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Abstract

Schlipf (Sch95) proved that Stable Logic Programming (SLP) solves all NP decision prob-
lems. We extend Schlipf’s result to prove that SLP solves all search problems in the class
NP . Moreover, we do this in a uniform way as defined in (MT99). Specifically, we show
that there is a single DATALOG¬ program PTrg such that given any Turing machine M ,
any polynomial p with non-negative integer coefficients and any input σ of size n over a
fixed alphabet Σ, there is an extensional database edbM ,p,σ such that there is a one-to-one
correspondence between the stable models of edbM ,p,σ ∪PTrg and the accepting computa-
tions of the machine M that reach the final state in at most p(n) steps. Moreover, edbM ,p,σ

can be computed in polynomial time from p, σ and the description of M and the decoding
of such accepting computations from its corresponding stable model of edbM ,p,σ ∪ PTrg

can be computed in linear time. A similar statement holds for Default Logic with respect
to ΣP

2 -search problems1.
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1 Introduction

The main motivation for this paper comes from recent developments in Knowledge

Representation, especially the appearance of a new generation of systems (CMT96;

NS96; ELM+97) based on the so-called Answer Set Programming (ASP) paradigm

(Nie98; CP98; MT99; Lif98). The emergence of these ASP systems suggest that we

need to revisit one of the basic issues in the foundations of ASP, namely, how can

we characterize what such ASP systems can theoretically compute.

Throughout this paper, we shall focus mostly on one particular ASP formalism,

specifically, the Stable Semantics for Logic Programs (SLP) (GL88). We note that

the underlying methods of ASP are similar to those used in Logic Programming

(Ap90) and Constraint Programming (JM94; MS99). That is, like Logic Program-

ming, ASP is a declarative formalism and the semantics of all ASP systems are

1 The proof of this result involves additional technical complications and will be a subject of
another publication.

http://arxiv.org/abs/cs/0312053v1
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based on logic. Like Constraint Programming, certain clauses of an ASP program

act as constraints. There is a fundamental difference between ASP programs and

Constraint Logic programs, however. That is, in Constraint Programming, the con-

straints act on individual elements of Herbrand base of the program while the con-

straint clauses in ASP programs act more globally in that they place restrictions on

what subsets of the Herbrand base can be acceptable answers for the program. For

example, suppose that we have a problem Π whose solutions are subsets of some

Herbrand base H . In order to solve the problem, an ASP programmer essentially

writes a logic program P that describes the constraints on the subsets of H which

can be answers to Π. The basic idea is that the program P should have the property

that there is an easy decoding of solutions of Π from stable models of P and that

all solutions of Π can be obtained from stable models of P through this decoding.

The program P is then submitted to the ASP engine such as smodels (NS96), dlv

(ELM+97) or DeReS (CMT96) which computes the stable models of the program

P . Thus the ASP engine finds the stable models of the program (if any exists) and

one reads off the solutions to Π from these stable models. Notice that the idea here

is that all solutions are equally good in the sense that any solution found in the pro-

cess described above is acceptable. Currently, the systems based on ASP paradigm

are being tested on the problems related to planning (Lif99; Nie98), product config-

uration (SN99), combinatorial optimization problems (CMMT99; Nie98) and other

domains.

It is a well-known fact that the semantics of existing Logic Programming systems

such as Prolog, Mercury and LDL have serious problems, principally due to necess-

ary compromises in the implementations. For instance, the unification algorithms

used by most dialects of Prolog do not enforce the occurs check and hence these

systems can produce incorrect results (AP94). Moreover, the processing strategies

of Prolog and similar languages have the effect that correct logic programs can

be non-terminating (AP93). While good programming techniques can overcome

these problems, it is clear that such deficiencies have restricted the appeal of the

Logic Programming systems for ordinary programmers and system analysts. The

promise of ASP and, in particular, of SLP and its extensions, such as Disjunctive

