
D.A. Zighed, J. Komorowski, and J. Zytkow (Eds.): PKDD 2000, LNAI 1910, pp. 504-509, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Improving an Association Rule Based Classifier

Bing Liu, Yiming Ma, and Ching Kian Wong

School of Computing
National University of Singapore

3 Science Drive 2, Singapore 117543
{liub, maym, wongck}@comp.nus.edu.sg

Abstract. Existing classification algorithms in machine learning mainly use
heuristic search to find a subset of regularities in data for classification. In the
past few years, extensive research was done in the database community on
learning rules using exhaustive search under the name of association rule min-
ing. Although the whole set of rules may not be used directly for accurate classi-
fication, effective classifiers have been built using the rules. This paper aims to
improve such an exhaustive search based classification system CBA (Classifi-
cation Based on Associations). The main strength of this system is that it is able
to use the most accurate rules for classification. However, it also has weak-
nesses. This paper proposes two new techniques to deal with these weaknesses.
This results in remarkably accurate classifiers. Experiments on a set of 34
benchmark datasets show that on average the new techniques reduce the error of
CBA by 17% and is superior to CBA on 26 of the 34 datasets. They reduce the
error of C4.5 by 19%, and improve performance on 29 datasets. Similar good
results are also achieved against RIPPER, LB and a Naïve-Bayes classifier.

1 Introduction

Building effective classification systems is one of the central tasks of data mining.
Past research has produced many techniques and systems (e.g., C4.5 [10], and RIP-
PER [3]). The existing techniques are, however, largely based on heuristic/greedy
search. They aim to find only a subset of the regularities that exist in data to form a
classifier.

In the past few years, the database community studied the problem of rule mining
extensively under the name of association rule mining [1]. The study there is focused
on using exhaustive search to find all rules in data that satisfy the user-specified
minimum support (minsup) and minimum confidence (minconf) constraints.

Although the complete set of rules may not be directly used for accurate classifica-
tion, effective and efficient classifiers have been built using the rules, e.g., CBA [7],
LB [8] and CAEP [4]. The major strength of such systems is that they are able to use
the most accurate rules for classification. This explains their good results in general.
However, they also have some weaknesses, inherited from association rule mining.
� Traditional association rule mining uses only a single minsup in rule generation,

which is inadequate for unbalanced class distribution (this will be clear later).
� Classification data often contains a huge number of rules, which may cause combi-

natorial explosion. For many datasets, the rule generator is unable to generate rules
with many conditions, while such rules may be important for classification.

Improving an Association Rule Based Classifier 505

This paper aims to improve the CBA system (Classification Based on Associations)
by dealing directly with the above two problems. It tackles the first problem by using
multiple class minsups in rule generation (i.e., each class is assigned a different min-
sup), rather than using only a single minsup as in CBA. This results in a new system
called msCBA. Experiments on a set of 34 benchmark problems show that on average
msCBA achieves lower error rate than CBA, C4.5 (tree and rules), and a Naïve-Bayse
classifier (NB), LB and RIPPER (CAEP is not available for comparison).

The second problem is more difficult to deal with directly as it is caused by expo-
nential growth of the number of rules. We deal with it indirectly. We try to find an-
other classification technique that is able to help when some rules from msCBA are
not accurate. The decision tree method is a clear choice because decision trees often
go very deep, i.e., using many conditions. We then propose a technique to combine
msCBA with the decision tree method as in C4.5. The basic idea is to use the rules of
msCBA to segment the training data and then select the classifier that has the lowest
error rate on each segment to classify the future cases falling into the segment. This
composite method results in remarkably accurate classifiers.

2 Association Rule Mining for Classification

Association rule mining is stated as follows [1]: Let I = {i1, i2, …, im} be a set of items.
Let D be a set of transactions (the dataset), where each transaction d (a data record) is
a set of items such that d ² I. An association rule is an implication of the form, X �
Y, where X ± I, Y ± I, and X ¬ Y = «. The rule X � Y holds in the transaction set D
with confidence c if c% of transactions in D that support X also support Y. The rule has
support s in D if s% of the transactions in D contains X ­ Y.

Given a set of transactions D (the dataset), the problem of mining association rules
is to discover all rules that have support and confidence greater than the user-specified
minimum support (called minsup) and minimum confidence (called minconf). An
efficient algorithm for mining association rules is the Apriori algorithm [1].

Mining association rules for classification: The Apriori algorithm finds association
rules in a transaction data of items. A classification dataset, however, is normally in
the form of a relational table. Each data record is also labeled with a class. The table
data can be converted to transaction data as follows: We first discretize each continu-
ous attribute into intervals (see e.g., [5] [6] on discretization algorithms). After discre-
tization, we can transform each data record to a set of (attribute, value) pairs and a
class label, which is in the transaction form. A (attribute, value) pair is an item.

