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Abstract. In this paper we present an elegant and effective algorithm for mea-
suring the similarity between homogeneous datasets to enable clustering. Once
similar datasets are clustered, each cluster can be independently mined to generate
the appropriate rules for a given cluster. The algorithm presented is efficient in
storage and scale, has the ability to adjust to time constraints, and can provide
the user with likely causes of similarity or dis-similarity. The proposed simila-
rity measure is evaluated and validated on real datasets from the Census Bureau,
Reuters, and synthetic datasets from IBM.

1 Introduction

Large business organizations, like Sears, with nation-wide or international interests
usually rely on a homogeneous distributed database to store their transaction data. This
leads to multiple data sources with a common structure. Traditional methods to analyze
such distributed databases involve combining the individual databases into a single logi-
cal entity before analyzing it. The problem with this approach is that the data contained
in each individual database can have totally different characteristics, such as “The cu-
stomers in the South Carolina store rarely buy winter-related products while those in a
store in Maine may buy such items a lot”, leading to a loss of potentially vital infor-
mation. Another option, mining each database individually is unacceptable as this will
likely result in too many spurious patterns (outliers) being generated, wherein it will
become harder to decide which patterns are important. Our solution is to firstclusters
the datasets, and then to apply thetraditional distributed miningapproach to generate a
set of rules for each resulting cluster.

The primary problem with clustering homogeneous datasets is to identify a suita-
ble distance (similarity) metric. In Section 2 we develop our similarity measure. We
then show how one can cluster distributed homogeneous database sources based on our
similarity metric in a novel communication efficient manner in Section 3. We then ex-
perimentally validate our approach on real and synthetic datasets in Section 4. Finally,
we conclude in Section 5.
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2 Similarity Measure

Similarity is a central concept in data mining. Recently there has been considerable work
in defining intuitive and easily computable measures of similarity between complex
objects in databases [2,9,8]. The similarity between attributes can also be defined in
different ways. An internal measure of similarity is defined purely in terms of the two
attributes. Thediff [11] method is an internal measure where the distance between the
probability density function of two attributes is used as a measure of difference between
two attributes. An external measure of similarity [5] compares the attributes in terms
of how they are individually correlated with other attributes in the database. Daset
al. [5] show that the choice of the other attributes (called the probe set), reflecting the
examiner’s viewpoint of relevant attributes to the two, can strongly affect the outcome.
However, they do not provide any insight to automating this choice (“first guess”) when
no apriori knowledge about the data is available. Furthermore, while the approach itself
does not limit probe elements to singleton attributes, allowing for complex (boolean)
probe elements and computing the similarities across such elements can quickly lead
to problems of scale in their approach. We propose an external measure of similarity
for homogeneous datasets. Our similarity measure compares the datasets in terms of
how they are correlated with the attributes in the database. By restricting ourselves to
frequently occurring patterns (associations), as probe elements, we can leverage existing
exact [3] and approximate [13] solutions for such problems to generate the probe sets.
Furthermore by using associations as the initial probe set we are able to obtain a “first
guess” as to the similarity between two attributes. Also using associations enables one
to interactively customize [1] the probe set to inculcate examiner bias and probe for the
causes of similarity and dis-similarity.

2.1 Association Mining Concepts
We first provide basic concepts for association mining that are relevant to this paper,
following the work of Agrawalet al. [3]. Let I = {i1, i2, · · · , im} be a set ofm distinct
attributes1, also calleditems. A set of items is called anitemsetwhere for each nonne-
gative integerk, an itemset with exactlyk items is called ak-itemset. A transactionis a
set of items that has a unique identifierTID. Thesupportof an itemsetA in databaseD,
denotedsupD(A), is the percentage of the transactions inD containingA as the subset.
The itemsets that meet a user specifiedminimum supportare referred to asfrequent
itemsets or asassociations. We use our group’s ECLAT [12] algorithm to compute the
frequent itemsets (associations).

2.2 Similarity Metric
LetA andB respectively be the set of associations for a databaseD and that for a database
E . For an elementx ∈ A (respectively inB), let supD(x) (respectivelysupE(x)) be the
frequency ofx in D (respectively inE). Our metric is:

Sim(D, E) =
∑

x∈A∩B max{0, 1 − α| supD(x) − supE(x)|}
‖A ∪ B‖

1 To handle continuous attributes we adopt a novel discretization method not described here due
to lack of space.
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whereα is a scaling parameter. The parameterα has a default value of1 and can
be modified to reflect the significance the user attaches to variations in supports. For
α = 0 the similarity measure is identical to‖A∩B‖

‖A∪B‖ , i.e., support variance carries no
significance.Sim values are bounded and lie in [0,1].Sim also has the property of
relative ordinalility, wherein ifSim(X, Y ) > Sim(X, Z), thenX is more similar toY
than it is toZ. These two properties are essential for our clustering algorithm.

