har 5 (x,) = MIN(L 1= 1 (x) +425 (x))

Godel-Brouwer's Haop(x,p) =1 it U, (x)<pp(x)

Mary p(x,y) =Hp(x)  otherwise

However, since the extracted rules can be used in an expert system by application of
the generalized modus ponens (G.M.P.), our choices must be coherent with the
operators chosen then. Let us recall that the G.M.P. is the following inference scheme:

If XisA then YisB And for one T-nornT and the implication
XisA Hary p (U (x), 1y (V) = 11 (x), 1 (1)),
0000000000 A pRFat A
YisB one has y(y) = SSZ'T (Mg ()1 (U (x), 1 () -
Xl

A comparative study of fuzzy implication operators [11] has shown that the
generalized modus ponens gives very good results with four combinations:
Lukasiewicz's implication and bold intersection, Kleene-Dienes' implication and
minimum, Kleene-Dienes' implication and bold intersection, Gddel-Brouwer's
implication and bold intersection. So we have limited our trials to these four
combinations. Our algorithms also need an aggregation operator; and since we want
an averaging evaluation of the implication and a mechanism to exclude abnormal
records, we have chosen the arithmetic mean, which allows usage of standard
deviations.

The algorithm to compute the fuzzy implication for each rule highlighted by the
knowledge extraction algorithm is given below (more details are given in [3]). Each
rule may be composed of one conjunction of fuzzy propositions in premise and one
fuzzy proposition in conclusion, and the algorithm prospects a random sample of the
database to compute the number of examples and counter examples for each couple
(x, y) of the implication, then it evaluates the rate of good examples. If the rate of
good examples satisfies the expert, the set of fuzzy operators is kept; otherwise,
another set of operators is tried.
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Algorithm Evaluation of a set of fuzzy operators

1) For each exanpl e:

Eval uate the prenise’'s fuzzy val ue using the T-norm

Conpute the values of the selected inplication

2)Conpute the arithmetic nean n(x, y) and the standard

deviation o(x, y) for each pair (x, y), calling
X, one truth-value of the preni se
y, one truth-value of the conclusion

3) For each exanpl e:

If the value of its inplication for the pair (x, y)
flts [U(X: y)'Z*Q(X, y)! /7(X, y)+2*U(X, y)]
(interval of confidence of 95% for a normal |aw),

Note it as one positive exanple for (x, y),

El se Note it as one negative exanple.

4) The val ues of the inplication are then given by the
arithnmetic means of the good exanples for each couple
(x, y) (x for the premise, y for the conclusion).

5) Eval uate t he adequacy of the inplication

For each positive exanple of the sanpl e,
Apply the CGeneralized Mddus Ponens,
Conput e the distance between the truth-val ues of
the inferred conclusions and the observation
If this distance is greater than a threshold
chosen by the operator,
add the exanple to the set of records for
which the rule is inadequate
El se add the exanple to the set of records for
which the rule is correct
6) The rates of good exanples are then given by

px,y) =n,(x,) ] (ny(x,y) +n_(x,y))
End.

These algorithms were processed on databases of the UCI KDD Archive; they
often gave good results, but sometimes none of the possible fuzzy implication proved
really adequate. For these cases, we have proposed a statistical evaluation of the
conclusions given the truth-values of the consequent ([4]).

6. Reduction of Fuzzy Rules

In some applications, rules are not extracted in order to build expert systems, but to
give human experts a synthetic view of the database records; then, since the number
of rules extracted is often high, we have studied methods to aggregate rules.

In classical logics, one may write (a c¢) O(b O c) |- (alb) O c, and we
wanted to process similarly with fuzzy rules without having to reevaluate the fuzzy
rule (@allb) O c. So, we wished to write: L,0 )os0 ¢) (%:) = Hampn o) (x,¥) OF

Har o) 3) T Hpn e) (%,2) = Heaopn ¢) (%, ), using fuzzy operators chosen among
the sets defined above. Therefore, we had to find which, if any, of the above operators
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sets allow to write the condensed form: iy, ) T Hy(g,y) = Hi@c g, y)» T beingaT-
norm, C its complementary T-co-norm, and noting Uj(q,y)=Hwuo o) (x,»)

a=pu,(x,y), B=(x,y) and y=u.(x,y) . We have proved [4] that the Kleene-

Dienes’ implication, associated within for T-norm andmax for T-co norm is the
only solution in the four sets of fuzzy operators. Similarly, to keep the classical

reduction scheme(a 0 c) O (a0 c¢) |- a d blc or, with the above condensed
notations 4, ;) T (4 ) = Mi(a. pr ) » WE have shown that the same set of fuzzy

operators must be used.

Adaptations of classical reduction schemes to fuzzy logics must be studied further,
but we give these results to show that fuzzy rules often may not be handled as
classical rules.

7. Conclusion

We have described here a generalization of knowledge discovery mechanisms to
fuzzy logics; first, one needs to fuzzify the continuous attributes of the database. One
needs then indexes to evaluate possible rules, and we have generalized to fuzzy logics
three indexes: the confidence, the support and a less usual index, the intensity of
implication. We have given a KDD algorithm that can be used to extract fuzzy rules.

Since fuzzy logics allow usage of numerous operators, we have justified their
restriction to four sets and we have developed a method to choose on set of operators,
computing the rates of good examples by applying the Generalized Modus Ponens on
a sample extracted from the database.

Finally, to reduce the number of rules proposed to human experts, we have studied
methods to cluster fuzzy rules, and we have shown that among the previously retained
sets of operators, the association of Kleene-Dienes’ implicationmifttas T-norm
andmax as T-co norm is the most interesting choice.

We must remark that the increase in computing complexity induced by usage of
fuzzy logics is relatively small for rule extraction, since instead of increasing by one
the counters on the number of examples and counter examples, fuzzy logics add
membership degrees. The operations of fuzzification, the choice of fuzzy operators
and the rules reductions are more complex, but the advantages of using fuzzy logics
may compensate for this: intervals on continuous attributes are expressed by more
expressive (fuzzy) labels, and abrupt threshold are avoided.

Among future perspectives, we plan to improve automatic configuration of the
fuzzy partitions in connection to the samples extracted of the databases; we want to
study other possible rules reduction mechanisms, and we also intend to study
parallelisation methods of extraction algorithm, using for this a multi-agent platform.
A more complete study of fuzzy operators is also desirable, to consider the Goguen
implication, and examine cases when the generalized modus ponens is not only an
approximate inference but also a valid logical inference [10].
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