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Abstract. In essence, small disjuncts are rules covering a small number of ex-
amples. Hence, these rules are usually error-prone, which contributes to a de-
crease in predictive accuracy. The problem is particularly serious because, al-
though each small disjuncts covers few examples, the set of small disjuncts can
cover a large number of examples. This paper proposes a solution to the prob-
lem of discovering accurate small-disjunct rules based on genetic algorithms.
The basic idea of our method is to use a hybrid decision tree / genetic algorithm
approach for classification. More precisely, examples belonging to large dis-
juncts are classified by rules produced by a decision-tree algorithm, while ex-
amples belonging to small disjuncts are classified by a new genetic algorithm,
particularly designed for discovering small-disjunct rules.

1 Introduction

In the context of the well-known classification task of data mining, the discovered
knowledge is often expressed as a set of IF-THEN prediction rules. Typicaly the
discovered rules are in disunctive normal form, where each rule represents a disjunct
and each rule condition represents a conjunct. A small digunct can be defined asarule
which covers a small number of training examples[7].

In general rule induction algorithms have a bias that favors the discovery of large
diguncts, rather than small disuncts. This preference is due to the belief that it is
better to capture generalizations rather than specializations in the training set, since the
latter are unlikely to be valid in the test set.

Hence, at first glance small disjuncts should not be included in the discovered rule
set, since they tend to be error prone. However, a deeper study of the issue of small

D.A. Zighed, J. Komorowski, and J. Zytkow (Eds.): PKDD 2000, LNAI 1910, pp. 345-352, 2000.
© Springer-Verlag Berlin Heidelberg 2000


http://www.ppgi.pucpr.br/~alex
mailto:alex@ppgia.pucpr.br
mailto:deborah@utp.br

346 D.R.Carvahoand A.A. Freitas

diguncts reveals that in fact they can be necessary and even interesting by themselves
in the context of data mining, for the following reasons:

(8 Although each disunct covers a small number of examples, the set of al small
digiuncts can cover a large number of examples. For instance [3] reports a real-world
application where small disjuncts cover roughly 50% of the training examples. There-
fore, if the rule induction algorithm ignores small diguncts and discovers only large
digiuncts, classification accuracy will be significantly degraded.

(b) Some small disjuncts cover examples that represent rare cases in the application
domain, which constitutes an interesting concept to be discovered. Actually, bearing in
mind that one of the goals of data mining is to discover previously-unknown rules,
small-digunct rules tend to be more interesting than large-disjunct rules, since the
latter are more likely to be previously-known by the user [11].

In this paper we propose a hybrid decision tree/genetic algorithm method for rule
discovery that copes with the problem of small disuncts. The basic idea is that exam-
ples belonging to large disuncts are classified by rules produced by a decision-tree
algorithm, while examples belonging to small diguncts (whose classification is more
difficult) are classified by rules produced by a hew genetic algorithm.

2 A Hybrid Decision-Tree/Genetic-Algorithm Method

We propose a hybrid method for rule discovery that combines decision trees and ge-
netic algorithms. Decision-tree algorithms have a bias towards generality that is well
suited for large diguncts, but not for small diguncts. On the other hand, genetic algo-
rithms are robust algorithms which tend to cope well with attribute interactions [4],
[10]. Hence, they can be more easily tailored for coping with small diguncts, which
are associated with large degrees of attribute interaction [13], [9].

The proposed method discovers rules in two training phases. In the first phase we
run the C4.5 decision-tree algorithm [12]. Then, the induced decision tree with d
leaves is transformed into a rule set with d rules (or disuncts). Each of these rulesis
considered either as a small disjunct or as a “large” (non-small) disjunct, depending on
whether or not its coverage (the number of examples covered by the rule) is smaller
than or equal to a given threshold.

The second phase consists of using a genetic algorithm to discover rules covering
examples belonging to small disjuncts. We have developed a new genetic algorithm
(GA) for this phase. In our GA, each individual represents a small-disjunct rule.

