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Abstract. Previous algoritms for the construction of belief networks
structures from data are mainly based either on independence criteria or
on scoring metrics. The aim of this paper is to present a hybrid methodo-
logy that is a combination of these two approaches, which benefits from
characteristics of each one, and to introduce an operative algoritm based
on this methodology. We dedicate a special attention to the problem of
getting the ‘right’ size of the belief network induced from data, i.e. fin-
ding a trade-off between network complexity and accuracy. We propose
several approaches to tackle this matter. Results of the evaluation of the
algorithm on the well-known Alarm network are also presented.

1 Introduction

Graphical models such as belief networks BN [13] have become very attractive
tools because of their ability to represent knowledge with uncertainty and to effi-
ciently perform reasoning tasks. The knowledge that they manage is in the form
of dependence and independence relationships, two basic notions in the human
reasoning. Both relationships are coded by means of (1) a qualitative component
of the model, i.e., the directed acyclic graph (dag) and (2) a collection of nume-
rical parameters, usually conditional probabilities which measure the strength
of the dependencies displayed in the model.

In recent years, many BN learning algorithms from databases have been de-
veloped, coming from different approaches and different principles. Generally,
they can be grouped in two main approaches: methods based on conditional in-
dependence tests [5,15], and methods based on a scoring metric [8,10,11,12].

The algorithm we are going to describe in this paper do not fall clearly in
any of these two categories but it utilizes a hybrid methodology: it uses a specific
metric and a search procedure (so, it belongs to the group of methods based on
scoring metrics), although it also explicitly makes use of the conditional indepen-
dences embodied in the topology of the network to elaborate the scoring metric
(hence it has also strong similarities with the algorithms based on independence
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y Tecnoloǵıa (CICYT) under Project n. TIC96-0781.
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tests). The only precedents we know about hybrid learning algorithms are the
works in [9,16,14]. The rest of the paper is organized as follows. In Section 2 we
outline our methodology and we propose an algorithm, BENEDICT-dsep for reco-
vering the graph with the restriction that the ordering between the variables is
given. Section 3 discusses different approaches to get right sized models from the
learning process. In Section 4, we carry out a comparative study of the results
obtained by the algorithm using the well-known Alarm network. Finally, Section
5 contains the concluding remarks and some proposals for future works.

2 Learning Belief Networks with BENEDICT-dsep

The algorithm we are going to describe, BENEDICT-dsep, works under the as-
sumption that the total ordering of the variables is known. This assumption,
although somewhat restrictive, is quite frequent for learning algorithms. The
algorithm is part of a family of algorithms [3,4] that share a common metho-
dology [1] for learning belief networks, which we have called BENEDICT. The
name is an acronym of BElief NEtworks DIscovery using Cut-set Techniques,
and is motivated by the use of d-separating sets or cut-sets to define the metric.

Let us briefly describe the BENEDICT methodology. The basic idea is to
measure the discrepancies between the conditional independencies (d-separation
statements) represented in any given candidate network G and the ones displayed
by the database D. The lesser these discrepancies are, the better the network
fits the data. The aggregation of all these (local) discrepencies will result in a
measure g(G, D) of global discrepancy between the network and the database.

To measure the discrepancy of each one of the independencies in the graphical
model and the numerical model (the database), BENEDICT uses the Kullback-
Leibler cross entropy:

Dep(X, Y |Z) =
∑

x,y,z

P (x, y, z) log
P (x, y|z)

P (x|z)P (y|z) ,

where x, y, z denote instantiations of the sets of variables X, Y and Z respec-
tively, and P is a probability estimated from the database.

As the number and complexity of the d-separation statements in a dag G
may grow exponentially with the number of nodes, we cannot use all the d-
separations displayed by G, but we have to focus on some selected subset of
‘representative’ d-separation statements and ignore the remainders. Given any
candidate network G, BENEDICT calculates, from the database, the conditional
dependence degrees of any two non-adjacent single variables, xi and xj (assuming
that xj <θ xi) given the set of minimum size, SG(xi, xj), that d-separates xi and
xj in G, Dep(xi, xj |SG(xi, xj)). Of course, finding this set takes some additional
effort, but it is compensated by a decreasing computing time of the corresponding
dependence degree and more reliable results. The method BENEDICT uses for
efficiently finding the sets SG(xi, xj) is described in detail in [2]1.