For classification, we only need to generate rules of the form X � ci, where ci is a
possible class. We call such rules the class association rules (CARs). It is easy to
modify the Apriori algorithm to generate CARs. We will not discuss it here (see [7]).

3 Classifier Building in CBA

After all rules (CARs) are found, a classifier is built using the rules. In CBA, a set of
high confidence rules is selected from CARs to form a classifier (this method is also
used in msCBA). The selection of rules is based on a total order defined on the rules.

506 Bing Liu, Y. Ma, and C. K. Wong

Definition: Given two rules, ri and rj, ri f rj (also called ri precedes rj or ri has a higher
precedence than rj), if the confidence of ri is greater than that of rj, or if their confi-
dences are the same, but the support of ri is greater than that of rj, or if both the
confidences and supports of ri and rj are the same, but ri is generated earlier than rj;
Let R be the set of CARs, and D the training data. The basic idea of the classifier-

building algorithm in CBA is to choose a set of high precedence rules in R to cover D.
A CBA classifier is of the form:

<r1, r2, …, rn, default_class>. (1)

where ri ³ R, ra f rb if b > a. In classifying an unseen case, the first rule that satisfies
the case classifies it. If no rule applies, the default class is used. A simple version of
the algorithm for building such a classifier is given in Figure 1. [7] presents an effi-
cient implementation of the algorithm. It makes at most two passes over the data.

R = sort(R); /* according the precedence f */
for each rule r ³ R in sequence do

if there are still cases in D AND r classifies at least one case correctly then
delete all training examples covered by r from D;
add r to the classifier

end
end
add the majority class as the default class to the classifier.

Fig. 1. A simple classifier-building algorithm

4 Improving CBA

4.1 Using Multiple Minimum Class Support

The most important parameter in association rule mining is the minsup. It controls
how many rules and what kinds of rules are generated. The CBA system follows the
classic association rule model and uses a single minsup in its rule generation. We
argue that this is inadequate for mining of CARs because many practical classification
datasets have uneven class frequency distributions. If we set the minsup value too
high, we may not find sufficient rules of infrequent classes. If we set the minsup value
too low, we will find many useless and over-fitting rules for frequent classes. To solve
the problems, msCBA adopts the following (multiple minimum class supports):

minsupi: For each class ci, a different minimum class support is assigned. The user
only gives a total minsup, denoted by t_minsup, which is distributed to each class:

minsupi = t_minsup � freqDistr(ci). (2)

The formula gives frequent classes higher minsups and infrequent classes lower
minsups. This ensures that we will generate sufficient rules for infrequent classes and
will not produce too many over-fitting rules for frequent classes.

4.2 Seeking Help from Other Techniques

As we mentioned earlier, for many datasets, the rule generator is unable to generate
rules with many conditions (i.e., long rules) due to combinatorial explosion. When

Improving an Association Rule Based Classifier 507

such long rules are important for classification, our classifiers suffer. Here, we pro-
pose a combination technique. The aim is to combine msCBA with a method that is
able to find long rules. Clearly, the decision tree method is a natural choice because
decision trees often go very deep, i.e., using many conditions. In our implementation,
we also include the Naïve-Bayes method (NB) as NB comes free from msCBA (the
probabilities needed by NB are all contained in the 1-condition rules of msCBA).

The proposed combination method is based on the competition of different classifi-
ers on different segments of the training data. The key idea is to use one classifier to
segment the training data, and then choose the best classifier to classify each segment.

Let A be the classifier built by msCBA, T be the decision tree built by C4.5, and N
be the Naïve-Bayse classifier. We use the rules in A to segment the data. For the set of
training examples covered by a rule ri in A, we choose the classifier that has the lowest
error on the set of examples to replace ri. That is, if ri has the lowest error, we keep ri.
If T has the lowest error, we use T to replace ri. If ri is replaced by T, then in testing
when a test case satisfies the conditions of ri, it is classified by T instead of ri. The
same applies to N. The algorithm is given in Figure 2.

From line 3-6, we compute the number of errors made by ri, T, and N on the train-
ing examples covered by each ri. Errori, ErrorTi and ErrorNi are initialized to 0. From
line 9-11, we use T (or N) to replace ri if T (or N) results in fewer errors on the training
examples covered by ri. X � (use T) means that in testing if a test case satisfies X (the
conditions of ri), T will be used to classify the case.

