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Abstract. In this paper, we are interested in the problem of extracting
spatial association rules in Geographic Information Systems (GIS). We
propose an algorithm that extends existing methods to deal with spa-
tial and non-spatial data over multiple layers. It handles hierarchical,
multi-valued attributes, and produces general spatial association rules.
We also present a prototype, which has been applied on a real and large
geographic database in the field of mineral exploration.

1 Introduction

In this paper, we are interested in Spatial Data Mining [4,6,8], which leads to
practical applications in many domains, such as geographic information systems
(GIS). We present an application of mining association rules between geographic
layers according to spatial and non-spatial properties of the objects.
The concept of association rules introduced by Agrawal [1] has been extended
by Koperski and Han [7] to Spatial Data. For instance, the rule:

Is(X, largetown) ∧ Intersect (X, highway) → AdjacentTo(X, water) (86%)
expresses that 86 % of the large towns intersecting highways are also adjacent
to water areas (rivers, lakes, . . . ).
They have proposed an algorithm to discover such rules. In their works, non-
spatial information is organized into hierarchies, and rules including this infor-
mation are learned. Nevertheless, information belonging to different levels of
hierarchies cannot appear in a same rule. We have extended their framework to
introduce non-spatial predicates in rules, even when attributes are not hierar-
chical, and we have applied it to a real application provided by BRGM 1.
The application we are interested in is explained in Section 2 and formalized in
Section 3. In Section 4, we present an algorithm for extracting spatial association
rules in GIS and a prototype that has been developed and applied on geogra-
phic data provided by BRGM. We conclude with a discussion and perspectives,
in Section 6.
1 BRGM (’Bureau des Recherches Géologiques et Minières’) is a French public insti-

tution, present in all regions of France and in some 40 countries abroad. Based on
the Earth Sciences, its expertise relates to mineral resources, pollution, risks, and
the management of geological environment (http://www.brgm.fr).
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2 The Application

A GIS stores data in two distinct parts: spatial data representing an object by its
geometric shape (a point, a line or a polygon) and its location on the map, and
non-spatial data storing properties of the geographic objects. Moreover, a GIS
uses the notion of thematic layers in order to separate data into classes of same
kinds. Each thematic layer is described by a relational table where each tuple is
linked to a geometric object. For instance, the GIS Andes developed by BRGM
[2] is a homogeneous information system of the entire Andes Cordillera. There
are different layers in the system, which can be combined in any way by the user
(Figure 1). Our goal is to find association rules between a given thematic layer
and others layers, according to spatial relations and non-spatial attributes.

Mines-Geologies-Faults

Figure 1. Three layers of an extract of the Andes

3 Problem Formalization

We define two kinds of layers: the Reference Layer is the thematic layer which
contains the spatial objects we focus on. It is unique, and in the following, the
variable x is associated to the Reference Layer. A Descriptive Layer contains
objects that have spatial relations with those of the reference layer.
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In our work, a spatial association rule is a rule like:
P1, P2, ..., Pn → Q1, Q2, ..., Qm

where Pi, Qj , are predicates. A predicate may be:
1. a definition predicate: It defines a thematic layer, its syntax is:
Definition Predicate(var). For instance, in the example of Section 2, Mine(x) is
a definition predicate for the layer Mines.
2. a spatial predicate: It links the reference layer with a descriptive layer. Its
general syntax is: Spatial Predicate(vari, varj).
For instance, Near to(x,z) denotes the proximity between x and z.
3. a non-spatial predicate: It describes a layer, its general syntax is:
NonSpatial Predicate (var, V alue). In our example, Main Substance(x, Ag) ex-
presses that the mine x has silver as main substance.
Our formalism allows to express non-spatial properties on objects. The algorithm
below is able to discover association rules defined as follows:
• A non spatial association rule is a rule composed of the definition predicate
concerning the reference layer and non-spatial predicates.
• A spatial association rule is a rule composed of at least two definition predi-
cates, at least a spatial predicate and at least a non-spatial predicate.

4 The System

General Algorithm
Inputs:

• a spatial database SDB, a relational database RDB, taxonomies TDB.
• a reference Layer: Rl

• descriptive Layers: Dl = {Li/i = 1, . . . , n}
• a set of non-spatial attributes for Rl and for each Li ∈ Dl

• a set of spatial predicates to compute: SP

• Buffer, MinSupp, MinConf

Outputs: solid, multi-levels, spatial and non-spatial association rules.
Begin

Step 1: Creation of link tables: LDB =
⋃n

i=1 LDBi

For each Li ∈ Dl

• search Spatial Relations between Rl and Li

• update LDBi

Step 2: Computation of frequent predicate sets
• Creation of sets of predicates
• For each example Ej of LDB

• Search the predicates sets that are true for Ej and increase their support
• Keep predicate sets that have sufficient support
Step 3: Generation of strong Spatial Association Rules

