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Abstract. The share measure for itemsets provides useful information about
numerical values associated with transaction items, that the support measure
cannot.  Finding share frequent itemsets is difficult because share frequency is
not downward closed when it is defined in terms of the itemset as a whole.  The
Item Add-back and Combine All Counted algorithms do not rely on downward
closure and thus, are able to find share frequent itemsets that have infrequent
subsets.  These heuristic algorithms predict which itemsets should be counted in
the current pass using information available at no additional processing cost.

1 Introduction

Association rules identify items that occur together and those that are likely to occur,
given that particular items have been selected (called itemsets).  The discovery of
association rules is a two-step process [1]: (1) discover all frequent itemsets meeting
user-specified frequency criteria, and (2) generate association rules from the frequent
itemsets.  The second task is easier than the first [11].  Here, we study the first step in
the context of itemset share, a measure of itemset importance [4].

Itemset share is the fraction of some numerical value, such as total quantity of
items sold or total profit, contributed by items when they occur in an itemset.  Unlike
support [1], share can be applied to the non-binary numerical data associated with
items in a transaction, allowing for a more insightful analysis of the impact of itemsets
in terms of stock, cost or profit.  In practice, itemset ranking by support and share can
be significantly different [4].

Support frequency (frequencysup) is downward closed, since all subsets of a fre-
quentsup itemset are also frequentsup [3].  This property allows efficient algorithms to
find all frequentsup itemsets while traversing only a part of the itemset lattice, e.g. [3, 6,
11].  Share frequency is also downward closed if we require each item in a frequent
itemset to be frequent when it occurs in the itemset [4].  However, since share consid-
ers non-binary values, the share of an itemset can be greater than the share of its sub-
sets.  If the frequency requirement is based on the total share of the itemset, frequent
itemsets might contain infrequent subsets.  Thus, some frequent itemsets cannot be
found using the downward closed share frequency definition.  We describe heuristic
algorithms to discover share frequent itemsets that do not rely on downward closure.
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2 Review of the Support Measure

Itemset methodology is summarized as follows. [2].  Let I = {I1, I2, ..., Im} be a set of
literals, called items.  Let D = {T1, T2, …, Tn} be a set of n transactions, where for each
transaction T ∈ D, T ⊆ I.  A set of items X ⊆ I is called an itemset.  Transaction T
contains X if X ⊆ T.  Each itemset X is associated with a set of transactions TX = {T ∈
D | T ⊇ X}, the transactions containing X.  The support s of itemset X equals |TX|/|D|.

Support is illustrated using the transaction database shown in Table 1.  The TID
column gives the transaction identifier values.  Values under each item name are
quantity of item sold.  To calculate support, a non-zero quantity is treated as a 1.
Table 2 shows the support for each possible itemset.

Table 1. Example Transaction Database Table 2.  Itemset Support

TID Item A Item B Item C Item D Item-
set

s Item-
set

s

T1 1 0 1 14 A 0.30 BC 0.10
T2 0 0 6 0 B 0.10 BD 0.10
T3 1 0 2 4 C 0.80 CD 0.50
T4 0 0 4 0 D 0.70 ABC 0.00
T5 0 0 3 1 AB 0.00 ABD 0.00
T6 0 0 1 13 AC 0.20 ACD 0.20
T7 0 0 8 0 AD 0.30 BCD 0.10
T8 4 0 0 7 ABCD 0.00
T9 0 1 1 10

T10 0 0 0 18

Transaction data often contains information such as quantity sold or unit profit, that
support cannot consider.  For example, support for items C and D is 0.8 and 0.7 re-
spectively.  However, total quantity sold for C and D is 26 and 67, respectively, so D
is sold more frequently than C.  Itemsets BC and BD have support of 0.10, indicating
equal frequency.  However, the quantity of items sold in BC and BD is 2 and 11, re-
spectively.  If items B, C and D return a net profit of $1.00, $100.00 and $0.10, then
itemsets BC and BD return a net profit of $101.00 and $1.10.  Yet support does not
consider itemset BC to be more important than itemset BD.  Support fails as a meas-
ure of relative importance of the itemsets in these instances.  For target marketing,
measures should consider both the frequency of an item contributing to a predictive
rule and the value of the items in the prediction [7].  Support allows for neither, so
measures based on specific numbers of items, such as percentage of gross sales, costs
or net profit, cannot be calculated, and business payoff cannot be maximized.