Each run of our GA discovers a single rule (the best individual of the last genera-
tion) predicting a given class for examples belonging to a given small disjunct. We
need to run our GAl * ¢ times, wheral is the number of small disjuncts aads the
number of classes to be predicted. For a given small disjunatthhein of the GA,
i=1,...c, discovers a rule predicting th¢h class.

The genome of an individual consists of a conjunction of conditions composing the
antecedent (IF part) of the rule. Each condition is an attribute-value pair - see below.
The consequent (THEN part) of the rule, which specifies the predicted class, is not
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represented in the genome. Rather, it is fixed for a given GA run, so that al individu-
als have the same rule consequent during al that run.

The rule antecedent contains a variable number of rule conditions. In our GA the
minimum number of conditions is always 2. The maximum number of conditions, n,
depends on the small disjunct, as follows.

To represent a variable-length rule antecedent (phenotype) we use a fixed-length
genome. For a given GA run, the genome of an individual consists of n genes, wheren
=m- k, misthe total number of predictor attributes in the dataset and k is the number
of ancestor nodes of the decision tree leaf node identifying the small disjunct in ques-
tion. Hence, the genome of a GA individual contains only the attributes that were not
used to label any ancestor of the leaf node defining that small digunct.

The overall structure of the genome of an individual isillustrated in Figure 1. Each
gene represents a rule condition (phenotype) of the form A Op, V,, where the subscript
i identifies the rule condition, i = 1,...,n; A is the i-th attribute; V, is the j-th value of
the domain of A; and Op, is a logical/relational operator compatible with attribute A.
Each gene consists of four elements, as follows:

(a) identification of a given predictor attribute, A, i =1,....n.

(b) identification of a logical/relational operator Op,. For categorical (nominal) attrib-
utes, Op, is “in”. For continuous (real-valued) attribut&yp, is either <* or “>*.

(c) identification of a set of attribute valu@g,,...,V,}, if the attributeA is categorical,

or a single attribute valué,, if the attributeA is continuous.

(d) a flag, called the active b, which takes on 1 or O to indicate whether or not,
respectively, the i-th condition is present in the rule antecedent (phenotype).

A, Op{V,}i B, {AOP{V,.} B |..1 A Op{V,.} B,

Figure 1. Structure of the genome of an individual.

To evaluate the quality of an individual our GA uses the fitness function:

Fitness = (TP / (TP + FN)) * (TN / (FP + TN)) , Q)
where TP, FN, TN and FP — standing for number of true positives, false negatives,
true negatives and false positives — are well-known variables often used to evaluate the
performance of classification rules — see e.g. [6].

We use tournament selection, with tournament size of 2 [8]. We also use standard
one-point crossover with crossover probability of 80%, and mutation probability of
1%. Furthermore, we use elitism with an elitist factor of 1 - i.e. the best individual of
each generation is passed unaltered into the next generation.

In addition to the above standard genetic operators, we have also developed a new
operator especially designed for simplifying candidate rules. The basic idea of this
operator, called rule-pruning operator, is to remove several conditions from a rule to
make it shorter. This operator is applied to every individual of the population, right
after the individual is formed.

Unlike the usually simple operators of GA, our rule-pruning operator is an elabo-
rate procedure based on information theory [2]. Hence, it can be regarded as a way of
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incorporating a classification-related heuristic into a GA for rule discovery. The heu-
ristic in question is to favor the removal of rule conditions with low information gain,
while keeping the rule conditions with high information gain — see [1] for details.

Once all the * c runs of the GA are completed, examples in the test set are classi-
fied. For each test example, we push the example down the decision tree until it
reaches a leaf node. If that node is a large disjunct, the example is classified by the
decision tree algorithm. Otherwise we try to classify the example by using onecof the
rules discovered by the GA for the corresponding small disjunct. If there is no small-
disjunct rule covering the test example it is classified by a default rule. We have ex-
perimented with two strategies for defining the default rule:
¢ a global default rule that predicts the majority class among all small-disjunct.
¢ a local default rule that predicts the majority class among the examples belonging to
the current small disjunct.