Logic Programming (GL91; ELM+97), is that a new generation of logic program-

ming systems can be built which have a clear semantics and are easier to program

than the previous generation of Logic Programming systems. In particular, both of

the problems referred to above, namely, the occurs check problem and the termina-

tion problem, do not exist in SLP. Of course, there is a price to pay, namely, SLP

systems only accept programs without function symbols. Consequently, one of the

basic data structures used in Prolog, the term, is not available in SLP. Thus SLP

systems require the programmer to explicitly construct many data structures. In

SLP programming, predicates are used to construct the required data structures

and clauses that serve as constraints are used to ensure that the predicates be-

have properly with respect to semantics of the program. SLP programs are always

terminating because the Herbrand base is finite and hence there are only a finite

number of stable models. In addition, unlike the case of usual Logic Programming,

the order of the clauses of the program does not affect the set of stable models of
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the program2. Finally the stable semantics of logic programs is well understood so

that SLP programs have clear semantics.

The restriction that ASP programs do not contain function symbols is crucial.

First, it is well known that once one allows function symbols in a logic program P ,

the Herbrand base becomes infinite. Moreover, the stable models of logic programs

with function symbols can be immensely complex. For example, for stratified logic

programs (ABW88; Prz88), the perfect model is the unique stable model of that

program (GL88). Apt and Blair (AB90) showed that perfect models of stratified

logic programs capture precisely the arithmetic sets. That is, they show that for a

given arithmetic set X of natural numbers, there is a finite stratified logic program

PX such that in the perfect model of PX , some predicate pX is satisfied by precisely

the numbers in X . This was the first result that showed that it is not possible to

have meaningful practical programming with general stratified programs if we allow

unlimited use of function symbols. The result of (AB90) was extended in (BMS95)

where Blair, Marek, and Schlipf showed that the set of stable models of a locally

stratified program can capture any set in the hyperarithmetic hierarchy. Marek,

Nerode, and Remmel (MNR94) showed that the problem of finding a stable model

of a finite (predicate) logic program P is essentially equivalent to finding a path

through an infinite branching recursive tree. That is, given an infinite branching

recursive tree T ⊆ ω<ω, there is a finite program PT such that there is a one-to-

one degree-preserving correspondence between the infinite paths through T and the

stable models of PT and, vice versa, given a finite program P , there is a recursive

tree TP such that there is one-to-one degree preserving correspondence between

the stable models of P and the infinite paths through TP . One consequence of this

result is that the problem of determining whether a finite predicate logic program

has a stable model is Σ1
1-complete. More results on the structure of the family of

stable models of programs can be found in (CR99).

All the results mentioned in the previous paragraph show that the stable model

semantics for logic programs admitting function symbols can be used practically,

only in a very limited setting. XSB system attempts to do deal with this problem

by computing only the well-founded semantics. When the well-founded semantics is

total, the resulting model is the unique stable model of the program. Unfortunately,

the class of programs for which it succeeds is not intuitive (RRS+97). Yet another

attempt to return the power of function symbols to the language has been made in

(Bo01). The class of programs considered in (Bo01) allows one to express recursively

enumerable sets, but not more complex sets so that, at best, one could get a more

compact representation of problems solved with ordinary Prolog.

As stated above, ASP systems propose a more radical solution to the problem

of complexity of stable models of logic programs with function symbols, namely,

abandoning function symbols entirely. Once this is accepted, the semantics of a logic

program P can be defined in two stages. First, we assume, as in standard Logic

Programming, that we interpret P over the Herbrand universe of P determined by

2 However it is the case that the order of clauses can affect the processing time of the ASP engine.
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the predicates and constants that occur in P . Since the set of constants occurring

in the program is finite, we can ground the program in these constants to obtain

a finite propositional logic program Pg. The stable models of P are by definition

the stable models of Pg. The process of grounding is performed by a separate

grounding engine such as lparse (NS96). The grounded program Pg is then passed

to an engine that computes stable models of propositional logic programs. It is then

easy to check that the features of SLP mentioned above, i.e., the absence of occurs

check and termination problems and the independence of the semantics from the

ordering of the clauses of the program, automatically hold. That is, since grounding

uses only very limited part of unification, the occurs check problem is eliminated.

