
Mining Relational Databases

Frédéric Moal, Teddy Turmeaux, and Christel Vrain

LIFO, Université d’Orléans,
rue Léonard de Vinci, BP 6759,
45067 Orléans cedex 02, France

{moal,turmeaux,cv}@lifo.univ-orleans.fr

Abstract. In this paper, we propose a classification system to induce an
intentional definition of a relation from examples, when background kno-
wledge is stored in a relational database composed of several tables and
views. Refinement operators have been defined to integrate in a uniform
way different induction tools learning numeric and symbolic constraints.
The particularity of our approach is to use integrity constraints over
the database (keys and foreign keys) to explore the hypotheses space.
Moreover new attributes can be introduced, relying on the aggregation
operator ”group by”.

1 Introduction

Nowadays, most of the data sources are stored in large relational database sy-
stems in which information is expressed in a given normal form and attributes
are often distributed over several tables. Current data mining systems [2] often
require data to be stored in a single relation and therefore relational applications
have to be flattened into a single table, losing interesting information about the
structure of the database and leading to huge, intractable relation. On the other
hand, Inductive Logic Programming (ILP [4]) is devoted to relational learning
in a logical framework, and some algorithms have been successfully applied to
Data Mining tasks [5]. However, characteristics of Data Mining tasks differ from
usual ILP ones: the search space is more restricted (no recursive rules), and the
data size is much higher.

In this paper, we present a classification system that is able to handle re-
lational databases and to use information about the structure of the database
to guide the search of good hypotheses. For efficiency reasons, we have chosen
a separate and conquer strategy relying on a hill climbing heuristic, as in the
system FOIL [6]. We have defined new refinement operators based on the schema
of the database and on integrity constraints. Moreover, a new quality criterion
is used to avoid the generation of too specific rules at the end of the process.
Finally, the classical ILP expressiveness has been extended by introducing the
group-by SQL operator.

The paper is organized as follows. Section 2 formalizes the problem in the
framework of relational algebra. Section 3 is devoted to our system, its quality
criterion and its refinement operators. In Section 4, we present experiments on

D.A. Zighed, J. Komorowski, and J. Żytkow (Eds.): PKDD 2000, LNAI 1910, pp. 536–541, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Mining Relational Databases 537

a classical problem for relational learners (mutagenesis [5]), and we conclude on
perspectives in Section 5.

2 Relational Algebra

The Data Mining task we address here is a classification task. It can be seen
as the search of a “good” query over the database, the answer of which covers
many positive examples and rejects many negative examples. A natural way to
express queries is relational algebra [1], that can easily be translated into SQL.

2.1 Notations

The database schema is denoted by D, with D = {R1(U1), . . . , Rn(Un)} where
Ri is a relation and Ui is the set of attributes of the relation Ri.

To avoid naming conflicts in expressions, attributes are referenced by their
positions in the relation. For instance, in the relation person(id, name, age),
person[2] stands for the attribute name. Moreover, we use uppercase letters
for the schema D and its relations Ri, and the same lowercase letters for their
corresponding instances; an instance d of the database D = (R1, . . . , Rn) is a
set {r1, . . . , rn} where ri is an instance, i.e. a set of tuples, of the relation Ri.

We consider the following relational algebra operators:

– R 1i=j S denotes the join of the tuples of r and s on the ith attribute of R
and the jth attribute of S;

– σC(R) denotes the selection of the tuples t of r that satisfy the constraint
C, a propositional formula over attributes of R;

– πi(R) denotes the projection of r on its ith attribute;
– R ∪ S denotes the union of the tuples of r and s.

A relation is defined in intension by a relational algebra expression, it is
defined in extension by the list of its tuples. If E denotes a relational algebra
expression over the relations of D, and if d is an instance of the database, then
E(d) is the set of tuples of d satisfying E.

In this paper, we focus on two usual classes of integrity constraints: keys
and foreign key links. A key R1[i] means that given a value for the ith attribute
of the relation r1, there exists a single tuple in r1 with that value. A foreign
key link links an attribute in a relation to a key attribute in another relation:
R1[i] → R2[j] means that for each tuple with a given value for the ith attribute
of the relation r1, there exists a single tuple in the relation r2 with this value for
the jth attribute.

2.2 The Mutagenesis Problem

The aim of this problem [5] is to discriminate between molecules, depending on
their mutagenic activity (active or inactive). The dataset consists of generic 2D
chemical compound descriptions, described by:



538 F. Moal, T. Turmeaux, and C. Vrain

– a measure of hydrophobicity of the molecule, denoted by LogP ;
– a measure of the energy of the lowest unoccupied molecular orbital in the

molecule, denoted by Lumo;
– a boolean attribute I1, identifying compounds with 3 or more benzyl rings;
– a boolean attribute Ia, identifying a subclass of compounds (acenthryles);
– the atoms that occur in a molecule, with their elements (carbon, zinc, ...),

Quanta type and partial charge;
– the bonds between atoms, with their bond type (aromatic, ...).