2.3 Interactive Similarity Mining

An important point raised by Daset al. [5] is that using a different set of probes could
potentially yield a different similarity measure. That property created the need for pru-
ning/constraining the probe space to select appropriate probe sets. In our case the action
of modifying the probe set corresponds to modifying the association sets of the input
databases, and that is achieved either by modifying the minimum support or by restric-
ting that associations should satisfy certain conditions (Boolean properties over attribu-
tes). Supporting such interactions is accomplished by leveraging interactive association
mining [1]. In addition to the interactions supported in [1] we also supportinfluential
attribute identification. This interaction basically identifies the (set of) probe attribute(s)
that contribute most to the similarity or dissimilarity of the two datasets.

We define the influence of an attributea as follows. LetA′ be the subset ofA
containing all associations that include the attributea. Similarly we defineB′ with
respect toB. Then the influence (INF) and relative influence (RINF) of an attributea
can be defined as follows:

INF (a,D, E) =
∑

x∈A′∩B′
max{0, 1 − α| sup

D
(x) − sup

E
(x)|},

RINF (a,D, E) =
∑

x∈A′∩B′ max{0, 1 − α| supD(x) − supE(x)|}
‖A′ ∪ B′‖

By definition the attribute which has the largest INF value is the largest contributor to
the similarity measure. Also, the attribute which has the lowest INF value is the princi-
ple cause for dissimilarity. The user is presented with tuples of the form (INF(a,A,B),
RINF(a,A,B)). The RINF values are useful to the user as it conditions the user rela-
tive to the size ofA′ ∪ B′. As it turns out, these tuples are very useful for probing
unexpected/interesting similarity results.

2.4 Sampling and Association Rules

The use of sampling for approximate, quick computation of associations has been studied
in the literature [13]. While computing the similarity measure, sampling can be used at
two levels. First, if generating the associations is expensive (for large datasets) one
can sample the dataset and subsequently generate the association set from the sample,
resulting in huge I/O savings. Second, if the association sets are large one can estimate
the distance between them by sampling, appropriately modifying the similarity measure
presented above. Sampling at this level is particularly useful in a distributed setting when
the association sets, which have to be communicated to a common location, are very
large.
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3 Clustering Datasets
Clustering is commonly used for partitioning data [7]. The technique we adopt for
clustering datasets is greedy tree clustering. We use the similarity metric defined in
Section 2 in our clustering algorithm. Input to the algorithm is the number of clusters
in the final result or a user specifiedmerge cutoff. At the start of the clustering process
each database constitutes a unique cluster. Then we repeatedly merge the pair of clusters
with the highest similarity into one cluster until there are the desired number of clusters
left or if merging any pair of clusters involves merging clusters that exhibit aSimvalue
that is below the minimal threshold (merge cutoff). As our similarity metric is based
on associations, there is an issue of how to merge their association lattices when two
clusters are merged. A solution would be to combine all the datasets in both clusters
(treating them as one logical entity) and recompute the associations, but this would be
time-consuming and involve heavy communication and I/O overheads (all the datasets
will have to be re-accessed). Another solution would be to intersect the two association
lattices and use the intersection as the lattice for the new cluster, but this would be very
inaccurate. We take the half-way point of these two extremes.

Suppose we are merging two clustersD andE , whose association sets are respectively
A andB. The value ofsupD(x) is known only for allx ∈ A and that ofsupE(x) is
known only for allx ∈ B. The support ofx in the merged cluster is estimated as

supD(x) · ‖D‖ + supE(x) · ‖E‖
‖D‖ + ‖E‖ .

Whenx does not belong toA or toB, we will approximate the unknownsup-value by
a “guess”θ 2, which can be specific to the cluster as well as to the associationx.

4 Experimental Analysis
In this section we experimentally evaluate our similarity metric. We first evaluate the
performance and sensitivity of computing this metric using sampling, under various
support thresholds in a distributed setting. We then evaluate the sensitivity of our metric
to choice ofα. Finally we demonstrate the efficacy of our dataset clustering technique to
synthetic datasets from IBM and on a real dataset from the Census Bureau, and evaluate
the results obtained.

4.1 Setup
All the experiments (association generation, similarity computation) were performed on
DECStation 4100s containing four 600MHz Alpha 21164 processors, with 256MB of
memory per processor. In order to model distributed market basket data we generated 12
different synthetic datasets ranging from 90MB to 110MB, which are generated adop-
ting the procedure described in [3]. These databases mimic the transactions in a retailing
environment. Table 1 shows the databases used and their properties. The number of tran-
sactions is denoted asnumT , the average transaction size asTl, the average maximal

2 Our strawman approach to estimate the value ofθ is to randomly guess a value between 0
and the minimum support, since if it does not appear in the set of associations it must have a
support less than the minimum support. The second approach, which we evaluate is to estimate
the support of an itemset based on the available supports of its subsets.
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potentially frequent itemset size asI, the number of maximal potentially frequent item-
sets as‖L‖, and the number of items was 1000. For each‖L‖, I pair (generation pool) we
created 3 different (a, b and c) databases by tweaking the database generation program
parameters. We refer the reader to [3] for more detail on the database generation.

