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Abstract. In data mining, artificial neural networks have become one of
important competitors of traditional statistical methods. They increase
the potential of discovering useful knowledge in data, but only if the dif-
ferences between both kinds of methods are well understood. Therefore,
integrative frameworks are urgently needed. In this paper, a framework
based on the calculus of observational logic is presented. Basic concepts
of that framework are outlined, and it is explained how generalized quan-
tifiers can be defined in an observational calculus to capture data mining
with statistical and ANN-based methods.

1 Introduction

In the area of data mining, traditional statistical methods are often competed by
methods relying on more recent approaches, including artificial neural networks,
[3,5,15]. Those methods increase the potential of knowledge discovery and can
bring us closer to the aim of extracting all the useful knowledge contained in the
data. However, a prerequisite is that specific features of each kind of methods
(e.g., the ability of statistical methods to discover structures which cannot be
attributed to random influences and noise, or the universal approximation ca-
pabilities of neural networks), the differences between them with respect to the
applicability conditions and to the meaning of the obtained results are well un-
derstood. Therefore, integrative frameworks are urgently needed.

In this paper, an integrative framework based on the calculus of of observa-
tional logic is presented. It has been elaborated already in the seventies, as a the-
oretical foundation of the method Guha, one of the first methods for automated
knowledge discovery [7]. Originally, observational calculus has been proposed as
a means for a unified treatment of different kinds of statistical methods. Recent
research indicates that the framework can be successfully extended also behind
statistical methods of knowledge discovery [8,12, 14]. Basic concepts pertaining
to the calculus are recalled in the following section, whereas the remaining two
sections explain how generalized quantifiers can be defined in the calculus to
capture statistical hypotheses testing and the extraction of rules from data with
artificial neural networks. The framework is illustrated on small fragments from
two real-world applications.
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2 Observational Logic and Its Importance for Data Mining

Monadic observational predicate calculus is a collection of unary predicates with
a single object variable x, and of generalized quantifiers. A unary predicate, in
general, states a range of values or even one specific value of a variable capturing
some single property of an individual object (e.g., a patient), such as in
disease duration > 10 years,

sex = male.

Consequently, an open formula built from unary predicates by means of logi-
cal connectives corresponds to some combined property (combination of single
properties), of an individual object, e.g.,

sex = male A disease duration > 10 years A grand mal seizures.

On the other hand, closed formulae state properties characterizing in some way
the whole set of objects (e.g., patients) underlying the considered data. For ex-
ample, (Vz) age > 15, meaning that we deal with data about adult patients. In
the case of binary quantifiers or other quantifiers of a higher arity, the closed for-

mula (Qz)(p1, ..., om), built from an m-ary generalized quantifier @) and open
formulae 1, ..., pn, in general states some relationship between properties cor-
responding to ¢1, ..., @n. Examples will be given in the next section.

As models of a monadic observational predicate calculus, data matrices are
used, which for the considered objects record the values of variables capturing
the considered properties. More precisely, each column records the values of one
variable. The interpretation in the model of a predicate concerning that variable
is a {0,1}-valued column vector with 1s on positions corresponding to those
rows of the data matrix for which the values of the variable fulfil the predicate.
Similarly, the interpretation of an open formula is the column vector that results
from combining the interpretations of its constituent predicates in the boolean
algebra of {0, 1}-valued vectors. For example, the interpretation of
sex = male /\ disease duration > 10 years A grand mal seizures,
is the vector with ones on positions corresponding to those rows of the data
matrix for which the three constituent predicates are simultaneously valid, and
with zeros on all remaining positions. Finally, the interpretation of the closed
formula (Qx)(¢1,...,¢m) is obtained by applying some {0, 1}-valued function
T (Qu)(pr,... om)» Called the truth function of (Qz)(w1,...,¢m) to the data ma-
trix serving as the model. The value of the truth function can, in general, depend
on the whole data matrix, more precisely on those its columns that are needed
to obtain the interpretations of ¢1,... , ¢,,. However, in many important cases
that dependence reduces to a dependence on the interpretation of ¢1, ..., @n,. In
such a case, the truth function is a function on the set of all dichotomous matri-
ces with m columns, is denoted simply Tfg and called the truth function of the
quantifier Q. For example, the truth functions of the classical unary existential
quantifier 3 and universal quantifier V are defined Tf3(M) = 1iff > M; > 0 and
Tfy(M) =1 iff M; = My =--- =1, respectively.