The space of candidates for stable models is finite and so there is no termination

problem. Finally, the stable semantics of propositional programs does not depend

on the order of clauses.

The language of logic programming without function symbols was studied by

the database community with the hope that it could lead to new, more powerful,

database language (Ull88). This language is called DATALOG¬ and some database

systems such as DB2 implement the positive part of DATALOG¬. The fact that

admitting negation in the bodies of clauses leads to multiple stable models was

unacceptable from the database perspective. Hence the database community pre-

ferred other semantics for DATALOG¬ programs such as the well-founded semantics

(VRS91) or the inflationary semantics (AHV95).

The main purpose of this paper is to revisit the question of what can be computed

by logic programs without functions symbols under the stable model semantics.

First, consider the case of finite propositional programs. Here the situation is simple.

Given a set At of propositional atoms, let F be a finite antichain of subsets of At ,

i.e. whenever X ,Y ∈ F , X ⊆ Y , then X = Y . Then one can show that there

is a logic program PF such that F is precisely the class of all stable models of

PF (MT93). Moreover, the family of stable models of any program P forms such

an antichain. Thus in the case of finite propositional logic programs, we have a

complete characterization of the possible sets of stable models. However, this result

by itself does not tell us anything about the uniformity and the effectiveness of

the construction. The basic complexity result for SLP propositional programs is

due to Marek and Truszczyński (MT91) who showed that the problem of deciding

whether a finite propositional logic program has a stable model is NP -complete.

For DATALOG¬, an analogous result has been obtained in (Sch95).

To precisely formulate our question about what can be computed by logic pro-

grams without functions symbols under the stable model semantics, we first need to

recall the notion of search problem (GJ79) and of a uniform logic program (MT99).

A search problem is a set S of finite instances such that, given any instance I ∈ S,

there is a set SI of solutions to S for the instance I . It is possible that for some

instances I , SI is the empty set. For example, the search problem may be to find

Hamiltonian paths in a graph. Thus, the set of instances of the problem is the set

of all finite graphs. Then, given any instance, i.e. a graph G, SG is the set of all

Hamiltonian paths of G. We say that an algorithm solves a search problem S if

it returns a solution s ∈ SI whenever SI is non-empty and it returns the string
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“empty” otherwise. We say that a search problem S is in NP if there is such an

algorithm which can be computed by a non-deterministic polynomial time Turing

machine. We say that search problem S is solved by a uniform logic program if

there exists a single logic program PS , a polynomial time extensional data base

transformation function edbS and a polynomial time solution decoding function

solS(·, ·) such that for every instance I in S,

1. edbS(I ) is a finite set of facts, i.e. clauses with empty bodies and no variables,

2. whenever solS(I ) is non-empty, solS(I , ·) maps the set of stable models of the

edbS(I ) ∪ PS onto the set of solutions SI of I and

3. if solS(I ) is empty, then edbS(I ) ∪ PS has no stable models.

We note that decision problems can be viewed as special cases of search problems.

Schlipf (Sch95) has shown that the class of decision problems in NP is captured

precisely by uniform logic programs. Specifically he proved that a decision problem

is solved by a uniform logic program if and only if it is in NP . An excellent review

of the complexity and expressibility results for Logic Programming can be found in

(DEGV01). The goal of this paper is to prove a strengthening of Schlipf’s result as

well as prove a number of related facts. We will prove that Schlipf’s result can be

extended to all NP search problems. That is, we shall show that there is a single

logic program PTrg that is capable of simulating polynomial time nondeterministic

Turing machines in the sense that given any polynomial time nondeterministic Tur-

ing machine M , any input σ, and any run-time polynomial p(x ), there is a set of

facts edbM ,p,σ such that a stable model of PTrg ∪ edbM ,p,σ codes an accepting com-

putation of M started with input σ that terminates in p(|σ|) or fewer steps and any

such accepting computation of M is coded by some stable model of PTrg∪edbM ,p,σ.

This result will show that logic programs without function symbols under the sta-

ble model semantics capture all NP -search problems3. The converse implication,

that is, a search problem computed by a uniform logic program P is an NP -search

problem is obvious since one can compute a stable model M of a program by first

guessing M and then doing a polynomial time check to verify that M is a stable

model of the program.