DatabasenumT Tl I ‖L‖ Size (range)
D1a,b,c 2000000 8-9 2000 4-5 85-90MB
D2a,b,c 200000010-12 6000 2-4 95-100MB
D3a,b,c 2100000 9-10 4000 3-4 100-102MB
D4a,b,c 225000010-1110000 6-8 110-120MB

Fig. 1.Database properties

We also use the Reuters-21578 collection [10] to evaluate some aspects of our work.
The original data set consists of 21578 articles from the Reuters newswire in 1987. Each
article has been tagged with keywords. We created a basket dataset from this collection
by representing each news article as a transaction and each keyword being an item.About
1800 articles had no keywords and the average transaction length was between 2 and 3.
From this basket dataset we created 12country datasets. Eachcountry datasetcontains
the transactions (country names were among the keywords) that refer to that particular
country.

The Census data used in this work was derived from the County Business Patterns
(State) database from the Census Bureau. Each dataset (one dataset per state, eight states)
contains one transaction per county. Each transaction contains items which highlight in-
formation on subnational economic data by industry. Each industry is divided into small,
medium and large scale concerns. The original data has numeric attributes (countably
infinite) corresponding to number of such concerns occurring in the county which we
discretized into three (high, medium, small) categories.

4.2 Sensitivity to Sampling Rate

In Section 2 we mentioned that sampling can be used at two levels to estimate the simi-
larity efficiently in a distributed setting. If association generation proves to be expensive,
one can sample the transactions to generate the associations and subsequently use these
associations to estimate the similarity accurately. Alternatively, if the number of asso-
ciations in the lattice are large, one can sample the associations to directly estimate the
similarity. We evaluate the impact of using sampling to compute the approximate the
similarity metric below.

For this experiment we breakdown the execution time of computing the similarity
between two of our databasesD3a andD4a under varying sampling rates. The two data-
sets were located in physically separate locations. We measured the total time to generate
the associations for a minimum support of 0.05% and 0.1% (Computing Associations)
for both datasets (run in parallel), the time to communicate the associations from one
machine (Communication Overhead) to another and the time to compute the similarity
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Fig. 2.Sampling Performance

metric (Computing Similarity) from these association sets. Transactional sampling in-
fluences the computing of associations while association sampling influences the latter
two aspects of this experiment. Under association sampling, each processor computes a
sample of its association set and sends it to the other, both then compute a part of simi-
larity metric (in parallel). These two values are then merged appropriately, accounting
for duplicates in the samples used. While both these sampling levels (transaction and
association) could have different sampling rates, for expository simplicity we chose to
set both at a common value. We evaluate the performance under the following sampling
rates, 5%, 10%, 12.5%, 20%, and 25%. Figure 2 shows the results from this experiment.

Breaking down the performance it is clear that by using sampling at both levels the
performance improves dramatically. A sampling rate of 10% yields an overall speedup
of 8. From the figure it is easy to see that the dominant factor in this experiment is
computing the associations. However, in a higher latency, lower bandwidth environment
(current experiment was in a LAN environment), as will be the case when computing
the similarity across distributed datasets interconnected via commodity networks the
communication overhead will play a more dominant role.

The above experiment affirms the performance gains from association and transac-
tional sampling. Next, we evaluate the quality of the similarity metric estimated using
such approximation techniques for two minimum support values (0.05% and 0.1%).
From Table 1 it is clear that using sampling for estimating the similarity metric can
be very accurate (within 2% of the ideal (SamplingRate 100%)) for all sampling rates
above 5%. We have observed similar results (speedup and accuracy) for the other dataset
pairs as well.

4.3 Sensitivity to Support

From Table 1 it should also be clear that the similarity metric is affected by the support.
Choosing the “appropriate support” parameter for measuring similarity is an open rese-
arch problem currently under investigation. The heuristic we use for choosing “appro-
priate supports” is that the cardinality of the resulting set of associations should lie within
a user-specified interval. For the synthetic datasets we used the interval [10000,100000].
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Table 1.Sampling Accuracy: Sim(D3a,D4a

SupportSR-100%SR-25%SR-20%SR-10%SR-5%
0.05% 0.136 0.135 0.134 0.135 0.139
0.1% 0.12 0.12 0.12 0.12 0.11

4.4 Similarity Metric: Sensitivity to α

In this section we first evaluate the sensitivity of our similarity metric to the choice ofα
(alpha). Recall from Section 2 that the choice ofα corresponds to the significance the
user associates with variation in actual supports.