If the observational calculus includes at least one of the quantifiers V and 3,
all tautologies derivable in the classical boolean predicate logic can be derived
also here. In addition, a number of other tautologies are derivable also for various
classes of generalized quantifiers of a higher arity [7]. Using those tautologies,
the validity of some relationships can be deduced from the validity of other
relationships, without having to evaluate the formula capturing the deduced
relationship. This can substantially increase the efficiency of data mining.

3 Generalized Quantifiers for Statistical Hypotheses Testing

Let the data matrix serving as a model of a monadic observational calculus can be
viewed as a realization of a random sample from some probability distribution P.
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Through appropriate constraints on P, it is possible to capture probabilistic
relationships between the properties corresponding to the columns of that data
matrix. Assuming that P is a priori known to belong to some set D of probability
distributions, a statistical test assesses the validity of the constraint Hy : P € Dy
for a given Dy C D against the alternative Hy : P € Dy = D\ Dy. The test is
performed using some random variable ¢, the test statistic, and some borel set
C., the critical region of the test on a significance level a € (0, 1), which are
connected to Hy through the condition (VP € Dy)P(t € Cy) < a. In addition,
the test often makes use of the fact that if the considered model is a realization
of a random sample, then also the matrix M of interpretations of open formulae
©1,... ,m is a realization of a random sample, more precisely a realization of
a random sample from a multinomial distribution. That fact allows to choose
some test statistic ¢ that is a function of that multinomial random sample, and
to define a generalized quantifier ~ corresponding to the constraint H; by means
of a truth function depending only on M,

Tt (M) =1 iff £y € Ch, (1)

where t); is the realization of ¢ provided the realization of the random sample
from P yields the matrix of interpretations M.

The existing implementations of Guha include about a dozen quantifiers
based on statistical hypotheses testing [7,16]. All of them are binary, the most
fundamental being the lower critical implication —2, p € (0,1), which corre-
sponds to the binomial test (with a significance level o € (0,1)), the Fisher

quantifier ~f, corresponding to the one-sided Fisher exact test, and the x?

la'R)
quantifier Néz, corresponding to the x? test. For example in [21], the following
relationships have been discovered using the Fisher quantifier:
sex = male /A disease duration > 10 years A
A only grand mal seizures ~f memory quotient > 90,
disease duration > 10 years A only grand mal seizures A
A course of the disease = good ~F memory quotient > 90.
A second example comes from an application of Guha to the area of river
ecology [13]. Table 1 shows antecedents of formulae found to hold in the collected

2

data and expressible as (A;c7 Ei ~1o0 RD) A (A\;c7 Ei — 1o, RD), where 7 is some
subset of ecological factors, E; for ¢ € 7 are predicates stating ranges of values
of the respective ecological factors, and RD is a predicate stating the occurrence
of the species “Robackia demeierei”. More precisely, RD states that the number
of individuals of “Robackia demeierei” per sample is at least 1—1071max, where
Nmax denotes the maximal number of individuals of this species per sample
encountered in the data.

4  Quantifiers for ANN-Based Rule Extraction

The extraction of knowledge from data by means of artificial neural networks
has received much attention not only in connection with data mining, but also
in connection with pattern recognition [1,2,17-19]. Actually, already the map-
ping learned by a neural network incorporates knowledge about the implications
that certain values of the input variables have for the values of the output vari-
ables. Usually, however, the ANN-based knowledge extraction aims at the more
comprehensible representation of those implications as rules [4, 10, 18, 20].

A comprehensive survey of ANN-based rule extraction methods has been
given in [1] (see also [19]), where a classification scheme for those methods has
been proposed as well. In the context of that classification scheme, two remarks
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Table 1. Antecedents of found formulae (A, E ~1o% RD) A (Aiez Ei =% RD)
- z
attained significance: ~0% 10

90%il of grain diameter < 3mm A flow velocity > 0.2m/s/ 0.008 .
mean grain diameter < 1.5 mm A flow velocity > 0.2m/s |0.008% 3.6 %
glowable proportion < 5% A
90%il of grain diameter < 3mm A flow velocity > 0.2m/s 0.33% 5.5%
glowable proportion < 5% A

mean grain diameter < 1.5mm A flow velocity > 0.2m/s 0.33% 5.5%

can be made to the possibility to capture the extraction of rules using a genera-
lized quantifier of an observational calculus:

— As far as the primary dimension of the proposed scheme is concerned, the
expressive power of the rules, the fact that the truth function of a generalized
quantifier is {0, 1}-valued implies that only boolean rules can be covered. In
connection with the other major class of rules, fuzzy rules, ongoing research
into fuzzy generalized quantifier should be mentioned [6,9,11,12].