End

Details of the Algorithm
Let us notice first that each spatial object in a given layer has a unique key or
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identifier. The algorithm is based on the building of link tables, each one rela-
ting the reference layer to a descriptive layer. The structure of a link table is
composed of the following fields: the reference layer key, non-spatial attributes
of the reference layer, a spatial relation linking an object of the reference layer
and an object of the descriptive layer, the descriptive layer key, and non-spatial
attributes of the descriptive layer. An example Ej is a set of tuples, belonging to
different link tables, that have the same reference layer key j [3].
The support of a rule represents the percent of examples verifying all the predi-
cates of the rule at the same time. A rule holds with confidence c%, if c% of the
examples of the Reference layer verifying the predicates given in the condition
of the rule, also satisfy the predicates of the consequence of the rule.
Step 1 creates a link table LDBi between the reference layer Rl and each de-
scriptive layer of Dl, by searching for each object Oj of Rl, and for each layer of
Dl, the objects O verifying at least a spatial predicate sp(Oj , O). Then, frequent
predicate sets are computed. For each link table LDBi, a conjunction composed
of a single predicate is created, as follows:
• Each non-spatial attribute of Rl (resp. Li in the LDBi) becomes a non-spatial
binary predicate with variable x (resp. yi).
• The set of constants that can appear in the second argument of the predicates
are computed as follows:
− For each non-hierarchical attribute, we extract in the LDBi its set of values.
− For each hierarchical attribute, values are obtained from its taxonomy.
• To each possible value of an attribute corresponds a predicate with this value
as constant (second argument of the predicate, see Section 3).
• Each variable yi must be linked to x by a spatial predicate (because the sup-
port concerns only the reference layer).
• The support of each predicate in the LDBi is computed, and frequent predi-
cates are kept in a list L.
• As in apriori, predicate sets of size k are generated by combination of frequent
predicate sets of size (k-1), and only those with a sufficient support are kept.
Step 3 is a classical process for generating association rules from the set L.

Example: Let us suppose that we specify in the inputs the following parameters:
• Reference layer Rl =Mines, with non-spatial attributes: {Gitology, Main Subst}.
Note that Gitology is a hierarchical attribute (it takes its possibles values from
the nodes of its taxonomy: A1, A2, A3, . . . ).
• Descriptive layer L1 =Geologies, with attributes: {System, Code Geol}.
• Sp = {Included in, Near to}, Buffer = 10 km, MinSupp=5% and MinConf=40%
We aim at finding relations between Mines deposits, represented by points, and
the nearest Geologies (polygons).
The link table LDB1 is constructed, as shown in Figure 2. For instance, the
example Ej is composed of two tuples of key=2 in the link table and means that
the mine number 2 is included in Geology 102 and near to Geology 3.
The support table of large predicate sets is then built. Note here that the pre-
dicate sets with frequency less than 130 (which represents 5% of 2618 mines in
the Rl) are filtered out (Figure 3).
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Link table between Mines and Geologies

Descriptive table of Mines Descriptive table of Geologies

Figure 2. Link table of the example

Figure 3. An extract of the support table

Based on the support table, the algorithm generates the following rule with a
support of 6.67%:

Mine(x) ∧ Geology(y) ∧ Code Geol(y,Pzs) ∧ Included In(x,y)
→ Gitology(x,A1) (6.67%, 46.09%)

which expresses that 46.09% of mines included in geologies of code Pzs have as
gitology A1. We can classify generated association rules into three kinds:
• Statistic rules: they give the repartition of items in a hierarchy, such as:

Mine(x) ∧ Gitology(x, A) → Gitology(x, A1) (92.12%)
• Control rules: experts can also verify some known correlations:

Mine(x) ∧ Gitology(x, H12) → MainSubstance(x, AU) (89.32%)
• New rules: as for instance, the following rule with confidence 43.75%:
Mine(x) ∧ Fault(z) ∧ Gitology(x, C5) ∧ Near to(x, z) → Structure(z, Strike slip)

We have implemented the algorithm presented in this paper, as a research pro-
totype, named ARGIS. It has been developed in Avenue c©, an object oriented
language available in ArcView c©2. In ARGIS, the user can formulate the inputs
by means of an interactive graphical user interface. ARGIS handles multi-valued
attributes and taxonomies, and the user can choose the levels that interest him.
2 A GIS developed and commercialized by ESRI
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We have experimented the prototype on 3 layers of GIS Andes, a database of
about 150 mega bytes (15 MB for the Mines layer, 130 MB for the Geology
layer and 5 MB for the Fault layer) composed of about 23 thousands of records,
each time using a reference layer and a descriptive layer. The process has disco-
vered about 70 spatial association rules, and some have been considered as very
interesting by the experts.

5 Discussion and Conclusion

The system presented in this paper is an extension of a previous work of Ko-
perski and Han [7], and an application of mining spatial association rules in GIS.
First we have added non-spatial predicates to spatial ones. Second, as suggested
by Koperski in [5], we can mine rules at cross-levels of taxonomies. However, to
get interesting rules at low levels of the hierarchies, the support must be low.
This leads to a lot of rules because we cannot give a variable support threshold
according to the level in the hierarchies as done by Koperski, whose method is
guided by a scroll of all the hierarchies at the same time. In order to handle
a large number of layers, and in view of the phenomenal growth of data, the
efficiency of the system must be improved in the following directions: pruning
useless and redundant rules, interaction with statistics, dealing with numeric
data, parallelization and use of multidimensional trees.
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