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Abstract. During the last ten years, data mining, also known as know-
ledge discovery in databases, has established its position as a prominent
and important research area. Mining association rules is one of the im-
portant research problems in data mining. Many algorithms have been
proposed to find association rules in large databases containing both
categorical and quantitative attributes. We generalize this to the case
where part of attributes are given weights to reflect their importance to
the user.

In this paper, we introduce the problem of mining weighted quantitative
association rules based on fuzzy approach. Using the fuzzy set concept,
the discovered rules are more understandable to a human.

We propose two different definitions of weighted support: with and with-
out normalization. In the normalized case, a subset of a frequent itemset
may not be frequent, and we cannot generate candidate k-itemsets sim-
ply from the frequent (k-1)-itemsets. We tackle this problem by using
the concept of z-potential frequent subset for each candidate itemset.
We give an algorithm for mining such quantitative association rules. Fi-
nally, we describe the results of using this approach on a real-life dataset.

1 Introduction

The goal of data mining is to extract higher level information from an abundance
of raw data. Mining association rules is one of the important research problems
in data mining [I]. The problem of mining boolean association rules was first
introduced in [2], and later broadened in [3], for the case of databases consisting
of categorical attributes alone. Categorical association rules are rules where the
events X and Y, on both sides of the rule, are instances of given categorical
items. In this case, we wish to find all rules with confidence and support above
user-defined thresholds (minconf and minsup). Several efficient algorithms for
mining categorical association rules have been published (see [3], [4], [5] for just
a few examples).

A variation of categorical association rules was recently introduced in [6].
Their new definition is based on the notion of weighted items to represent the
importance of individual items.
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The problem of mining quantitative association rules was introduced and an
algorithm proposed in [[7]. The algorithm finds the association rules by partitio-
ning the attribute domain, combining adjacent partitions, and then transforming
the problem into binary one. An example of a rule according to this definition
would be: “10% of married people between age 50 and 70 have at least 2 cars”.

In [§], we showed a method to handle quantitative attributes using a fuzzy
approach. We assigned each quantitative attribute several fuzzy sets which cha-
racterize it. Fuzzy sets provide a smooth transition between a member and non-
member of a set. The fuzzy association rule is also easily understandable to a
human because of the linguistic terms associated with the fuzzy sets. Using the
fuzzy set concept, the above example could be rephrased e.g. “10% of married
old people have several cars”.

In this paper, we introduce a new definition of the notion of weighted itemsets
based on fuzzy set theory. In a marketing business, a manager may want to mine
the association rules with more emphasis on some itemsets in mind, and less em-
phasis on other itemsets. For example, some itemsets may be more interesting
for the company than others. This results in a generalized version of the quan-
titative association rule mining problem, which we call weighted quantitative
association rule mining.

The paper is organized as follows. In the next section, we will present the
definition of mining quantitative association rules using a fuzzy approach. Then
we will introduce the problem of weighted quantitative association rules in Sec-
tion 3. In Section 4, we give a new algorithm for this problem. In Section 5 the
experimental results are reported, followed by a brief conclusion in Section 6.

2 Fuzzy Association Rules

In [§], an algorithm for mining quantitative association rules using a fuzzy ap-
proach was proposed. We summarize its definitions in what follows.

Let I = {i1,42,...,9m} be the complete item set where each ¢; (1 < j <m)
denotes a categorical or quantitative (fuzzy) attribute. Suppose f(i;) represents
the maximum number of categories (if ¢; is categorical) or the maximum number
of fuzzy sets (if i; is fuzzy), and d;; (I, v) represents the membership degree of v in
the " category or fuzzy set of i;. If i; is categorical, d;, (I,v) = 0 or d;, (l,v) = 1.
If i; is fuzzy, 0 < d;; (I,v) < 1.

Let ¢t = {t.i1,t.42,...,t.im } be a transaction, where t.i;, (1 < j < m) repre-
sents a value of the j* attribute and can be mapped to

{(l,ds, (1,t.3;)) | forall 1,1 <1< f(ij)}.

Given a database D = {t1,ta,...,t,} with attributes I and the fuzzy sets
associated with attributes in I, we want to find out some interesting, potentially
useful regularities.



418 A. Gyenesei

Definition 1. A fuzzy association rule is of the form

If X ={x1,22,...,2p} is A={a1,a9,...,ap} then Y = {y1,92,...,yq} 15
B = {b1,ba,...,by}, where X, Y are itemsets and
a; € {fuzzy sets related to attribute x;}, b; € {fuzzy sets related to attribute y;}

X and Y are ordered subsets of I and they are disjoint i.e. they share no
common attributes. A and B contain the fuzzy sets associated with the corre-
sponding attributes in X and Y. As in the binary association rule, “X is A” is
called the antecedent of the rule while “Y is B” is called the consequent of the
rule.