2 Technical preliminaries

In this section we shall formally introduce several notions that will be needed for

the proof of our main result. The proof of our main result uses the basic idea used

by Cook (Co71) in his proof of the NP -completeness of the satisfiability problem.

First, we introduce the set of logic programs that we will study. We will consider

3 As pointed by M. Truszczyński, for our goal of describing the complexity of the Stable Logic
Programming, a weaker result is sufficient. That is, we need only show that for each instance I
of an NP search problem Π, there is a program PI and a polynomial time projection from the
collection of stable models of PI to the set of solutions of I . Our result shows that this property
holds in a stronger form. Namely, there is a single program with a varying extensional database.
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here only so called DATALOG¬ programs. Specifically, a clause is an expression of

the form

p(X )← q1(X ), . . . , qm(X ),¬ r1(X ), . . . ,¬ rn(X ) (1)

where p, q1, . . . , qm , r1, . . . , rn are atoms, possibly with variables and/or constants.

Here we abuse notation by writing p(X ) to mean that the variables that occur in

the predicate p are contained in X . A program is a finite set P of clauses of the

form (1). We assume that the underlying language LP of any given program P is

determined by the constants and predicate symbols which occur in the program.

Thus the Herbrand universe UP of P is just the set of all constant terms occurring in

P and the Herbrand base HP of P is the set of all ground atoms of the language LP .

Since there are no function symbols in our programs, both the Herbrand universe

and the Herbrand base of the program are finite.

A ground instance of a clause C of the form (1) is the result of a simultaneous

substitution of constants c for variables X occurring in C . Given a program P , Pg

is the propositional program consisting of all ground substitutions of the clauses of

P . Given a propositional program P and a set M included in its Herbrand base, HP ,

the Gelfond-Lifschitz transformation of P relative to M is the program GL(P ,M )

arising from P as follows. First, eliminate all clauses C in P such that for some j ,

1 ≤ j ≤ n, rj (c) ∈ M . Next, in any remaining clause, eliminate all negated atoms.

The resulting set of clauses forms a program, GL(P ,M ), which is a Horn program

and hence it possesses a least model NM . We say that M is a stable model of the

propositional program P if M = NM . Finally, given any program P with variables,

we say that M is a stable model of a program P if M is a stable model of the

propositional program Pg .

A nondeterministic Turing Machine is a septuple of the form

M = (Q ,Σ,Γ,D , δ, s0, f )·

Here Q is a finite set of states and Σ is a finite alphabet of input symbols. We

assume Q always contains two special states, s0, the start state, and f , the final

state. We also assume that there is a special symbol B for “blank” such that

B /∈ Σ. The set Γ = Σ ∪ {B} is the set of tape symbols. The set D is the set

of move directions consisting of the elements l , r , and λ where l is the “move left”

symbol, r is the “move right” symbol and λ is the “stay put” symbol. The function

δ : Q × Γ → P(Q × Γ × D) is the transition function of the machine M . Here

P(Q×Γ×D) denotes the power set of the set Q×Γ×D . We can also think of δ as

a 5-ary relation. Thus we can represent the transition function of the machine M

as a collection of atoms describing 5-tuples. We assume M operates on a one-way

infinite tape where the cells of the tape are labeled from left to right by 0, 1, 2, . . ..

To visualize the behavior of the machine M , we shall talk about the read-write

head of the machine. At any given time in a computation, the read-write head of

M is always in some state s ∈ Q and is reading some symbol p ∈ Γ which is in a

cell c of the tape. It then picks an instruction (s1, p1, d) ∈ δ(s , p) and then replaces

the symbol p by p1, changes its state to state s1, and moves according to d . We

assume that at the start of the computation of M on input σ = (σ(0), . . . , σ(n−1)),
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cells 0, . . . , n − 1 contain the symbols σ(0), . . . , σ(n − 1) respectively and all cells

to the right of cell n − 1 are blank. We do not impose (as it is often done) any

special restrictions on the state of the tape and the position of the head at the

end of computation. However, we assume that at the start of any computation, the

read-write head is in state s0 and is reading the symbol in cell 0.