In order to give a score to a specific network structure G given a database
D, BENEDICT uses the aggregation (the sum) of the local discrepancies, as
1 In [7], approximate minimum cut-sets are used instead of exact ones.
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measure of global discrepancy g(G, D) (which has to be minimized). Finally, the
type of search method used by BENEDICT is a simple greedy search that allows
to insert into the structure the candidate arc that produces a greater improve-
ment of the score (removal of arcs is not permitted).

Let us describe more especifically the algorithm BENEDICT-dsep. Initially, it
starts out from a completely disconnected network. The current set L of candi-
date arcs to be introduced in the current network is composed by all the arcs
coherent with the ordering. The scoring of this ‘empty’ graph G0 is then calcu-
lated, as g(G0, D) =

∑n
i=2

∑
xj<lxi

Dep(xi, xj |∅). Next, the algorithm looks for
the arc whose addition to the graph results in a greater decrease of g(., D), thus
obtaining a new graph, G1, containing only one arc. The process continues in
this way, adding at each step, k, the single arc, say xj → xi, which verifies

g(Gk−1 ∪ (xj → xi), D) = min
xh → xl ∈ L

xh →xl 6∈ Gk−1

g(Gk−1 ∪ (xh → xl), D).

In this way arcs are added in a stepwise process until a stopping rule is satisfied.

3 Stopping Rules

In the description of the algorithm BENEDICT-dsep we have not specified the way
in which we stop the learning process, i.e., how to decide whether the size of
the graph is adequate and then do not add more arcs to the current structure.
The extent to which the resultant network is a good description of the domain
strongly depends on this question.

For example, if we let the graph grow until no more arcs can be included (thus
obtaining a complete graph), this network has a zero global discrepancy with
every database, since it does not explicitly represent any independence relati-
onship. However, this network is far to be descriptive (although it may represent
any independence relationship, that remains hidden in the conditional proba-
bility tables). In general, if we stop the learning process too late the resultant
networks are very complex to be understood, estimated and used for inference
purposes (moreover, an overfitting phenomenon can appear). On the other hand,
if we stop too early the growing process, in order to get a simpler structure, we
may lose the chance to improve it (i.e., to get a better score). So, the network
displays more independences than those they are really supported by the data,
thus resulting in a bad approximation of the distribution underlying the data.
Therefore, we have to focus on finding appropiate stopping rules, that is, on
finding a criterion for determining a good trade-off between a good description
of the mechanisms which generated the data, and the simplicity of the model.

The first stopping rule we tried consisted in setting a threshold and deciding
not to include an arc if the global discrepancy with the data was beneath it.
A second alternative, also using thresholds, was not to include an arc if no
significant improvement is achieved by adding the best arc to the current graph.

After having studied the behaviour of our algorithm using the two afore-
mentioned stopping rules [3] (and using also a combination of both rules), by
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means of several databases, we get clear that these rules produced in general
unsatisfactory results. The problem has two aspects: First, the threshold values
are critic to the density of the learned networks. Second, it is quite difficult to
determine automatically, from the data distribution, the appropriate values of
these thresholds. Thus, we decided to tackle the problem of finding the optimum
size of the learned network from other perspectives:

– Using independence tests to remove arcs from the set of candidate arcs, and
thus avoiding to include them in the structure regardless of the value of the
discrepancy reached by the current network.

– Pruning instead of stopping. Grow a network in a not very restrictive man-
ner and then prune it by revisiting each arc (dependency) established in
the building process, in order to check whether it was introduced prematu-
rely. This is inspired by the common practise of using methods for pruning
decision trees, which often produce excelent results.

3.1 Independence Tests

The basic idea for using independence tests is to consider as candidate, at every
step of the learning process, only the arcs between pairs of (non-adjacent) varia-
bles which have not been found independent. In the case that the test establishes
an independence relationship, then the arc linking the independent variables is
deleted from the set of candidate arcs L. Therefore, the learning process will stop
naturally when the set of candidate arcs becomes empty (the arcs are removed
from this set either because they are inserted into the current graph or because
their extreme nodes are found to be independent by the test).