1 construct the three classifiers, A, T, N;
2 for each training example e do
3 find the first rule ri in A that covers e
4 if ri classifies e wrongly then Errori = Errori + 1 end
5 if T classifies e wrongly then ErrorTi = ErrorTi + 1 end
6 if N classifies e wrongly then ErrorNi = ErrorNi + 1 end
7 endfor
8 for each rule ri (X � cj) in R do /*X is the set of conditions */
9 if Errori � ErrorTi and Errori � ErrorNi then keep ri

10 elseif ErrorTi � ErrorNi then use X � (use T) to replace ri

11 else use X � (use N) to replace ri

12 endfor

Fig. 2. The combination algorithm

5 Experiments

We now compare the classifiers built by msCBA, CBA, C4.5 (tree and rules, Release
8), RIPPER, NB, LB, and various combinations of msCBA, C4.5 and NB. The
evaluations are done on 34 datasets from UCI ML Repository [9]. We also used
Boosted C4.5 (the code is obtained from Zijian Zheng [11]) in our comparison. We
ran all the systems using their default settings. We could not compare with existing
classifier combination methods as we were unable to obtain the systems.

In all the experiments with msCBA, minconf is set to 50%. For t_minsup, from our
experience, once t_minsup is lowered to 1-2%, the classifier built is already very accu-
rate. In the experiment results reported below, we set t_minsup to 1%.

508 Bing Liu, Y. Ma, and C. K. Wong

Improving an Association Rule Based Classifier 509

Experiment results are shown in Table 1. The error rates on the first 26 datasets are
obtained from 10-fold cross-validation, while on the last 8 datasets they are obtained
from the test sets. All the composite methods involving C4.5 uses C4.5 tree.

Error rate comparison: For each dataset, column 1-11 show the error rates of
msCBA, CBA, C4.5 tree, C4.5rules, RIPPER, NB, LB, C4.5+NB (C4.5 tree com-
binedwith NB), msCBA+NB, msCBA+C4.5 and msCBA+C4.5+NB respectively.
Column 12-21 show the ratios of the error rate of msCBA+C4.5+NB vs. the other
methods. From the table we see that on average the error rate of msCBA is lower than
every other individual method. It is also clear that over the 34 datasets, the composite
methods are superior to individual methods. msCBA+C4.5+NB gives the lowest error
rate on average. It reduces the error of C4.5 tree (or rules) by 18% (or 19%) on aver-
age, and its won-lost-tied record against C4.5 tree (or rules) is 27-7-0 (or 29-5-0). It
reduces the error of msCBA by 14%, and its won-lost-tied record against msCBA is
28-5-1. Similar good results are also achieved against CBA, RIPPER, NB and LB.

msCBA+C4.5 and msCBA+C4.5+NB have similar performances. This confirms
our intuition that msCBA’s weakness is overcome by deep trees of C4.5. Column 22
and 23 show the error rates of boosted C4.5 and msCBA+boostedC4.5. We see that
msCBA+C4.5+NB’s results are comparable to boosted C4.5, and its won-lost-tied
record against boosted C4.5 is 18-15-1. Since boosted C4.5 is regarded as one of the
best classifiers, we can say that msCBA+C4.5+NB is also among the best.

6 Conclusion

This paper aims to improve an exhaustive search based classification system CBA. It
first identified two weaknesses of the system, and it then proposed two new techniques
to deal with the problems. The techniques produce markedly better classifiers.

References

1. Agrawal, R. & Srikant, R. 1994. Fast algorithms for mining association rules. VLDB-94.
2. Chan, P. & Stolfo, J. S. 1993. Experiments on multistrategy learning by meta-learning.

Proc. Second Intl. Conf. Info. Know. Manag., 314-323.
3. Cohen, W. 1995. Fast effective rule induction. ICML-95.
4. Dong, G., Zhang, X. Wong, L. Li, J. 1999. CAEP: classification by aggregating emerging

patterns. Discovery-Science-99.
5. Fayyad, U. & Irani, K. 1993. Multi-interval discretization of continuous-valued attributes

for classification learning. IJCAI-93, 1022-1027.
6. Kohavi, R., John, G., Long, R., Manley, D., & Pfleger, K. 1994. MLC++: a machine-

learning library in C++. Tools with artificial intelligence, 740-743.
7. Liu, B., Hsu, W. & Ma, Y. 1998. Integrating classification and association rule mining.

KDD-98.
8. Meretkis, D. & Wuthrich, B. 1999. Extending naïve bayes classifiers using long itemsets.

KDD-99.
9. Merz, C. J. & Murphy, P. 1996. UCI repository of machine learning database.

[http://www.cs.uci.edu/~mlearn].
10. Quinlan, J. R. 1992. C4.5: program for machine learning. Morgan Kaufmann.
11. Zheng, Z. and Webb, G. 1999. Stochastic attribute selection committees with multiple

boosting: Learning more accurate and more stable classifier committees. PAKDD-99.

	Improving an Association Rule Based Classifier
	Introduction
	Association Rule Mining for Classification
	Classifier Building in CBA
	Improving CBA
	Using Multiple Minimum Class Support
	Seeking Help from Other Techniques

	Experiments
	Conclusion
	References