3 Review of the Share Measure

A measure attribute (MA) is a numerical attribute associated with each item in each
transaction.  The transaction measure value of item Ip in transaction Tq, tmv(Ip,Tq), is
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the value of a measure attribute associated with Ip in Tq.  The global measure value of
item Ip, MV(Ip), is the sum of the tmv’s of Ip in all transactions in which Ip appears:

∑
∈

=
Ipq TT

qpp TItmvIMV ),()( .  (1)

The total measure value (MV) is the sum of the global measure values for all items in I
in every transaction in D, given as

∑
=
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If xi is the ith item of itemset X, the item local measure value of xi in X, lmv(xi,X), is the
sum of the transaction measure values of xi in all transactions containing X, given by

∑
∈
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The itemset local measure value of X, lmv(X), is the sum of the local measure values
of each of the k items in X in all transactions containing X, given by
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The item share of xi in X, SH(xi,X), is the ratio of the local measure value of xi in X to
the total measure value, as given by

MVXxlmvXxSH ii ),(),( = . (5)

The itemset share of X, SH(X), is the ratio of the local measure value of X to the total
measure value, as calculated by

MVXlmvXSH )()( = . (6)

Table 3 gives lmv(X) and SH(X) for itemsets in the sample database and lmv(xi,X) and
SH(xi,X) for items in these itemsets.  A dash means an item is not in an itemset.

Consider again itemsets C, D, BC and BD.  Itemset C, ranked higher than itemset D
by support despite having a lower quantity sold, is ranked lower by share, with SH(C)
= 0.26 and SH(D) = 0.67.  Itemsets BD and BC are ranked the same by support, al-
though the quantity of items sold in BC is less.  Using share, itemset BD is ranked
higher than itemset BC, with SH(BD) = 0.11 and SH(BC) = 0.02.

Share can be incorporated into many algorithms developed for support [5].  Ap-
proaches have been proposed for extending support to quantitative measures, e.g. [10].
We feel share is simpler and more flexible.  The problem of finding frequentsup item-
sets with lmv(X) ≥ minvalue has been described [8].  No solution was presented.
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Table 3.  Itemset Share Summary for Sample Database

Item A Item B Item C Item D Itemset X

Itemset Lmv SH lmv SH lmv SH lmv SH lmv SH

A 6 0.06 - - - - - - 6 0.06
B - - 1 0.01 - - - - 1 0.01
C - - - - 26 0.26 - - 26 0.26
D - - - - - - 67 0.67 67 0.67

AB 0 0.00 0 0.00 - - - - 0 0.00
AC 2 0.02 - - 3 0.03 - - 5 0.05
AD 6 0.06 - - - - 25 0.25 31 0.31
BC - - 1 0.01 1 0.01 - - 2 0.02
BD - - 1 0.01 - - 10 0.10 11 0.11
CD - - - - 8 0.08 42 0.42 50 0.50

ABC 0 0.00 0 0.00 0 0.00 - - 0 0.00
ABD 0 0.00 0 0.00 - - 0 0.00 0 0.00
ACD 2 0.02 - - 3 0.03 18 0.18 23 0.23
BCD - - 1 0.01 1 0.01 10 0.10 12 0.12

ABCD 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

4 Share Frequent Itemsets

Property P is downward closed with respect to the lattice of all itemsets if, for each
itemset with property P, all of its subsets have property P [9].  Share frequency as
originally defined is downward closed.  Itemset X is downward closed share frequent
(DC-frequent) if ∀xi ∈ X, SH(xi,X) ≥ minshare, a user defined minimum share [4].