3 Computational Results

We have evaluated our GA on two public domain data sets from the UCI data set
repository (http://www.ics.uci.edu/~mlearn/MLRepository.html).

One of the them is the Adult data set (USA census). This dataset contains 48842
examples, 14 attributes (6 are continuous and 8 are categorical), and two classes. In
our experiments we have used the predefined division of the data set into a training
and a test set, with the former having 32561 examples and the latter having 16281
examples. The examples that had some missing value were removed from the data set.
As a result, the number of examples was slightly reduced to 30162 and 15060 exam-
ples in the training and test set, respectively.

The other data set used in our experiments was the Wave data set. This data set
contains 5000 instances, 21 attributes with values between 0 and 6 and three classes.
In this data set we have run a five-fold cross-validation procedure.

In our experiments a decision-tree leaf is considered a small disjunct if and only if
the number of examples belonging to that leaf is smaller than or equal to a fixed size
S We have done experiments with four different values for the paraetamely
S=3,S=5,S=10 andS= 15.

We now report results comparing the performance of the proposed hybrid C4.5/GA
with C4.5 alone [12]. We have used C4.5’s default parameters. In each GA run the
population has 200 individuals, and the GA is run for 50 generations.

We have evaluated two variants of our hybrid C4.5/GA method: global and local
default rule (see above). The results for the Adult and Wave data sets are shown in
Tables 1 and 2. All results refer to accuracy rate on the test set. The first column of
these tables indicate the size thresi®ided to define small disjuncts. The next three
columns, labeled (a), (b), (c), report results produced by C4.5 alone. More precisely,
columns (a) and (b) report the accuracy rate on the test set achieved by C4.5 separately
for examples classified by large-disjunct rules and small-disjunct rules. Column (c)
reports the overall accuracy rate on the test achieved by C4.5, classifying both large-
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and small-disjunct examples. Note that the figures in this column are of course con-
stant across al the rows, since its results refer to the case where all test examples are
classified by C4.5 rules, regardless of the definition of small disjunct.

Table 1. Results comparing our hybrid C4.5/GA with C4.5 in the Adult data set.

Accuracy rate of Accuracy rate of Accuracy rate of
C4.5 only C4.5/GA — global C4.5/ GA - local
default rule default rule
Dis- @ (b) © (d) (© ) () (h) 0]
junct size large small overall large small overall large small overall
[©)] disjuncts | disjuncts disiuncts | disjuncts disiuncts | disjuncts
3 0.800 0.512 0.786 0.80( 0.470 0.780  0.800 0.457 0.Y79
5 0.811 0.520 0.786 0.811 0.4917 0.780 0.811 0.483 0.Y79
10 0.841 0.521 0.786 0.841 0.640 0.828 0.841 0.642 0.829
15 0.840 0.530 0.786 0.840 0.711 0.831  0.840 0.707 0.830
Table 2: Results comparing our hybrid C4.5/GA with C4.5 in the Wave data set.
accuracy rate of accuracy rate of Accuracy rate of
C4.5 only C4.5/GA - global C4.5/ GA - local
default rule default rule
Dis- @ (b) © (d) © ) () (h) 0]
junct size large small overall large small overall large small overall
[©)] disjuncts | disjuncts disiuncts | disjuncts disiuncts | disjuncts
3 0.758 0.722 0.755 0.75§ 0.776 0.765 0.7h58 0.132 0.756
5 0.774 0.710 0.755 0.774 0.72]7 0.758 0.774 0.154 0.y64
10 0.782 0.731 0.755 0.782 0.800 0.793 0.782 0.808 0.[796
15 0.788 0.731 0.755 0.788 0.832 0.814 0.788 0.814 0.803