Suppose we are given a Turing machine M whose runtimes are bounded by a

polynomial p(x ) = a0 + a1x + · · · + akx
k where each ai ∈ N = {0, 1, 2, . . .} and

ak 6= 0. That is, on any input of size n, an accepting computation terminates in at

most p(n) steps. Then any accepting computation on input σ can affect at most

the first p(n) cells of the tape. Thus in such a situation, there is no loss in only

considering tapes of length p(n). Hence in what follows, one shall implicitly assume

that the tape is finite. Moreover, it will be convenient to modify the standard

operation of M in the following ways.

1. We shall assume δ(f , a) = {(f , a, λ)} for all a ∈ Γ.

2. Given an input x of length n, instead of immediately halting when we first get to

the final state f reading a symbol a, we just keep executing the instruction (f , a, λ)

until we have completed p(n) steps. That is, we remain in state f , we never move,

and we never change any symbols on the tape after we get to state f .

The main effect of these modifications is that all accepting computations will run

for exactly p(n) steps on an input of size n.

3 Uniform coding of Turing Machines by a Logic Program

In this section, we shall describe the logic program PTrg and our extensional data

base function edbM ,p,σ described above. The key to our construction is the fact that

at any given moment of time, the behavior of a Turing machine M depends only on

the current state of tape, the position of the read-write head and the set of avail-

able instructions. Our coding of Turing machine computation reflects this simple

observation. First, we define the language (i.e. a signature) of the program PTrg.

The set of predicates that will occur in our extensional database are the following:

time(X ) for “X is a time step”,

cell(X ) for “X is a cell number”,

symb(X ) for “X is a symbol”,

state(S ) for “S is a state”,

i position(P) for “P is the initial position of the read-write head”,

data(P ,Q) for “Initially, the tape stores the symbol Q at the cell P”,

delta(X ,Y ,X 1,Y 1,Z ) for “the triple (X 1,Y 1,Z ) is an executable instruction

when the read-write head is in state X and is reading the symbol Y ” (thus delta

represents the five-place relation δ),

neq(X ,Y ) for “X is different from Y ”
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eq(X ,Y ) for “X is equal to Y ”4,

succ(X ,Y ) for “Y is equal to X + 1”5

Fix a nondeterministic Turing machine M = (Q ,Σ,Γ,D , δ, s0, f ), a run-time

polynomial p(x ) and an input σ = (σ(0), . . . , σ(n − 1)) of length n. This given,

we now define the extensional database extM ,p,σ. First, extM ,p,σ will contain the

following the following set of constant symbols:

(1) 0, 1, . . . , p(n),

(2) s , for each s ∈ S (Note two constants s0 (for initial state), and f (for final state)

will be present in every extensional database),

(3) B (blank symbol) and x for each x ∈ Σ, and

(4) r , l , λ.

We let edbM ,σ,p consist of the following set of facts that describe the machine M ,

the segment of integers 0, . . . , p(n) and the initial configuration σ of the tape.

1. For each s ∈ Q , the clause state(s)← belongs to extM ,p,σ·

2. For each x ∈ Γ, the clause symb(x )← belongs to extM ,p,σ·

3. For every pair (s , x ) ∈ Q × Γ and every triple (s1, x1, d) ∈ δ(s , x ), the clause

delta(s , x , s1, x1, d)← belongs to extM ,p,σ·

4. For 0 ≤ i < p(n), the clause succ(i , i + 1)← belongs to extM ,p,σ·

5. For 0 ≤ i ≤ p(n), the clause time(i)← belongs to extM ,p,σ·

6. For 0 ≤ i ≤ p(n) − 1, the clause cell(i)← belongs to extM ,p,σ·

7. For 0 ≤ m ≤ |σ| − 1, the clause data(m, σ(m))← belongs to extM ,p,σ·

8. For |σ| ≤ m ≤ p(n) − 1, the clause data(m,B)← belongs to extM ,p,σ·

9. The clauses dir(l)←, dir(r)← and dir(λ)← belong to extM ,p,σ·

10. The clause i position(0)← belongs to extM ,p,σ·

11. For all a, b ∈ S∪Γ∪{0, . . . , p(n)} with a 6= b, the clause neq(a, b)← belongs

to extM ,p,σ·

12. For all a ∈ S ∪Γ∪ {0, . . . , p(n)}, the clause eq(a, a) ← belongs to extM ,p,σ·

The remaining predicates of PTrg are the following:

tape(P ,Q ,T ) for “the tape stores symbol Q at cell P at time T”,

position(P ,T ) for “the read-write head reads the content cell P at time T”,

state(S ,T ) for “the read-write head is in state S at time T” (notice that we have

both a unary predicate state/1 with the content consisting of states, and state/2

to describe the evolution of the machine),

instr(S ,Q , S1,Q1,D ,T ) for “instruction (S1,Q1,D) belonging to δ(S ,Q) has been

selected for execution at time T”,

otherInstr(S ,Q , S1,Q1,D ,T ) for “instruction other than (S1,Q1,D) belonging to

δ(S ,Q) has been selected for execution at time T”,

instr def(T ) for “there is an instruction to be executed at time T”,

completion for “computation successfully completed”, and

4 Technically, we should use a separate equality and inequality relation for each type, but we will
not do so.

5 For the clarity of presentation we will use equality symbol =, inequality symbol, 6= and relation
described by the successor function +1, instead of eq, neq, and succ.
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A, a propositional letter6.

In the program PTrg, there should be no constants. For notational convenience, we

will not be absolutely strict in this respect. That is, to simplify our presentation, we

will use the constants 0, f , and s0 in PTrg. These can easily be eliminated by intro-

ducing appropriate unary predicates. Finally to simplify the clauses, we will follow

here the notation used in the smodels syntax. That is, we will use p(X1; . . . ;Xk )

as an abbreviation for p(X1), . . . , p(Xk ). This given, we are now ready to write the

program PTrg.

Group 1. Our first four clauses are used to describe the position of the read-write head

at any given time t .

(1.1) (Initial position of the read-write head)

position(P ,T )← time(T ), cell(P), eq(T , 0), i position(P)

(1.2) position(P1,T1)← time(T ;T1), cell(P ;P1), state(S ; S1), dir(D),

symb(Q ;Q1), T1 = T + 1,P1 + 1 = P , position(P ,T ), state(S ,T ),

tape(P ,Q ,T ), instr(S ,Q , S1,Q1,D ,T ), D = l ,P 6= 0

(1.3) position(P1,T1)← time(T ;T1), cell(P ;P1), state(S ; S1), dir(D),

symb(Q ;Q1), T1 = T + 1, P1 = P + 1, position(P ,T ), state(S ,T ),

tape(P ,Q ,T ), instr(S ,Q , S1,Q1,D ,T ), D = r , P 6= p(n)− 1

(1.4) position(P1,T1)← time(T ;T1), cell(P ;P1), state(S ; S1),

symb(Q ;Q1), dir(D), T1 = T + 1,P = P1, position(P ,T ),

state(S ,T ), tape(P ,Q ,T ), instr(S ,Q , S1,Q1,D ,T ), D = λ

Group 2. Our next three clauses describe how the contents of the tape change as in-

structions get executed.

(2.1) tape(P ,Q ,T )← time(T ), cell(P), symb(Q), T = 0, data(P ,Q)

(2.2) tape(P ,Q1,T1) ← time(T ;T1), cell(P), state(S ; S1), symb(Q ;Q1),

dir(D), T1 = T + 1, position(P ,T ), state(S ,T ), tape(P ,Q ,T ),

instr(S ,Q , S1,Q1,D ,T )

(2.3) tape(P ,Q ,T1)← time(T ;T1), cell(P ;P1), symb(Q), T1 = T + 1,

tape(P ,Q ,T ), position(P1,T ),P 6= P1

Group 3. Our next two clauses describe how the state of the read-write head evolves in

time.