This information is represented by the following relational model:

D = { Compound(DrugId, Lumo, Logp, I1, Ia)
Atom(AtomId, DrugId, Element, Quanta, Charge),
Bond(AtomId1, AtomId2, BondType) }

with the keys {Compound[1], Atom[1], Bond[1, 2]} and the foreign key links
{Atom[2]→Compound[1], Bond[1]→Atom[1], Bond[2]→Atom[1]}.

2.3 Formulation of the Problem

Given a database D and an instance d of D, and given a concept to learn defined
in extension by two relations on the same attribute, a positive example relation
e+ and a negative one e−, find an intentional definition E over the database D
that is complete (e+ ⊆ E(d)) and consistent (e− ∩ E(d) = ∅).

When these requirements are too strong, the aim is only to find a definition
which covers many positive examples and rejects many negative examples.

As explained in Section 3 and due to our search strategy and to our definitions
of operators, the relational expressions that are learned in our system are written:
πa(. . . σCi3

(σCi2
(σCi1

(Ri1) 1 Ri2) 1 Ri3) . . . ). A projection must be applied
on the learned hypothesis to restrict the relation to the attribute defining the
examples.

3 Architecture of the System

The underlying algorithm is a refinement of the classical separate-and-conquer
algorithm: the basic idea is to search for a rule that covers a part of the positive
examples, to remove these examples, and to start again with the remaining posi-
tive examples. In our system, two parameters are given defining respectively the
minimum rate of covered positive examples (MinPosRate) and the maximum rate
of covered negative examples (MaxNegRate). Each iteration builds a hypothesis
that is the best refinement of the current one according to a quality criterion.

3.1 Quality Criterion

Algorithms based on a separate-and-conquer strategy lead to overly specific rules
at the end of the process. To overcome this problem, we propose a new quality



Mining Relational Databases 539

evaluation function, which takes into account the number of rules that have
already been learned.

The quality of a refinement h′ of a hypothesis h is therefore computed by
the formula: tnpos ∗ t2neg, where tpos (resp. tneg) is the ratio of the number of
positive (resp. negative) examples covered (resp. rejected) by h′ out of the num-
ber of positive (resp. negative) examples covered by h, and n is the number of
the iteration. With such an expression, when n increases, low values for tpos

penalize the quality function. This solution reduces the number of rules in the
final solution; on the other hand, the last generated rules are longer, since more
refinements are necessary.

3.2 Refinement Operators

Our approach is a top-down one: the system starts from a general rule that
covers all the examples and iteratively specializes it so that it covers less and
less tuples representing negative examples. Given a hypothesis h, a refinement
operator generates hypotheses h′ that are more specific than h.

Classical Operators

Selection refinement OS: Given a hypothesis h = πa(R), OS produces a set of
hypotheses OS(h) = {πa(σC(R))}, where C is a propositional formula over the
attributes of R. The constraint C is obtained by using classical algorithms in
discrimination tasks as for example finding a discriminant hyperplane.

Join refinement OJ : Given a current hypothesis h = πa(R), where R is a com-
position of selections and joins on relations R1, . . . , Rn, the operator generates
a set of hypotheses h′ such as: h′ = {πa(R 1i=j S) }, with S(A1, . . . , An) ∈ D,
i references the kth attribute of a relation Rm in R1 . . . , Rn, and Rm[k] and
S[j] are connected with a foreign key link. The use of keys and foreign key links
restricts the possible joins and thus enables to prune the search space efficiently.

For instance, on the mutagenesis database, the hypothesis π2(Atom) is re-
fined to π2(Atom 12=1 Compound), using the link with Compound, or to
π2(Atom 11=1 Bond) or π2(Atom 11=2 Bond) using the two links between
Atom and Bond.

New Operators

Composition: The application of these two operators allows to search the hy-
potheses space. Nevertheless, as pointed out in [7], when using a hill-climbing
algorithm which chooses the best hypothesis at each step, some literals which
bring no discrimination power are not introduced while they could be very useful
to introduce new discriminant features.

In our system, the two operators are composed: first, the join refinement is
applied, and for each refinement the selection refinement is applied. The compo-
sition refinement operator is then OC = OS ◦OJ . Join refinements are evaluated



540 F. Moal, T. Turmeaux, and C. Vrain

according to the discriminant power of the new attributes they introduce, and
the best composition is chosen.