In order to define the kind of test, we will take advantage of the fact that the
statistic 2 ∗ N ∗ Dep(xi, xj |Z) is approximately χ2-distributed with ‖Z‖(‖xi‖ −
1)(‖xj‖−1) degrees of freedom, where N is the number of samples in D, and ‖.‖
represents the number of different states in the corresponding set of variables.

Let us see how to use the independence tests in our algorithms: At each
step, once the best candidate arc xj → xi has been selected, it is included in
the current structure G (and removed from the set of candidate arcs); then the
remaining candidate arcs in L are reexamined in order to see if some may be
removed because their extreme nodes are found independent by the test. The
newly introduced arc changes the connectivity of the network, and can turn into
independent variables that were not yet determined as independent. All these
independence tests are based on values that have been already calculated, so
they entail almost null additional computational cost.

3.2 The Pruning Process

The first step is to grow the network by letting the building process to work
with a non very restrictive stopping criterion. In the resultant structure G, some
right arcs will be introduced and also some additional (incorrect) ones. Then a
review of the arcs included in the structure may reveal that some of them are
superfluous and thus can be removed from the network.
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An arc in G may be considered superfluous if the nodes it connects are
conditionally independent (i.e., the dependence degree between the pair is very
low). Perhaps this fact was not discovered before because, due to the greedy
nature of the process, the d-separating set used previously to try to separate
these nodes was not correct. However, the information obtained in subsequent
steps (new arcs have been introduced) changes the connectivity of the network
and therefore may also change the relationships between the variables. So, to
verify the possible independence relationship between the linked variables, the
arc is removed momentarily and the Dep value is calculated to be used into an
independence test. If the independency is true, the arc is removed definitively,
otherwise it is put back in the network.

The ordering to applying these tests is precisely the ordering in which the arcs
were introduced in the structure: in this way we can reexamine the established
dependences in the light of the information obtained after any arc xj → xi is
introduced (so, the d-separating set that, at the moment in which xj → xi was
inserted, was not able to make independent xi and xj , could change, thus being
able to render xi and xj independent).

4 Experimental Results

In this section, we are going to present the results obtained by our algorithm
using different databases in the learning process. All the experiments were carried
out on a sun4m sparc station at 100Mhz, to reconstruct the so-called Alarm belief
network. The Alarm network contains 37 variables and 46 arcs. The input data
commonly used are subsets of the Alarm database, which contains 20,000 cases
that were stochastically generated using the Alarm network, specifically, we use
the first 500, 1000, 2000 and 3000 cases for our experiments.

The information we will show about each experiment with our algorithm
is the following: Time.- The time, measured in minutes and seconds, spent in
learning the Alarm network. g(G, D).- The value of the measure of global di-
screpancy with respect to the database D it comes from. Ham.- The Hamming
distance, number of different arcs (missing or added) in the learned network with
respect to the original model. N.Arc.- Number of arcs in the learned network.
Kullback.- The Kullback distance (cross-entropy) between the probability distri-
bution, P , associated to the database and the probability distribution associated
to the learned network, PG, to measure how closely the probability distribution
learned approximates the empirical frecuency distribution. Actually, we have cal-
culated a decreasing monotonic linear transformation of the Kullback distance,
because this one has exponential complexity and the transformation can be com-
puted in a very efficient form [12]. The interpretation of our transformation of
the Kullback distance is: the higher this parameter is the better is the network.

Our first experiment concentrates around the stopping rules, aiming to deter-
mine the quality of the different rules proposed: using thresholds, independence
tests, and pruning. In the first case we use a conjunction of thresholds (low di-
screpancy and no significant improvement). Both thresholds were set ‘ad hoc’ as
a fraction of the initial discrepancy calculated on the empty graph. We use the
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χ2 test for the conditional independence tests and the pruning process with a
fixed confidence level of 0.99. For this experiment we used the database contai-
ning 3000 cases, and the results are displayed in table 1. From these results it is

Table 1. Comparing stopping rules: Results using BENEDICT-dsep.

