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Abstract. We present a preliminary study to define a comparison pro-
tocol to evaluate different quality measures used in supervised and un-
supervised clustering as objective functions. We first define an order on
the set of partitions to capture the common notion of a good partition
towards the knowing of the ideal one. We demonstrate the efficiency of
this approach by providing several experiments.
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1 Introduction

Unsupervised clustering aims at organizing a data set by grouping objects into
clusters to discover at best their relations. This clustering can conduct to overlap-
ping groups, however it is simpler to look for partitions. The clustering should
gather the couple of objects the most similar and should separate the couple
the most dissimilar. Most clustering algorithms can be described through the
concept of similarity and the optimization procedure. A lot of algorithms [8,2]
use an objective function to operationally express a compromise between the
intra-cluster proximity and the inter-cluster farness. It is also possible to use the
EM algorithm [2] where two objects are closed if they can be considered as a
realization of the same random variable. Another important family of methods
can be pointed out under the name of conceptual clustering algorithms [6,5].
They have been originally constructed with nominal variables, but extensions
to other type of data are available [7]. The particularity of those methods is
that they aim to build understandable partitions. Those algorithms rely on non
parametric probabilistic measures to define clusters and two objects are closed if
they have the same value on most of the variables. Clusters are such that their
probability vectors have the greatest entropy on each variable. Conversely to
supervised learning where a class variable is known on a training data set, there
are no references in unsupervised clustering. Thus, beside clusters construction,
one might take special care to the relevance of the discovered data organization.
It is necessary to check the validity of the obtained partition. In this article, we
present an evaluation of some similarity measures used in supervised and unsu-
pervised clustering as objective functions. We study their capability to discern,
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in an ideal case, the best partition among all partitions. We are not concern with
clusters validity. We only compare several objective functions regarding their di-
scrimination capabilities. The variability of the similarity measures on the set of
partitions must be necessarily as high as possible to ensure a non random choice
in the set of measure equivalent partitions as it can be found in Isaac [11] for
instance. Even if the search strategy is important in the cluster construction,
similarity measures must be sufficiently discriminant.

The organisation of the paper is the following. In the section one, we pre-
sent the measures we have evaluated. Then, we present our strategy to have a
meaningful comparison. Then, some results are given and discussed and some
concluding remarks are given.

2 Objective Functions

We choose to evaluate only objective functions which require nominal variables,
and not based on any kind of metrics. Thus we only study the behavior of an
objective function and not a structuring of a data space. In the following we
used the functions ϕβ defined on [0; 1] such that ϕβ(x) = 2β−1

2β−1−1x (1 − x)β−1.
This permits us to introduce generalized entropy [12] in the measures.

The Category Utility Function
This function is the one used in the well known conceptual clustering algorithm
Cobweb [6] and in other related systems like Iterate [1] and called category
utility. It is a trade-off between intra-class similarity and inter-class dissimilarity,

CU =

∑
k P (Ck)

∑
i

∑
j

[
P (Ai = Vij | Ck)2 − P (Ai = Vij)

2
]

K

CU rewards the clusters which most reduce the collective impurity over all va-
riables. This function has a form closed to the Gini index used in supervi-
sed clustering. Indeed, CU is the weighted average of the Gini index: CU =
∑

k P (Ck)×Gini
K in order to make this index independent of the number of clu-

sters.

Quinlan’s Gain Ratio
Other objective functions used in supervised clustering can be adapted for un-
supervised clustering [5]. The adapted Quinlan’s Gain ratio does not depend on
the number of clusters and is given by,

∑
i

∑
k P (Ck)

∑
j [ϕβ(P (Ai = Vij |Ck)) − ϕβ(P (Ai = Vij))]

−∑
k ϕβ(P (Ck))

3 Comparing Measures through Partitions Ordering

Since we compare measures on the set of partitions, simply taking values on the
same partitions does not lead to a meaningful comparison. Indeed, the resulting
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values on two different partitions can not be compared until the partitions are
compared and ordered towards the clustering objectives. Thus, we consider data
sets which are generated as the expression of a partitioning PI called the ideal
case. Our comparisons aim at discovering if, among all the partitions, PI is
measured as the best one by the different similarity indices and if those measures
are sufficiently discriminating on the whole set of partitions. However, having
PI, a natural choice to compare two partitions is to create a distance d such
that d(PI, P ) permits to order the partitions P in reference to the ideal case PI.
Of course, two different partitions can be at the same distance of PI. In order
to have a significant measure, we use the two constituents of a partition: the
objects and the vectors of variables values taken by the objects. We then build
two distances, µO and µV , such that the whole distance is constructed from both
measures.