If a rule is interesting, it should have enough support and a high confidence
value. We define the terms support and confidence as in [8]: the fuzzy support
value is calculated by first summing all votes of each record with respect to the
specified itemset, then dividing it by the total number of records. Each record
contributes a vote which falls in [0, 1]. Therefore, a fuzzy support value reflects
not only the number of records supporting the itemset, but also their degree of
support.

Definition 2. The fuzzy support value of itemset (X, A) in transaction set

D is
ZtieD H’I'] EXd’EJ (aja t7xj)
D

FSix.a =

Definition 3. An itemset (X, A) is called a frequent itemset if its fuzzy sup-
port value is greater than or equal to the minimum support threshold.

We use the discovered frequent itemsets to generate all possible rules. If the
union of antecedent (X, A) and consequent (Y, B) has enough support and the
rule has high confidence, this rule will be considered as interesting.

When we obtain a frequent itemset (Z, C'), we want to generate fuzzy asso-
ciation rules of the form, “If X is A then Y is B”, where X C Z, Y = 7 — X,
A C C and B = C — A. Having the frequent itemset, we know its support as
well as the fact that all of its subsets will be also frequent.

Definition 4. The fuzzy confidence value of a rule is as follows:
_ FS(Z,C) _ EtieD szezdzj (Cj, ti.Zj)

FS<X7A> ZtiGD Hmjexdrj(aj7ti.xj)7
where Z = X UY,C=AUB.

FC(x,a,(v,B))

3 Weighted Quantitative Association Rules

Let itemset (X, A) be a pair, where X is the set of attributes z; and A is the set
of fuzzy sets a;, j = 1,...,p. We assign a weight w(, o) for each itemset (X, A),
with 0 < w(, ) < 1, to show the importance of the item.

Generalizing Definition 2, we can define the weighted fuzzy support for the
weighted itemset as follows:
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Definition 5. The weighted fuzzy support of an itemset (X, A) is

WES(x auw) = (Hu;exWay,05)) - FSix,a)

_ ZtieD Iy jex W a,)da, (aj,t;.z;)
|D|

Notice the difference from [6] where the sum of weights is used, instead of the
product. There are still other ways to define the combined weight. For example,
the minimum of item weights would also make sense, and result in a simple
algorithm. Product and minimum share the important property that if one item
has zero weight, then the whole set has zero weight.

Similar to [§], a support threshold and a confidence threshold will be assigned
to measure the strength of the association rules.

Definition 6. An itemset (X, A) is called a frequent itemset if the weigh-
ted fuzzy support of such itemset is greater than or equal to the (user defined)
minimum support threshold.

Definition 7. The weighted fuzzy confidence of the rule “If X is A then Y
is B” as follows:

WES 7 .cw

WEC(x Aw).(v.Bw) = WES(x,4,w)

where Z=XUY,C=AUB.

Definition 8. An fuzzy association rule “If X is A then Y is B” is called an
interesting rule if X UY is a frequent itemset and the confidence, defined in
definition 7, is greater than or equal to a (user defined) minimum confidence
threshold.

The frequent itemsets in the weighted approach have the important property,
that all its subsets are also frequent. Thus, we can apply the traditional bottom-
up algorithm, tailored to fuzzy sets in [8].

4 Normalized Weighted Quantitative Association Rules

There is one possible problem with our definition. Even if each item has a large
weight, the total weight may be very small, when the number of items in an
itemset is large.

In this section, we deal with the mining of weighted association rules for
which the weight of an itemset is normalized by the size of the itemset.

Definition 9. The normalized weighted fuzzy support of itemset (X, A) is
given by

1/k
NWES(x ) = (Hajexws;.ay)

where k = size of the itemset (X, A).

“F'S(x, A w)
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Notice that we actually use the geometric mean of item weights as the combi-
ned weight. This is a direct analogy to [6], where the arithmetic mean is applied
in normalization.

Definition 10. A k-itemset (X, A) is called o frequent itemset if the norma-
lized weighted fuzzy support of such an itemset is greater than or equal to the
minimum support threshold, or

NWFSx aw)y = minsup

It is not necessarily true for all subsets of a frequent itemset to be frequent.
In [§], we generated frequent itemsets with increasing sizes. However, since the
subset of a frequent itemset may not be frequent, we cannot generate candidate
k-itemsets simply from the frequent (k — 1)-itemsets. All k-itemsets, which may
contribute to be subsets of future frequent itemsets, will be kept in candidate
generation process.

We can tackle this problem by using a new z-potential frequent subset for
each candidate itemset.

Definition 11. A k-itemset (X, A) is called a z-potential frequent subset if

1/z .
(ILyex Wy ay) - Myyeywiy, )+ FS(x.a) 2 minsup

where z is a number between k and the mazimum possible size of the frequent
itemset, and for each (Y,B), Y # X, is the remaining itemset with mazimum
weights.

