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Abstract. We show that induction graphs can be generalized to treat more
general prediction problems than those usually treated: prediction of a class
variable or of a one dimensional continuous variable. We treat here the case in
which the prediction concerns a multivariate continuous response. The
approach used, called here GENIND1, is a combination of previous work by
two of the authors (RECPAM and SIPINA). We show also that in the
GENIND1 framework, clustering (unsupervised learning) as well as prediction
(supervised learning) can be treated. The approach is applied to nutritional data.

1 Introduction

Induction graphs, a generalization of trees, are a powerful tool in Knowledge
Discovery and Data Mining [3,8]. They can be seen as a structured extraction of
predictive rules from a data set, and therefore they provide an appealing summary of
the information contained therein.

In this work we initiate a new development which extends the application of both
trees and induction graphs to more complex prediction problems than those usually
treated by current techniques. In particular, we consider the problem of predicting a
multivariate response, characterised by a random vector of which we wish to predict
the mean and the variance-covariance matrix. The problem, such as formulated, has
an obvious direct interest. Moreover, as we shall see, the generality of the approach
will also allow us to develop clustering algorithms of the conceptual clustering type.

In particular we will describe two such algorithms inspired, respectively, by the
Lance and Williams algorithm [5] (see also [2,4]), and Gower's predictive
classification as described in Gordon [6].

The roots of this development are in the authors previous contributions, the tree-
growing algorithm RECPAM (RECursive Partition and Amalgamation) [3] and the
induction graph construction method SIPINA [8]. RECPAM actually extracts from
data an induction graph, but using a constructive approach which is less general than
SIPINA : while in RECPAM AMalgamation of children nodes is done only at the end
of the tree-growing process, in SIPINA partitioning and merging is alternated in the
construction algorithm. On the other hand, RECPAM was originally conceived to
predict multidimensional parameters and has been applied to handle outcome
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information of complex structure, such as censored survival times, count responses
and multivariate normal responses [3]. This work further develops some of the ideas
in [4]. We shall call the proposed approach GENIND (GENeral INDuction).

2 GENIND, a General Algorithm for Induction Graph
Construction

We describe here a first version of a general induction graph construction algorithm
which is essentially a restatement of RECPAM [3]. In the future we plan to develop a
SIPINA-like approach as well, and so we give the proposed family of algorithms a
new name, GENIND. The RECPAM-like version presented here, will be called
GENINDZ, the SIPINA-like approach will be called GENINDZ2, and so on.

The proposed agorithm, GENIND1, consists of three steps, all conditional on a
given data matrix D. We suppose that the columns of D, representing, as usual,
variables, are partitioned a priori into predictor and outcome variables: D=[Z|Y]
where Z and Y are Nxn and Nxm matrices, and N is the number of individuals.

STEP 1or tree-growing, consists, like CART [1], in building recursively a binary
tree by maximising the Information Gain (IG) at each node until the leaves would not
be larger than a minimal size fixed by the user. Here, 1G is defined as the reduction of
the deviance function as discussed below. Thus, at he end of this step, a tree structure,
composed by nodes and leaves, is obtained: in GENIND language, it isthe large tree.

STEP 2 or pruning, operates on this large tree. The pruning sequence is obtained
by minimizing the Information Loss (IL) at each step, where IL is the increase in
minimized deviance from the current subtree to the smaller subtree obtained by
removing a question or, more generally, a branch. Thus, this operation produces a
smaller tree, called the honest tree. Pruned branches of the large tree, will be referred
to asvirtual branches and are drawn in dotted lines on our tree diagrams, see Figure 1.

The honest tree leaves can be seen as virtual roots of virtual trees with virtual nodes
and leaves.

STEP 3 or amalgamation, operates on partitions (the first one is composed by the
honest tree leaves) and produces an induction graph, GENIND1 Graph. It is proper to
RECPAM and is similar to STEP 2. It recursively constructs a superpartition from a
(super)partition by amalgamating two sets of the given (super)partitions and each
update being obtained from the current partition by merging the two sets resulting in
minimum IL. The purpose of this step is to simplify the prediction and further
increase generalizability.

More details of the steps are described in [3]. These three steps can be seen as a
suboptimal but ‘greedy’ construction of a predictive model best fitting the data. The
novelty in our approach is twofold. Firstly, the merging step, which leads from a tree
to an induction graph, is new. Secondly, and perhaps most importantly, the approach
presented here can naturally be applied to more complex response structures than the
simple ones found in classification and (univariate) regression. This generality is
embodied in the definition of deviance: we will show in the next two sections 3 and 4
how a proper definition of the deviance function permits the development of
genuinely new algorithms.
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The result of GENIND1 when applied to a data matrix D is both a GENIND1-
predictive structure and a GENIND1-predictor. The predictive structure is the
functional form of the dependence of the parameter 6= (6, 6,...,6,) on the predictor
variables z, see (1a). In general, in order to specify it, we need a function which
associates to each individual of the population, a value for each of the components of
€ The parameters are features of the process generating the outcome variable vector

y: for example if we can specify a statisticall model for y, & may represent the
parameter of the associated probability distribution.