(3.1) state(S ,T )← time(T ), state(S ), T = 0, S = s0

(3.2) state(S1,T1)← time(T ;T1), cell(P), symb(Q ;Q1), state(S ; S1),

dir(D), T1 = T + 1, position(P ,T ), state(S ,T ), tape(P ,Q ,T ),

instr(S ,Q , S1,Q1,D ,T )

Group 4. Our next two clauses describe how we select a unique instruction to be exe-

cuted at time T .

6 The propositional letter A will be used whenever we write clauses acting as constraints. That is,
the symbol A will occur in the following syntactical configuration. A will be the head of some
clause, and the negation of A will also occur in the body of that same clause. In such situation
a stable model cannot satisfy the remaining atoms in the body of that clause.
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(4.1) Selecting instruction at step 0.

instr(S ,Q , S1,Q1,D ,T )← state(S ; S1), symb(Q ;Q1), dir(D),

time(T ),T = 0, S = s0, i position(P), tape(P ,Q ,T ),

delta(S ,Q , S1,Q1,D), ¬otherInstr(S ,Q , S1,Q1,D ,T )

(4.2) Selecting instruction at other steps.

instr(S ,Q , S1,Q1,D ,T )← state(S ; S1), symb(Q ;Q1),

dir(D), time(T ),T 6= 0, position(P ,T ), state(S ,T ), tape(P ,Q ,T ),

delta(S ,Q , S1,Q1,D),¬otherInstr(S ,Q , S1,Q1,D ,T )

Group 5. Our next set of clauses defines the otherInstr predicate. Here clauses (5.6)

and (5.7) are designed to ensure that exactly one instruction is selected for

execution at any given time T .

(5.1) otherInstr(S ,Q , S1,Q1,D1,T )← state(S ; S ′; S1; S2),

symb(Q ;Q ′;Q1;Q2), time(T ), dir(D1;D2),

instr(S ′,Q ′, S2,Q2,D2,T ), S2 6= S1

(5.2) otherInstr(S ,Q , S1,Q1,D1,T )← state(S ; S ′; S1; S2),

symb(Q ;Q ′;Q1;Q2), time(T ), dir(D1;D2),

instr(S ′,Q ′, S2,Q2,D2,T ), Q2 6= Q1

(5.3) otherInstr(S ,Q , S1,Q1,D1,T )← state(S ; S ′; S1; S2),

symb(Q ;Q ′;Q1;Q2), time(T ), dir(D1;D2),

instr(S ′,Q ′, S2,Q2,D2,T ), D2 6= D1

(5.4) otherInstr(S ,Q , S1,Q1,D1,T )← state(S ; S ′; S1; S2),

symb(Q ;Q ′;Q1;Q2), time(T ), dir(D1;D2),

instr(S ′,Q ′, S2,Q2,D2,T ), S ′ 6= S

(5.5) otherInstr(S ,Q , S1,Q1,D1,T )← state(S ; S ′; S1; S2),

symb(Q ;Q ′;Q1;Q2), time(T ), dir(D1;D2),

instr(S ′,Q ′, S2,Q2,D2,T ),Q ′ 6= Q

(5.6) The definition of the instr def predicate.

instr def(T )← state(S ; S1), symb(Q ;Q1), dir(D), time(T ),

instr(S ,Q , S1,Q1,D ,T )

(5.7) The clause to ensure that there is an instruction to be executed at any

given time.

A← time(T ),¬instr def(T ),¬A

Group 6. Constraints for the coherence of the computation process.

(6.1) When the task is completed.

completion← symb(Q), instr(f ,Q , f ,Q , λ, p(n)).

(6.2) The atom completion belongs to every stable model.

A← ¬ completion,¬A

Notice that the program PTrg is domain-restricted (Syr01), that is, every variable

in the body of a clause is bound by a positive occurrence of an extensional database

predicate. This restriction does not limit the expressive power of such programs,

but greatly reduces the work of the grounding engine (NS97).
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4 Main Results

Our first proposition immediately follows from our construction.