Theorem 1: DC-frequency is downward closed with respect to the lattice of all
itemsets.  Proof: To show DC-frequency is downward closed, we must show that if X
is DC-frequent, then for all Xj ⊆ X, Xj must be DC-frequent.  Suppose X is DC-
frequent.  By definition, for all xi ∈ X, SH(xi,X) ≥ minshare.  Since Xj ⊆ X, lmv(xi,Xj) ≥
lmv(xi,X) and SH(xi,Xj) = lmv(xi,Xj)/MV ≥ SH(xi,X) = lmv(xi,X)/MV.  Since for all xi ∈
X, SH(xi,X) ≥ minshare, then for all xi ∈ Xj, SH(xi,Xj) ≥ minshare.  Therefore, by defi-
nition, Xj is DC-frequent. •

To find frequent itemsets with infrequent subsets, itemset X is defined to be share
frequent, or simply frequent, if SH(X) ≥ minshare.  This definition removes the prop-
erty of downward closure.  Adding an item xi to itemset X to create itemset Y, adds a
restriction to the measure values of the items in X.  Values associated with the items in
X contribute to lmv(Y), only when they occur with xi.  Their contribution towards
lmv(Y) must be less than or equal to their contribution to lmv(X).  However, lmv(xI,Y)
is added to lmv(Y), counteracting the effect of the additional restriction.  Thus, lmv(Y)
may be less than, equal to, or greater than lmv(X), depending on the relative effect of
the restriction and the addition of the measure value for another item and, it is possible
to have an itemset with share ≥ minshare, whose subsets have share < minshare.

Theorem 2: Share frequency is not downward closed with respect to the lattice of
all itemsets.  Proof: Proof by counterexample is sufficient. Consider itemset ACD in
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Table 3.  Assume minshare = 0.20.  SH(ACD) = 0.23 and ACD is frequent.  SH(A) =
0.06 and A is not frequent. A is a subset of ACD so share frequency based on the
share of the itemset as a whole is not downward closed. •

5 Description of Algorithms

Figure 1 shows an algorithm space consisting of six algorithms.  We use an exhaustive
algorithm as a starting point and specialize it using different pruning and candidate
itemset generation techniques to create the algorithms.  The type of pruning added is
shown on the edges between nodes.

The first pass through the data collects information about all 1-itemsets.  Summary
information is compiled, including MV and TCT, the total number of transactions.  Ck is
the set of candidate itemsets for the kth pass.  C2 is generated using information about
the 1-itemsets and information about the candidate 2-itemsets is collected in pass 2.
The process of building Ck using itemsets in Ck-1 stops when no candidate itemsets are
added to Ck.  After the kth pass, the local measure value and transaction count is avail-
able for each counted k-itemset.

Candidate itemset generation and itemset pruning are done in procedure Genera-
teCandidateItemsets.  A discussion of this procedure suffices to describe algorithm
differences.  We use two early methods for generating candidates [3], [6].  Combina-
tion generation is generation of k-itemsets by combining itemsets in Ck-1, differing
only in their last item.  Unless otherwise noted, our algorithms use this type of

generation.  Item add-back generation is generation of k-itemsets by adding to each Xi

∈ Ck-1, any item found in the first pass not contained in Xi.  Generation of the next
potential candidate itemset, Xpc, is represented by an iterator procedure GenerateNex-
tItemset.  The first call to the procedure returns the first generated itemset, and re-
peated calls cycle through all possible generated itemsets.  When no more itemsets can
be generated, the procedure returns false.  We investigate two types of pruning.  Pre-
generation pruning prunes itemsets from Ck-1 using information obtained during the k-
1 pass, before any k-itemsets are generated. In generation pruning, potential candidate
k-itemsets are generated and then pruned as required before they are added to Ck.  Pre-
generation (generation) pruning is done in procedure PreGenPrune (PruneGenerat-
edItemset).  Procedure GenerateCandidateItemsets is written as:

1 PreGenPrune(Ck-1)
2 while Xpc := GenerateNextItemset() do
3 if PruneGeneratedItemset(Xpc) = false then Add Xpc to Ck

Exhaustive ZSP
TC = 0 TCXs = 0

SH < minshare

ZP

SIP

CAC
PSH < minshare

IAB

Fig.1. Algorithm Space

SH < minshare

PSH < minshare
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In the exhaustive algorithm, all possible k-itemsets are added to Ck.  If m items are
found in pass 1, 2m itemsets are counted.  All frequent itemsets are found.

The Zero Pruning Algorithm (ZP) is created from the exhaustive algorithm by
adding zero pruning, pre-generation pruning of any itemset Xi ∈ Ck-1 for which TCXi =
0.  This prevents the generation of k-itemsets from (k-1)-itemsets not in the data.  The
number of itemsets counted cannot exceed 2m and all frequent itemsets will be found.