The next three columns, labeled (d), (e), (), report results produced by our hybrid
C4.5/GA method in the variant of global default rule. Note that the figures in column
(d) are exactly the same as the figures in column (b), since our hybrid method also
uses C4.5 rules for classifying examples belonging to large diguncts. In any case, we
included this redundant column in the Tables for the sakes of comprehensibility and
completeness. Column (€) reports the accuracy rate on the test set for the small-
disunct rules discovered by the GA. Finally, column (f) reports the overall accuracy
rate on the test achieved by our hybrid C4.5/GA method, classifying both large- and
small-disunct examples. The next three columns, labeled (g), (h), (i), refer to the
results with the variant of local default rule. The meaning of these columns is analo-
gousto the one explained for columns (d), (e), (), respectively.

Ascan be seen in Tables 1 and 2, there is little difference of performance between
the two variants of our hybrid C4.5/GA, and overal both variants achieved better
predictive accuracy than C4.5 alone. More precisely, comparing both columns (e) and
(h) with column (b) in each of those two tables we can note two distinct patterns of
results. Consider first the case where a disjunct is considered as small if it covers <3
or <5 examples, as in the first and second rows of Tables 1 and 2. In this case the
accuracy rate of the small-disjunct rules produced by the GA is dlightly inferior to the
performance of the small-disjunct rules produced by C4.5 in the Adult data set (Table
1), while the former is somewhat superior to the latter in the Wave data set. In any
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case, this small difference of performance referring to small-digunct rules has a small
impact on the overall accuracy rate, as can be seen by comparing both columns (f) and
(i) with column (c) in Tables 1 and 2.

A different picture emerges when a disjunct is considered as small if it covers <
10 or <15 examples, as in the third and fourth rows of Tables 1 and 2. Now the per-
formance of the small-disjunct rules produced by the GA is much better than the per-
formance of the small-disiunct rules produced by C4.5, in both data sets. For instance,
comparing both columns (€) and (h) with the column (b) in the fourth row of Table 1,
the GA-discovered small disjunct rules have an accuracy rate of 71.1% and 70.7%,
whereas the C4.5-discovered rules have an accuracy rate of only 53%. This improved
accuracy associated with GA-discovered small digunct rules has a considerable im-
pact on the overall accuracy rate, as can be seen comparing both columns (f) and (i)
with column (c) in the third and fourth rows of Tables 1 and 2.

A possible explanation for these results is as follows. In the first case, where a
digunct is considered as small if it covers < 3 or <5 examples, there are very few
training examples available for each GA run. With so few examples the estimate of
rule quality computed by the fitness function is far from perfect, and the GA does not
manage to do better than C4.5. On the other hand, in the second case, where a digunct
is considered as small if it covers < 10 or < 15 examples, the number of training ex-
amples available for the GA is significantly higher - although still relatively low. Now
the estimate of rule quality computed by the fitness function is significantly better. As
a result, the GA'’s robustness and ability to cope well with attribute interaction lead to
the discovery of small-disjunct rules considerably more accurate than the correspond-
ing rules discovered by C4.5.

Although the above results are good, they do not prove by themselves that the
small-disjunct rules discovered by the GA are considerably superior to the small-
disjunct rules discovered by C4.5. After all, recall that the test examples belonging to
small disjuncts can be classified either by a GA-discovered rule or by the default rule.
This raises the question of which of these two kinds of rule is really responsible for the
good results reported above.