Aggregate refinement operator. It refines a hypothesis h = πa(R), where R is
a composition of selections and joins on relations R1, . . . , Rn into πa(R 1i=j

Group(S, j)), such that S(A1, . . . , Aj , . . . , An) ∈ D, i references the kth attri-
bute of a relation Rm in R1, . . . , Rn, and there is a foreign link S[i]→Rm[k].
This definition can be easily extended to group a relation over more than one
attribute. The only restriction is that the attributes used in the join appear in
these grouping attributes.

4 Experiments and Discussion

The mutagenesis database consists of generic chemical compound descriptions,
as shown in Section 2.2. The complete database is composed of 230 compo-
unds which have been divided into two distinct subsets. We focus on the subset
identified as ”Regression friendly” to compare our results with some results of
Attribute-based algorithms. This subset is composed of 125 active molecules
(positive examples) and 63 inactive molecules (negative examples).

The goal is to find discriminant rules for the active molecules. All the results
are obtained using a 10-fold cross-validation, where every molecule is used nine
times in the training set and once in the test set.

Typically, the accuracy is the number of well classified examples divided by
the total number of examples. To compute the real accuracy of our system on this
problem, we adopt the following procedure: for each of the 10 cross-validation
run, 1/10 of the examples composed the test set and 9/10 are used as the learning
set. This learning set is then used to determine the parameters MaxNegRate
and MinPosRate. for various values of the parameters, we randomly select
80% of this learning set to induce relational expressions, testing the accuracy on
the 20% remainder. The parameters that lead to the best accuracy over these
20% are then used with the complete learning set. The accuracy of the learned
hypothesis is computed over the initial testing set.

The predictive accuracies of various systems, extracted from [5], are presen-
ted in Table 1. Progol [3] is an Inductive Logic Programming system, and the
other are attribute-based algorithms. The ”default” algorithm classifies all the
examples to the majority class (active).

Table 1 states that our system is competitive in terms of predictive accuracy,
despite the hill-climbing strategy we use. This strategy is interesting because it
tests much less hypotheses than more exhaustive search strategies and this is a
very important feature to deal with large databases.

5 Conclusion

In this paper, we have proposed a new system to deal with classification tasks
in the framework of relational databases. We have developed new refinement
operators based on the database schema and integrity constraints.



Mining Relational Databases 541

Table 1. Predictive Accuracies (from a 10-fold cross-validation).

Method Estimated Accuracy
Our System 0.89
Progol 0.88
Linear Regression 0.89
Neural Network 0.89
Decision Tree 0.88
Default 0.66

The results of our experiments seem to confirm the interest of our approach,
in terms of accuracy and computational cost. The low computational cost allows
the user to iteratively refine its search with different parameters and biases. In
our opinion, such an iteration is a necessary stage in all Data Mining tasks.
However, these results must be validated with other databases.

The use of the database structure for the design of refinement operators of-
fers some perspectives: the study of this approach in the framework of Object
Databases which allows to express finer structural constraints; the extension of
the tuples expressiveness with Constraints Databases[8].

Acknowledgements: This work is partially supported by ”Région Centre”.

References

[1] P. Atzeni and V. De Antonellis. Relational Database Theory. Benjamin/Cummings
Publ. Comp., Redwood City, California, 1993.

[2] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Ad-
vances in Knowledge Discovery and Data Mining. MIT Press, Mento Park, 1996.

[3] S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:245–
286, 1995.

[4] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.
The Journal of Logic Programming, 19 & 20:629–680, May 1994.

[5] S. Muggleton, A. Srinivasan, R. King, and M. Sternberg. Biochemical knowledge
discovery using Inductive Logic Programming. In H. Motoda, editor, Proc. of the
first Conference on Discovery Science, Berlin, 1998. Springer-Verlag.

[6] J. R. Quinlan. Learning logical definitions from relations. Machine Learning,
5(3):239–266, 1990.

[7] G. Silverstein and M. Pazzani. Relational cliches: constraining constructive induc-
tion during relational learning. In Proceedings of the Sixth International Workshop
on Machine Learning, Los Altos, CA, 1989. Kaufmann.

[8] T. Turmeaux and C. Vrain. Learning in constraint databases. In Discovery Science,
Second International Conference, volume 1721 of LNAI, pages 196–207, Berlin,
december 1999. Springer.


	Mining Relational Databases
	Introduction
	Relational Algebra
	Notations
	The Mutagenesis Problem
	Formulation of the Problem

	Architecture of the System
	Quality Criterion
	Refinement Operators
	Classical Operators
	New Operators


	Experiments and Discussion
	Conclusion
	Acknowledgements
	References