Even with zero pruning, Xpc can contain a (k-1)-subset, Xs, with TCXs = 0.  The Zero
Subset Pruning Algorithm (ZSP) adds subset pruning, generation pruning of any Xpc

with Xs ∉ Ck-1.  The procedure PruneGeneratedItemset is written as:
3.1 foreach xi ∈ Xpc

3.2 foreach xj ∈ Xpc where i ≠ j
3.3 add xj to Xs

3.4 if Xs ∉ Ck-1 then return true
3.5 return false

The number of itemsets counted by ZSP cannot exceed the number of itemsets
counted by ZP and all frequent itemsets will be found.

The Share Infrequency Pruning Algorithm (SIP) is created from ZSP by adding
share infrequency pruning, pre-generation pruning of any itemset Xi ∈ Ck-1 whose
actual share SH(Xi) < minshare.  SIP behaves like Apriori [3], building candidate k-
itemsets using only frequent itemsets from the previous pass.

The Combine All Counted Algorithm (CAC) is created from ZSP by adding heuris-
tic methods to calculate the predicted share of Xpc, PSH(Xpc), and generation pruning
any Xpc whose PSH < minshare.  For each subset Xs, there is a corresponding item xi

that is a member of Xpc but not a member of Xs.  We use information about Xs and xi to
calculate the predicted share, since no additional work is required to determine their
values (we store first pass information about all 1-itemsets).  For k > 1, information
about infrequent itemsets is discarded after construction of Ck.  We calculate P(X), the
probability that any single transaction contains an itemset X, using P(X) = TCX/TCT.
Assuming a uniform distribution of actual share over all T ∈ TX, the share value in
each of these transactions is SH(X)/TCX.  The predicted share of X in any single trans-
action, PSH1(X), is given by:

TX TCXSHXPTCXSHXPXPSH )(0*))(1())((*)()(1 =−+= . (7)

To calculate the predicted share when an itemset, item pair occurs together, equation 8
is used if TCxi < TCXs, equation 9 is used if TCXs < TCxi and the average of equations 8
and 9 is used if TCxi = TCXs.

xisi TCXPSHxSHPSH *)()( 1+= . (8)

Xsis TCxPSHXSHPSH *)()( 1+= . (9)

The average PSH of all Xs, xi pairs is compared to minshare.  This value is returned by
the function GetPredictedShare and PruneGeneratedItemset becomes:

3.1 PSH(Xpc) := 0, SubsetCount := 0
3.2 foreach xi ∈ Xpc

3.3 foreach xj ∈ Xpc where i ≠ j
3.4 add xj to Xs

3.5 if Xs ∉ Ck-1 then return true
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3.6 PSH(Xpc) := PSH(Xpc) + GetPredictedShare(xi,Xs)
3.7 SubsetCount := SubsetCount +1
3.8 if PSH(Xpc)/SubsetCount < minshare then return true
3.9 return false

In the Item Add-back Algorithm (IAB), no item with a non-zero measure value is
completely discarded.  Starting from the ZP algorithm, infrequency pruning is added.
New itemsets are generated using item add-back generation.  In the kth pass, each sin-
gle item found in the first pass is added to each frequent itemset from the (k-1) pass.
We again use predictive pruning as described for CAC, except the predicted share
value is the average PSH of the (k-1)-subset, xi pairs available.  Subset pruning is not
used.  The algorithm for PruneGeneratedItemsets differs from that for CAC only in
Line 3.5, where the return true becomes a continue statement.

We now provide an example.  Figure 2 gives the itemset lattice for the data in Ta-
ble 1.  Each node is labeled with the itemset name.  Below the name are lmv(X) and
TCX values, separated by a forward slash.  MV is equal to 100 and minshare is assumed
to be equal to 0.20.  Frequent itemsets are shaded in Figure 2.  For all algorithms, the
first pass identifies 1-itemsets C and D as frequent itemsets.

In ZP and ZSP, 2-itemset AB is zero pruned since TCAB = 0.  Supersets of AB,
(ABC, ABD and ABCD), are not generated or counted.  ZSP does not subset prune
any itemsets since Ck-1 contains all subsets of the generated itemsets.  All frequent
itemsets are found.