Time g(G, D) Kullback Ham. N.Arc

Thresholds 20:58 1.3754 8.2329 17 31
Indep. 7:10 0.6995 9.2213 10 50

Indep.+ pruning 7:12 0.6818 9.2036 4 44

clear that the use of independence tests improves remarkably the performance of
the algorithm with respect to the use of thresholds, as much in the quality of the
results as in the efficiency. They present lower discrepancy values and also higher
values of the objective Kullback measure. On the other hand, we can observe
that the times spent are markedly lower, than using thresholds. This gives us
an idea of the savings in evaluating candidate networks obtained by removing
some arcs from the candidate set L. We can also see that final process of pru-
ning, using almost null additional time, simplifies the final structures, although
slightly decreases the Kullback distances; anyway, the results are comparable.
In the light of these results, in the following experiments we always will use the
combination of independence tests and pruning as the stopping rule.

In the second experiment our interest is focused in evaluating the robustness
of the algorithm. The results of this experiment are displayed in table 2. Several

Table 2. Using different sample sizes: Results with BENEDICT-dsep.

Sample Size Time g(G, D) Kullback Ham. N.Arc

500 2:22 2.7586 8.9759 11 43
1000 3:49 2.4367 9.0927 9 45
2000 5:06 0.9605 9.1345 5 45
3000 7:12 0.6818 9.2036 4 44

conclusions may be drawn from this experiment. First, it seems that the learned
networks approach the original one as the sample size increases, as shown by the
Hamming distances and the Kullback measures. The time employed is almost
linear with respect to the sample size. Specifically, for the bigger training set, the
mistaken arcs are 3 missing arcs, where two of them are not strongly supported
by the data. The third missing arc makes to introduce an additional arc.

5 Concluding Remarks

We have proposed a hybrid methodology for learning bayesian belief networks
from databases, and an algorithm based on it. Our algorithm uses conditional
independence relationships of order as low as possible, thus gaining in efficiency
and reliability. The algorithm recovers reasonably well complex belief network
structures from data in polynomial time, under the assumption that the ordering
among the variables is known. Several possible extensions of this work, could be:
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– Avoiding the requirement of an ordering on the nodes. One approach is to
leave the search procedure to also cope with the directions of the arcs to be
added. Another option is to perform a two-steps process: the first one is to
run an algorithm for learning a good ordering [6], the second one would be
carried out by our algorithm.

– Modification of the pure greedy search used, other search techniques such
as branch and bound or simulated annealing, could be used in combination
with our scoring metric. We could modify the search process by using arc
addition as well as arc removal (or even arc reversal).

References

1. S. Acid. Métodos de aprendizaje de redes de creencia. Aplicación a la clasificación.
PhD thesis, Universidad de Granada. Spain, 1999 (in Spanish).

2. S. Acid, L.M. de Campos. An algorithm for finding minimum d-separating sets
in belief networks. in: Proceedings of the 12th Conf. on Uncertainty in Artificial
Intelligence, 1996, 3–10.

3. S. Acid, L.M. de Campos. Benedict: An algorithm for learning probabilistic belief
networks. in: Proceedings of the 6th IPMU Conf., 1996, 979–984.

4. S. Acid, L.M. de Campos. A Hybrid Methodology for Learning Belief Networks:
BENEDICT. Int. Journal of Approximate Reasoning Submitted.

5. L.M. de Campos, J.F. Huete. A new approach for learning belief networks using
independence criteria. Int. Journal of Approximate Reasoning 24 (2000) 11–37.

6. L.M. de Campos, J.F. Huete. Approximating causal orderings for Bayesian net-
works using genetic algorithms and simulated annealing. in: Proceedings of the
IPMU-2000 Conf., to appear.

7. J. Cheng, D.A. Bell, W. Liu. An algorithm for Bayesian belief network construction
from data. in: Proceedings of the Seventh Int. Workshop on Artificial Intelligence
and Statistics, 1997, 83–90.

8. G.F. Cooper, E. Herskovits. A bayesian method for the induction of probabilistic
networks from data. Machine Learning 9 (4) (1992) 309–348.

9. D. Dash, M.J. Druzdzel. a hybrid anytime algorithm for the construction of causal
models from sparse data. in: Proceedings of the 15th Conf. on Uncertainty in
Artificial Intelligence, 1999.

10. D.Heckerman, D.Geiger, D.M. Chickering. Learning bayesian networks: The com-
bination of knowledge and statistical data. Machine Learning 20 (1995) 197–243.
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