In order to define this predictive structurglet the vector of the predictors be
partitioned as: (z]x), where the Zs are calledree predictors or t-predictors. We will
denote by all ‘dummy’ variables attached to GENIND1 elements. Thus a partitular
indicates, for every individual of the population, whether or not he belongs to the
GENIND1 element associated to it. More explicitdlyg = 1,..., G, will denote the
‘dummy’ variables of the GENIND1 classds, = 1,..., L, those of the leaves of the
tree, and,,, v =1,...,V, those of the virtual leaves. Clearly, theand the's can be
expressed as sums of the's. In the equations below we use the slightly imprecise
notation ¥ € I' and ‘v € g’ to denote an index running, respectively, over the virtual
leaves belonging to ledfand to GENIND1-clasg. We now can write the predictive
structures associated to the honest tree and to the GENIND1-classification as follows:

Honest Tree:
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GENIND1-classification:
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1a)

(1b)

for k = 1,...,p. Notice that for each component&ofthere are three subsets of x,
denoted x(r(k)), x(If(k)) and x(v(k)). These are the root-, leaf- and virtual-leaf-
predictors for component k, abbreviated as r-, If- and v-predictors, to be specified by
the user. Notice also that if the user specify that there are no v-variables, then the third
term in the above equation is not present, and similarly for r-variables.

The simplest specification, which could be the default, is that there is only one If-
variable and that this is the constant teira. the other two sets of variables are
empty). Then the above equations become simply:

Honest Tree: GENIND1-classification:
(2a

(2b)

L G
6= 112 6.2=3 vy,
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for k = 1,...,p. When thef{, 62,...,0p) are defined as class probabilities, then the
honest tree equation represents a predictive structure identical to that given by CART,
AID, ID3, etc. for classification; similarly, the GENIND1-classification equation
reduces to the RECPAM predictive structure for multinomial probabilities.
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By GENIND1-predictor we mean the GENIND1-predictive structure, with values
of the parameters which appear in the structure specified by minimization of the
deviance function. We will use ‘hats’ in order to distinguish the predictive structure
from the predictore.g. the predictor corresponding to the predictive structure (2b)
will be denoted by:

~ N 3
80=371,2 i
A

3 GENIND1 for Multivariate Outcome

Suppose we want to discover the relationship between a vector of multivariate
outcomes y and a vector of covariates (predictors) z. Suppose also that we may
assume that z only affects the mean vector and the variance-covariance matrix of y.

Then: 6 =(ul,...,up, ¥ =(u, X). The goal is to discover a predictive structure of the
GENINDL1 type which is an adequate representation of the relationship between z and
y. Therefore our approach explicitely takes care of the associations among
components of y, in contrast with the approach consisting in growing distinct decision
trees for each component of y. To do so, we dispose of a data matrix D=[Z|Y]. For
simplicity we are restricting ourselves to the case in which there are no x-variables
other than the constant, i.e. for each componené obne and only one of the three
sets of r-, If-, and v- variables is non-empty and this may only contain the constant
term. We also limit ourselves to the situation in which the specification of where the
constant term belongs is the same for all componentsaofi for all components &
(though it may be different fop and for ). A more general structure will be
described elsewhere.

3.1 Deviance Function and I nformation Content

First, suppose that the trivial partition (root node) is an adequate representation of the
data. Then for any givenu( Y) a natural definition for the deviance function is the
sum of the Malahanobis distances of each vector from the mean:

If we assume multivariate normality, which is not necessary in this context, an
even more natural definition of deviance is twice the negative log-likelihood:

S (0 Ts-1gy0
dev(D,8) = plog| = |+ (O - )T =7 (y" - )
i=
As described in the previous section, the algorithm repeatedly computes differences

of minimized deviances. For instance the IG of a trdewith respect to the trivial tree
T, given the data matri® is defined, with obvious meaning of symbols, as:
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IG(T :To | D) = dev(D, 6, ) - dev(D, &)

3.2 GENIND1-Predictor

Now, depending on the specific assumptions we want to introduce, different
predictive structures may be specified. We will consider the following three cases:

1. The variance-covariance matrix is assumed known. (In practice the variance-
covariance matrix is never known, but assuming it constant, it can be estimated
once and for al as the sample variance-covariance matrix at the root). Then the
only component of interest is the vector of the means. The predictor associated to
the GENIND 1-classification is simply:

L= i,

Deviance minimization is trivial and the values of the parameters in (4) are given
by the sample means at the GENIND 1-classes of the components of y, with obvious
meaning of symbols:

4

N 1 i
B@=- 3y
g ilg
2. The variance-covariance matrix is assumed to be unknown but constant. Then in
the language of this work, the pu-component has constant term as If-variable,
while for the X-component has constant term as r-variable. This corresponds to
the predictor:

G (59) N 6D)
=Y 7o 29=5= S O-2) o)
o1 =1

3. The variance-covariance is assumed to vary the same way as the mean vector.
Then, the p-component has the same expression than (5a), whereas the X-
component has the constant term as If-variable, which gives:

G . Lo . ©
5= 3506@ win Sg= YOO~ 6O~z
o1 NgiEg
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4 Conceptual Clustering Algorithm Based on GENIND

In the previous section, we have shown how to learn, from a data matrix D =[Z|Y], a
prediction rule for y given z . Thisimplies an a priori distinction between z and vy, a
natural one wheny can be regarded as outcome. Although this situation, or supervised
learning, has an obvious intrinsic interest (see example in the next section), GENIND
can also serve as basis for an unsupervised learning approach.