3.1 Comparing Clusters

A Distance Between Two Clusters Taken on the Objects
Marczewski and Steinhaus [10] present a distance for the comparison of two sets.
Let P (X) be the class of all subsets of the finite set X. Then1,

∀Ck, Ck′ ∈ P(X), µO (Ck, Ck′) =

{
|Ck∆Ck′ |
|Ck∪Ck′ | if |Ck ∪ Ck′ | > 0

0 otherwise

A Distance Taken on the Variables
On the same principle, we define a distance between two probabilistic vectors,
∀Ck, Ck′ ∈ P(X),

µV (Ck, Ck′) =
1

m p

p∑
i=1

m∑
j=1

|P (Ai = Vij | Ck) − P (Ai = Vij | Ck′)|

3.2 Distance between Partitions

An Hausdorff Like Distance
Following Karonski and Palka [9], the previous distances can be extended to the
case of comparing two partitions P1 and P2 given by Pi = {Ci1, . . . , CiIi

}. Given
a measure µ between two sets, we can construct an Hausdorff like distance:

Dµ (P1, P2) = 1
2

[
max
i∈I1

min
j∈I2

µ (C1i, C2j) + max
j∈I2

min
i∈I1

µ (C1i, C2j)
]

In order that the distance take into account the two previous measures, we use
the following distance,

Dmin − max (P1, P2) =
√

D2
µO (P1, P2) + D2

µV (P1, P2)

1 with A∆B = A ∪ B − 2A ∩ B the symmetric difference
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With the min-max distance, we hope to obtain a good discrimination of the
partitions regarding to both aspects taken in account in conceptual clustering.

An Improved Measure
Through experiments, we observed that the distance Dmin − max has some drawb-
acks. This measure is not very sensitive to minor changes because of its principle
of worth case. That is why we propose another distance based on the search of
the matching of maximal cardinality and minimal weight inside a bipartite graph
[4]. The graph G = (X1 ∪ X2, E) associated to two partitions, has the clusters
of the two partitions as nodes and all edges between X1 and X2 exist and are
weighted by either µO or µV . Notice that we can restrict the number of edges
by selecting those whose weights are sufficiently low. The value of the matching
permits to order the partitions. It decreases when partitions closer to PI, in the
sense of the used measure, are taken and by definition is zero when PI is taken.

4 The Results

In the following study we reduce our investigations to boolean variables.The re-
sults obtained on such variables can not be extrapolated to nominal variables
without bias, but a such constraint is necessary to reduce the number of pa-
rameters. We use an artificial dataset given by a diagonal block matrix, each
block containing only 1 and the sizes of the blocks vary. This also defines PI.
The partitions compared to PI are either the whole set, when the combinatory
permits (8 objects and 8 variables), or random selected partitions otherwise (60
objects and 15 variables). In case of a random selection, 30000 partitions are
sampled. Finally, we introduce some noise in order to evaluate the noise resi-
stance of the measures. It is generated by random permutations of 1 and 0 in
the boolean matrix. To measure the influence of β, we also study different values
in {0.5, 1, 2, 3}.

Comparison of the Two Indexes
On the figure 1, CU function is plotted relatively to both measures in the ex-
haustive case. As expected, the matching index is more discriminant than the
min-max distance. This is an important result which confirm the sensitivity
of the matching measure. Notice that we observed similar results for all other
measures and noise levels.

The Ideal Case
Given PI, we first study the influence of β using Quinlan gain ratio (see the
figure 2 on the left). The effect of the parameter β is to spread out the values of
the measures thus having more variations with β different to one. Using β = 0.5
leads to the measure with smaller variations and thus to the less discrimant one.
The others choice give similar behavior with only differences in the scale. Thus,
we choose to keep the original version of the gain ratio for comparison purposes.
However, some experiments should be extended to better precise the influences
of a high value of β. Having chosen a β for Quinlan gain ratio, we can make a
comparison with the CU measure (see the figure 2 on the right). The variations
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Fig. 1. Relative performance of the two orderings (x is distances, y is CU)
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Fig. 2. (x is order, y is measure): (left) influence of β. (right) CU vs Quinlan.

of CU are very small so that nearly all partitions seem to be similar for that
measure, except the extremal one. Following these preliminary results, Quinlan
measure seems to be a better measure than CU even if more experiments are
necessary to conclude.

The Noisy Ideal Case
In order to simulate a real case, we introduce some noise in the boolean matrix
(see the figure 3). Following our experiments, Quinlan measure appears to be
more noise resistant than CU. With a 5 percent noise level, it behaves like in the
ideal case. When noise increases, some partitions take aberrant values (see the
figure 3 (left)). However, this measure remains regular when CU becomes very
perturbated (see the figure 3 (right)).

5 Conclusion

In this article, we have presented a new ordering of partitions to objectively
compare the behavior of different quality measures which can be used in unsu-
pervised learning. Through our experiment protocol, we have first established
that our index has a better discrimant power than previous one of Marczewski
and Steinhaus. Secondly, we shown than Quinlan gain ratio is noise resistant
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Fig. 3. Noise influence (x is order, y is measure): (left) Quinlan - (right) CU

and more discrimant than the other functions. When generalizing it with ϕβ ,
it appeared that a bad choice was β = 0.5. Other values were not significantly
different in our experiments. Due to lake of space, we have not reported here
all our results but they all confirm the conclusions done in this paper. Let us
also report that we also studied an adapted version of the Mantaras function [3]
which behaved, in this set of experiments, like Quinlan gain ratio.
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