In SIP, items A and B are infrequency pruned.  Itemset CD is generated from the
frequent items in C1, counted in pass 2 and found to be frequent.  SIP terminates be-
cause no 3-itemsets can be generated from a single 2-itemset.  Frequent itemsets AD
and ACD are missed, since item A was infrequency pruned after the first pass and
cannot exist in any larger itemsets.

In CAC, all counted 1-itemsets are used to generate candidate 2-itemsets.  Gener-
ated 2-itemsets are pruned based on predicted share value.  Consider itemset AD.
SH(A) = 0.06, TCA = 3 and SH(D) = 0.67, TCD = 7.  Since TCA < TCD, we determine
PSH1(D) = SH(D)/TCT = 0.67/10 = 0.067.  Now PSH(AD) = SH(A) + PSH1(D)*TCA =
0.06 + 0.067(3)=0.26.  PSH(AD) > minshare, so AD is added to C2.  Only AD and CD
meet the condition PSH ≥ minshare, so only they are counted in pass 2.  CAC termi-

Fig. 2. Itemset Lattice

ABCD
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B
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nates after pass 2 because AD and CD cannot be used to generate a 3-itemset with all
subsets in Ck-1.  CAC counted one more 2-itemset than the SIP and it was frequent.
CAC missed frequent 3-itemset ACD because one of its subsets, itemset AC, was not
counted in the second pass.

IAB generates all possible 2-itemsets except AB.  AB is not generated since both A
and B are infrequent.  As for CAC, itemsets AD and CD are predicted to be frequent
and counted in pass 2.  After pass 2, itemsets ABD, ACD and BCD are generated by
adding single items to frequent itemsets AD and CD.  To determine PSH(ACD), all
available 2-itemset, item pairs are examined.  Only 2-itemsets AD and CD exist in Ck-1

so C plus AD and A plus CD are examined.  PSH(ACD) = 0.30 > minshare, so ACD
is added to Ck.  The predicted share of ABD and BCD do not meet the minimum share
requirement.  In pass 3, ACD is counted and is found to be frequent.  Itemset ABCD is
generated after pass three but PSH(ABCD) < minshare, so IAB terminates.  IAB
counts one 3-itemset not counted by either SIP or CAC, and it was frequent.

Table 4 summarizes the performance of the algorithms for the sample data set.  A
“1” in a column labeled Gen (Cnt) indicates an itemset that was generated (counted).
A value of NP in a PSH column indicates that no prediction was made because the
itemset was not generated.  Rows containing frequent itemsets are shaded.  The trade
off between the work an algorithm does and its effectiveness is evident.  ZP and ZSP
found all frequent itemsets, but counted most itemsets in the lattice.  SIP performed
very little work but missed two frequent itemsets.

6 Conclusions

Share can provide useful information about numerical values typically associated with
transaction items, that support cannot.  We defined the problem of finding share fre-
quent itemsets, showing share frequency is not downward closured when it is defined
in terms of the itemset as a whole.  We presented algorithms that do not rely down-

ward closure and thus, are able to find share frequent itemsets with infrequent

Table 4. Example Task Summary

ZP ZSP SIP CAC IAB

Itemset Cnt Cnt Cnt Gen Cnt PSH SH Gen Cnt PSH SH

AB 1 1 0 1 0 0.02 0.00 0 0 NP 0.00
AC 1 1 0 1 0 0.14 0.05 1 0 0.14 0.05
AD 1 1 0 1 1 0.26 0.31 1 1 0.26 0.31
BC 1 1 0 1 0 0.04 0.02 1 0 0.04 0.02
BD 1 1 0 1 0 0.08 0.11 1 0 0.08 0.11
CD 1 1 1 1 1 0.85 0.50 1 1 0.85 0.50
ABC 0 0 0 0 0 NP 0.00 0 0 NP 0.00
ABD 0 0 0 0 0 NP 0.00 1 0 0.03 0.00
ACD 1 1 0 0 0 NP 0.23 1 1 0.30 0.23
BCD 1 1 0 0 0 NP 0.12 1 0 0.05 0.12
ABCD 0 0 0 0 0 NP 0.00 1 0 0.03 0.00

Sum 8 8 1 6 2 9 3
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subsets.  Using heuristic methods, we generate candidate itemsets by supplementing
the information contained in the set of frequent itemsets from a previous pass, with
other information that is available at no additional processing cost.  These algorithms
count only those generated itemsets predicted be frequent.
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