— With respect to the second dimension, the translucency, the extracted rules
should concern only network inputs and outputs. The reason is that hidden
neurons are not explicitly assigned to properties of real objects, thus they
do not correspond to open formulae of an observational calculus.

Even with the choices with respect to those two dimensions fixed, there are
innumerable possibilities how to design a rule extraction method. Here, a par-
ticular method described in [14] is considered. Due to the limited extent of this
contribution, the method cannot be recalled in detail, instead only its basic
principles are listed:

1. As the neural network architecture, a multilayer perceptron (MLP) with
one hidden layer, m input neurons and n output neurons is used.

2. To each hidden and output neuron, a piecewise-linear sigmoidal activation
function is assigned.

3. Any hyperrectangle in ®" (in particular, any set of output value tuples for
which a given conjunction of unary predicates holds) is the map, via F, of some
finite set of polyhedra in R™.

4. A replaceability relation ~£7 is defined between the set P, of all poly-
hedra in £™ and the set H,, of all hyperrectangles in R", being determined by
as system of monotone measures u = (up)pep,,, and by a tolerance ¢ > 0.
Practically important monotone measures are the empirical distribution of the
data fi, and its weighted version fip, which is for P € P,, with i(P) # 0 defined
(VS € R™)ap(S) = %. For P € P, with i(P) = 0, the measure [ip can
be defined arbitrarily, depending on whether we want to admit replaceability of
such polyhedra.

This method allows to state the fact that particular values of some input
variables imply particular values of some output variables, using the formula

/\ T, —E /\ Tk (2)

(more pedantically, (—# x)(A,cz Tk Areo ™)), where T C {1,...,m}, O C

€
{1,...,n}, for each k € Z, or k € O, 7 is a unary predicate stating some
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Fig. 1. Example of found polyhedra  Fig. 2. Example of found hyperrectangles

interval I of values of the k-th input variable, or the k-th output variable,
respectively, and —# is a binary quantifier corresponding tro the replaceability
relation ~#P. The reader is defined to [14] for the definition of its truth function.

For comparison with Table 1, Figure 1 depicts a 2-dimensional projection
of the union of polyhedra that a particular coordinate Fjy of the mapping F
learned by a MLP maps to a particular interval Ij,. In Figure 1, the considered
F} counts the number of individuals of “Robackia demeierei” per sample, and
I = (1—10nmax, +00). The depicted union of polyhedra is projected to the coordi-

nates corresponding to the ecological factors “glowable proportion” and “90 %il
of grain diameter”. Figure 2 shows a projection, to the same coordinates, of
those hyperrectangles that replace any polyhedron P from the union depicted in
Figure 1 according to the replaceability relation zf(‘)’% , where [ip is the weighted
empirical distribution. The projection in Figure 2 reflects the following rules that
can be extracted from the data using (2) with p = (fip)pep,,:
glowable proportion < 5.39 % — . RD,
glowable proportion < 18.69 % A mean grain diameter < 1.17 mm
A 90%il of grain diameter < 1.7 mm —/, RD,

glowable proportion < 9.04 % A mean grain diameter < 1.62 mm

A 90%il of grain diameter < 3.06 mm —¥{, RD.
Needless to say, it is now very easy to compare such extracted rules with result
obtained using statistical hypotheses testing. This impressively illustrates the
usefulness of the employed integrative framework.

5 Conclusion

This paper tried to show that observational logic can be used as a framework
for integrating traditional statistical methods for knowledge discovery in data
with methods based on artificial neural networks. This framework provides a
common theoretical view of both kinds of methods while preserving their spe-
cific advantages. Due to the different underlying paradigms and different initial
assumptions, artificial neural networks do not necessarily yield the same results
as statistical methods. Hence, a coincidence between relationships discovered in
the data by both kinds of methods increases the chance that those relationships
pertain to the reality behind the data, to the phenomena that generated them.
On the other hand, if a relationship found by means of some quantifier can not
be confirmed using other quantifiers, including a quantifier based on the other
paradigm, then such as relationship is a natural starting point for further, deeper
investigations.
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