We evaluate the similarity between three dataset pairs for varying values ofα. The
results are shown in figure 3A. We wanted to evaluate the robustness to choice ofα
when two datasets were basically quite similar (D3a,D3b), and when two datasets were
basically quite dissimilar (D3a,D2a). We also wanted to see the relative effect between
dataset similarity pairs (D3a,D2a vs D3a,D4a) asα was varied. We variedα from
0.5 to 500 (x axis: log scale). As can be seen from the graph when the datasets are
similar the similarity metric is pretty robust to variation inα (up toα = 200). When
both datasets were dis-similar then they were robust to changes inα when the matches
(common itemsets) also had similar support values (D3a,D4a). However, when the
matches did not have similar support values (D2a,D3a) increasingα caused a relatively
sharp decline in similarity values. This is highlighted by the crossover between the two
graphs (D3a,D4a) and (D2a,D3a). This crossover highlights an important fact,the
choice of alpha can affect dataset clustering. For α > 100, datasetD3a is closer to
D4a, but forα < 100, D3a is closer toD2a.

4.5 Dataset Clustering

We now evaluate the efficacy of clustering homogeneous distributed datasets based on
similarity. We used the synthetic datasets described earlier as a start point. We ran a
simple tree-based clustering algorithm on these twelve datasets. Figure 3B shows the
result. The numbers attached to the joins are theSim metric with α = 1.0. Clearly
the datasets from the same origin are merged first. Given four as the desired number
of clusters (or a merge cutoff of 0.2), the algorithm stops right after executing all the
merges depicted by full lines, combining all the datasets from the same generation pool
(as described in Section 4.1) into single clusters and leaving apart those from different
pools highlighting the importance of clustering datasets before mining for rules. We next
validate our approach on real datasets.

4.6 Census Dataset Evaluation

We asked our algorithm to cluster eight state datasets into four clusters. The clustering
algorithm returned the clusters [IL, IA, TX], [NY, PA], [FL], and [OR,WA].
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Fig. 3.A: Sensitivity toα B: Clustering Synthetic Datasets

An interesting by-play of our preprocessing step, discretization of the number of
industrial concerns into three categories (high, middle and low), is that states with larger
counties (area-wise), such as PA, NY and FL tend to have higher associativity (since each
county has many industries) and thereby tend to have less affinity to states with lower
associativity. On probing the similarity between IA, IL and TX3 the mostinfluential
attribute is found to be agricultural concerns (no surprise there). This experiment valida-
tes our approach as the automatically derived clusters are sensible ones (geographically
co-located). Interestingly, we found that the Census data benefits, performance-wise,
from association sampling due its high associativity.

4.7 Reuters Dataset Evaluation: Attribute Similarity

Here three clusters were requested by us. The resulting clusters were [India, Pakistan,
S. Korea], [USSR, Poland, Argentina], and [Japan, USA, Canada, UK, France, Brazil].
A surprising fact about the first cluster is that India and Pakistan have exactly four
transactions in which they co-occur. Ourinfluential-attribute algorithm identified that
Pakistan and India have common trading partners (UK, France) and are involved in the
trade of similar items (various oils and various grains/wheat). In the second cluster the
inclusion of Argentina is not intuitive. Probing the cause for this our algorithm was able

3 Cattle farming is also grouped under agricultural concerns in the Census data.
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to identify4 that although Argentina and Poland, have no co-occurring transactions, they
are involved in the trade for similar items (wheat, grain, oilseed, etc.) resulting in the
strongSim value. Similarly the similarity between Argentina and USSR was found to
be due to agricultural trade. The third cluster essentially consists of advanced countries.
Most of which include Brazil as a strong trading partner resulting in that countries
presence in the cluster.

5 Conclusions

In this paper we propose a method to measure the similarity among homogeneous da-
tabases and show how one can use this measure to cluster similar datasets to perform
meaningful distributed data mining. An interesting feature of our algorithm is the ability
to interact via informative querying to identify attributes influencing similarity. Experi-
mental results show that our algorithm can adapt to time constraints by providing quick
(speedup of 4-8) and accurate estimates (within 2%) of similarity. We evaluated our work
on several datasets, synthetic and real, and show the effectiveness of our techniques.

Our similarity metric is sensitive to the support and the choice ofα.As part of ongoing
work we are investigating whether we can automate/guide the choice of these parameters
subject to certain user/domain constraints. We are also evaluating the effectiveness of
the current merging criteria, and exploring other criteria, as described in Section 3. As
part of future work we will focus on evaluating and applying dataset clustering to other
real world distributed data mining tasks.
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