Suppose then that no clear distinction can be made among variables, so D=[X] is
considered as a set of measurements of the vector x. We are interested in discovering
from D a structure of homogeneous and distinct classes of individuals. We aso
require that these classes be defined by simple statements involving some of the
components of X, in other words we are interested in developing conceptual clustering
algorithms. We propose here a GENIND based algorithm, called ‘Factor
Supervision’, but of course, some other is possible like the Gower's predictive
clustering approach (see also Gordon [6]).

Our approach is based on an earlier proposal [2]. It consists in transforming the
unsupervised learning problem into a supervised one, with supervision provided by
the first few factors extracted from [X]. Specifically, if y = (y1,y2,...,yp) denotes a
vector having as components the first p principal components of X, let us consider the
augmented matrix D=[X|Y]. Then the GENIND approach can be applied to the
augmented matrix to discover clusters. Discovering such clusters means discovering
clusters in a subspace where most of the ‘interesting’ dispersion of the original
variables takes place, yet these clusters are described in terms of the original
variables.

5 An Example from Nutritional Epidemiology

To illustrate the flexibility of GENIND1 both as a method for constructing predictors
and as a method of conceptual clustering, we report briefly on a preliminary analysis
of a data set which is a subset from a much larger epidemiological study called EPIC.
It is no more than an illustration; a full report will appear elsewhere. EPIC is a multi-
centre prospective cohort study designed to investigate the effect of dietary, metabolic
and other life-style factors on the risk of cancer [7]. The study started in 1990 and
includes now 23 centres from 10 European countries. By now, dietary data are
available on almost 500,000 subjects. Here we will consider only data from a
subsample of 1,201 women from the centre ‘lle-de-France’. Also, we limit ourselves
to an analysis of data from a 24-hour recall questionnaire concerning intake of 16
food-groups and four energy-producing nutrients : carbohydrates, lipids, proteins and
alcohol. The food-group variables, are expressed in grams of intake, and the nutrient
variables are measured in Kcal.

5.1 Predicting nutrieNts from Food-Group Variables

In a first analysis, we constructed a GENIND1 predictor for nutrients using the food-
group variables as predictor variables. The induction graph in Figure 1, actually a
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tree, was obtained by the approach of section 3, with alikelihood-based deviance and
assuming that both mean vector and variance-covariance matrix vary across the
leaves, see equations (5a) and (6). We obtained a large tree with 5 leaves, which
reduced to an honest tree of 3 leaves after pruning; no amalgamation was possible.
Two food-group variables define the tree structure : Alcohol and Meat. For leaf 1 we
have the following energy consumption pattern (standard deviation in parenthesis):
201.101 (76.142) Kcal for carbohydrates, 77.047 (33.864) Kca for lipids, 75.139
(25.261) Kcal for proteins and 0.006 (0.130) Kcal for alcohol. For leaf 2 the pattern
is: 208.681 (84.166) Kcal for carbohydrates, 84.995 (38.957) Kcal for lipids, 73.494
(23.879) Kcal for proteinsand 17.681 (13.701) Kcal for alcohol. Finaly for leaf 3 we
have 201.044 (81.174) Kca for carbohydrates, 104.155 (43.092) Kca for lipids,
99.647 (30.547) Kcal for proteins and 23.885 (21.198) Kcal for alcohal.

The verifications of our assumptions are in progress, but we think that if this
GENIND graph is very small, it is probably du to some similar diets in the centre ‘lle-
de-France’.

node #1
Alcohol
[12011

<0g
leaf #1
[532]
>132¢g
leaf #2 leaf #3
[417] [252]

Fig. 1. GENIND1 graph for predictive clustering.

5.2 Clustering Based on Food-Group Variables: Factor Supervision

The graph in Figure 2 was obtained by applying the ‘factor supervision’ approach of
section 4. A preliminary principal component analysis of the sixteen food-group
variables yielded five principal components which explain 80% of the dispersion.
These components were used as ‘response variables’ in a GENIND1 construction. A
7-leaves large tree was pruned to a 3-leaves honest tree which, after the
AMalgamation step, yielded two GENIND1 classes. One class includes 371 subjects
characterized by no consumption of ‘Soups and bouillon” and ‘Alcohol’. The other
class includes 830 subjects which consume at least one of ‘Alcohol’ and ‘Soups and
bouillon’.
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node #1
Soups, Bouillon
[1201ind]

node #2
Alcohol ,L?g(f)ﬁil
[866] (35
<0
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Fig. 2. GENIND1 graph for factor supervision.
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