4.1 Algorithm for Mining Normalized Weighted Association Rules

A trivial algorithm would be to solve first the non-weighted problem (weights=1),
and then prune the rules that do not satisfy the weighted support and confidence.
However, we can take advantage of weights to prune non-frequent itemsets ear-
lier, and thereby cut down the number of trials.

An algorithm for mining normalized weighted quantitative association rules
has the following inputs an outputs.
Inputs: A database D, two threshold values minsup and minconf.
Output: A list of interesting rules.

Notations:
the database
Dr the transformed database
w the itemset weights
Fy, set of frequent k-itemsets (have k items)
Ck set of candidate k-itemsets (have k items)
I complete item set
minsup |support threshold
mancon f|confidence threshold
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Main Algorithm (minsup, minconf, D)

1 I = Search(D);

2 (C1, Dp,w) = Transform(D, I);

3 k=1,

4 (Ck, Fi) = Checking(C, D, minsup);
5 while (|C| # ¢) do

6 begin

7 inc(k);

8 if k == 2 then

9 Cr = Joinl(Ck_1)

10 else Cf, = Join2(Cx—_1);

11 Cx = Prune(Cy);

12 (Ck, Fy) = Checking(Cl, Dr, minsup);
13 F=FUF;

14 end

15 Rules(F,minconf);
The subroutines are outlined as follows:

1. Search(D): The subroutine accepts the database, finds out and returns the
complete item set I = {iy,da,...%m}.

2. Transform(D,I): This step generates both a new transformed (fuzzy) data-
base D from the original database by user specified fuzzy sets and weights
for each fuzzy set. At the same time, the candidate 1-itemsets Cy will be
generated from the transformed database. If a 1-itemset is frequent or z-
potential frequent subset then it will be kept in C, else it will be pruned.

3. Checking(Cy, Dy, minsup): In this subroutine, the transformed (fuzzy) data-

base is scanned and the weighted fuzzy support of candidates in C} is coun-

ted. If its weighted fuzzy support is larger than or equal to minsup, we put
it into the frequent itemsets FJ.

Join1(Cy—1): The candidate 2-itemsets will be generated from C; as in [§].

Join2(Cl_1): This Join step generates Cy, from Cj_1, similar to [2].

Prune(Cy): During the prune step, the itemset will be pruned in either of

the following cases:

— A subset of the candidate itemset in C) does not exist in C_1.
— The itemset cannot be a z-potential frequent subset of any frequent item-
set.

7. Rules(F'): Find the rules from the frequent itemsets F' as in [2].

o Ot

5 Experimental Results

We assessed the effectiveness of our approach by experimenting with a real-life
dataset. The data had 5 quantitative attributes: monthly-income, credit-limit,
current-balance, year-to-date balance, and year-to-date interest.

The experiments will be done applying only the normalized version of the
algorithm (as discussed in Section 4), due to reasons explained above. We use
the above five quantitative attributes where three fuzzy sets are defined for each
of them.
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Fig. [{l(a) shows the increase of the number of rules as a function of average
weight, for five different support thresholds. The minimum confidence was set
to 0.25. We used five intervals, from which random weights were generated. The
increase of the number of rules is close to linear with respect to the average
weight. In the following experiments we used a random weight between 0 and 1

for each fuzzy set.
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Fig. M(b) shows the number of generated rules as a function of minimum
confidence threshold, for both weighted and unweighted case (as in [8]). The
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minimum support was set to 0.1. The results are as expected: the numbers
of rules for the unweighted case are larger, but both decrease with increasing
confidence threshold.

Finally, we examined how the performance varies with the number of records.
This is confirmed by Fig. 2l which shows the execution time as we increase
the number of input records from 100,000 to 500,000, for five different support
thresholds. The graphs show that the method scales almost linearly for this
dataset.

6 Conclusion

We have proposed generalized mining of weighted quantitative association rules
based on fuzzy sets for data items. This is an extension of the fuzzy quantitative
association mining problem. In this generalization, the fuzzy sets are assigned
weights to reflect their importance to the user. The fuzzy association rule is easily
understandable to a human because of the linguistic terms associated with the
fuzzy sets.

We proposed two different definitions of weighted support: without norma-
lization, and with normalization. In the normalized case, a subset of a frequent
itemset may not be frequent, and we cannot generate candidate k-itemsets simply
from the frequent (k-1)-itemsets. We tackled this problem by using the concept
of z-potential frequent subset for each candidate itemset. We proposed a new
algorithm for mining weighted quantitative association rules. The algorithm is
applicable to both normalized and unnormalized cases but we prefer the former,
as explained above. Therefore, the performance evaluation has been done only
for the normalized version.

The results show that by associating weight to fuzzy sets, non-interesting
rules can be pruned early and execution time is reduced.
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