To answer this question we measured separately the relative frequency of use of
each of the two kinds of rule, namely GA-discovered rules and default rule, in the
classification of test examples belonging to small disjuncts. We found that GA-
discovered rules are used much more often to classify test examples belonging to
small disjuncts than the default rule. More precisely, depending on the definition of
small disjunct (the value of the parameter S) used, the relative frequency of use of
GA-discovered rules varies between 68.7% and 95% for the Adult data set and from
84.1% to 90.2% in the Wave data set. Hence, one can be confident that the small dis-
junct rules discovered by the GA are doing a good job of classifying most of the test
examples belonging to small disjuncts. In any case, to get further evidence we also
measured separately the predictive accuracy of GA-discovered rules and default rule
in the classification of test examples belonging to small disjuncts in the case of global-
default rule. Overall, as expected, the GA-discovered rules have a higher predictive
accuracy than the default rule. To summarize, as expected most of the credit for the
good performance in the classification of small disjuncts is to be assigned to the GA-
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discovered rules, rather than to the default rules. (Note that there is no need to get this
kind of evidence in the case of the local-default rules, since in this case there is no
other way that the GA-tree hybrid could beat the tree alone.)

Turning to computational efficiency issues, each run of the GA is relatively fast,
since it uses a training set with just a few examples. However, recall that in order to
discover al small disunct rules we need to run the GA ¢ * d times, where c is the
number of classes and d is the number of small diguncts. The total processing time
taken by the ¢ * d GA runs varies with the number of small diguncts, which depends
on hoth the data set and on the definition of small disunct (the value of S). In our
experiments, the processing time taken by all ¢ * d runs of the GA was about one hour
for the largest data set, Adult, and the largest humber of small diguncts, associated
with S = 15. The experiments were performed on a 64-Mb Pentium 1. One hour
seems to us a reasonable processing time and a small price to pay for the considerable
increase in the predictive accuracy of the discovered rules.

Finaly, if necessary the processing time taken by al the ¢ * d GA runs can be
considerably reduced by using parallel processing techniques [5]. Actualy, our
method greatly facilitates the exploitation of parallelism in the discovery of small
digunct rules, since each GA run is completely independent from the others and it
needs to have access only to a small data set, which surely can be kept in the local
memory of a simple processor node.

4 Conclusions and Future Research

The problem of how to discover good small-disunct rulesis very difficult, since these
rules are error-prone due to the very nature of small diguncts. Ideally, a data mining
system should discover good small-disunct rules without sacrificing the goodness of
discovered large-digunct rules.

Our proposed solution to this problem was a hybrid decision-tree/GA method,
where examples belonging to large disuncts are classified by rules produced by a
decision-tree algorithm and examples belonging to small diguncts are classified by
rules produced by a genetic algorithm. In order to realize this hybrid method we have
used the well-known C4.5 decision-tree algorithm and developed a new genetic algo-
rithm tailored for the discovery of small-disjunct rules.

The proposed hybrid method was evaluated in two data sets. We found that the
performance of our new GA and corresponding hybrid C4.5/GA method depends
significantly on the definition of small disunct. The results show that: () there is no
significant difference in the accuracy rate of the rules discovered by C4.5 alone and
the rules discovered by our C4.5/GA method when a disunct is considered as small if
it covers < 3 or <5 examples; (b) the accuracy rate of the rules discovered by our
C4.5/GA method is considerably higher than the one of the rules discovered by C4.5
alone when adisiunct is considered as small if it covers <10 or < 15 examples.

A disadvantage of our hybrid C4.5/GA method is that it is much more computa-
tionally expensive than the use of C4.5 alone. More precisely, in a training set with
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about 30000 examples our hybrid method takes on the order of one hour, while C4.5
alone takes on the order of a few seconds. However the extra processing time is not
too excessive, and it seems a small price to pay for the considerable increase in the
predictive accuracy of the discovered rules.

An important direction for future research is to evaluate the performance of the

proposed hybrid C4.5/GA method for different kinds of definition of small digunct,
e.g. relative size of the digunct (rather than absolute size, as considered in this paper).
Another research direction would be to compare the results of the proposed C4.5/GA
method against rules discovered by the GA only, although in this case some aspects of
the design of the GA would have to be modified.
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