Proposition 1

There is a polynomial q so that for every machine M , polynomial p, and an

input σ, the size of the extensional database edbM ,p,σ is less than or equal to

q(|M |, |σ|, p(|σ|)).

We shall now prove that for any nondeterministic Turing Machine M , runtime

polynomial p(x ), and input σ of length n, the stable models of edbM ,p,σ ∪ PTrg

encode the sequences of tapes of length p(n) which occur in the steps of an accepting

computation of M starting on σ and that any such sequence of steps can be used

to produce a stable model of edbM ,p,σ ∪ PTrg.

Theorem 1

The mapping of Turing machines to DATALOG¬ programs defined by 〈M , σ, p〉 7→

edbM ,p,σ∪PTrg has the property that there is a 1-1 polynomial time correspondence

between the set of stable models of edbM ,p,σ ∪ PTrg and the set of computations

of M of the length p(n), starting on the tape corresponding to the input σ, and

ending in the state f .

Proof: We first need to see what is a valid run of a machine M that ends in the

state f . To this end let us define an instruction of the machine M as a quintuple

〈q, a, q1, a1, d〉 such that (q1, a1, d) ∈ δ(q, a). A state of tape is a sequence S of

symbols of the length p(n) from alphabet Σ ∪ {B}. A configuration is a triple

〈i , S , k〉 where i is an instruction 〈q, a, q1, a1, d〉, S is a state of tape, and k is an

integer ≤ p(n) and such that S (k) = a ∈ Σ ∪ {B}. Informally, k is the index of

the cell on which the read-write head is pointing at the time the configuration is

observed and a = S (k) is the content of that cell. The coherence condition S (k) = a

says that the instruction i is applicable at this moment. A one step-transition is a

pair of configurations

〈〈i , S , k〉, 〈j ,T ,m〉〉

where i = 〈q, a, q1, a1, d〉 and j = 〈r , b, r1, b1, e〉 satisfy the following:

1. r = q1 (i.e. in the transition we moved to the next state as required by i),

2. m =







k − 1 if k 6= 0, d = l

k + 1 if k 6= p(n) − 1, d = r

k if d = λ
(i.e. the read-write head moved as required by the instruction i),

3. T (n) =

{

a1 if n = k

S (n) otherwise
(i.e. the state of tape has been altered in just one place, namely k and a1 has

been put there), and

4. b = T (m). (i.e. the instruction j is coherent with the cell observed by the

read-write head).
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We write C ⊢ D when C and D are configurations and 〈C ,D〉 is a one-step tran-

sition. A run of a machine M is a sequence of configurations 〈C0, . . . ,Cp(n)〉 such

that

1. C0 = 〈〈s0, a, t , a1, d〉, S , 0〉 (that is the machine M is in the start state s0,

a = S (0) is the content of the cell 0, and the read-write head points to cell 0)

and

2. for all 0 ≤ k < p(n), Ck ⊢ Ck+1.

A valid run of the machine M is a run where Cp(n) = 〈i , S , k〉, i = 〈f , a, f , a, λ〉.

Thus a valid run of M is a run where the last state of the machine is f .

For the rest of this proof, we shall only consider valid runs 〈C0, . . . ,Cp(n)〉 of

M such that C0 = 〈i , S , 0〉 where S (i) = σ(i) for i ≤ n − 1 and S (i) = B

for i > n. That is, we shall only consider valid runs of M which start on an

input σ = (σ(0), . . . , σ(n − 1)) of length n. We will show that each such valid run

determines a unique stable model of edbM ,p,σ ∪ PTrg and conversely every stable

model of the program edbM ,p,σ∪PTrg determines such a valid run of M . First, given

a valid run C = 〈C0, . . . ,Cp(n)〉 of the machine M , where for m, 0 ≤ m ≤ p(n),

Cm = 〈im , Sm , km〉

we define the set of atomsNC which consists of the union of sets of atomsN1∪. . .∪N7

where:

N1 = edbM ,p,σ

N2 = {position(m, km ) : 0 ≤ m ≤ p(n)}

N3 = {tape(r , Sm(r),m) : 0 ≤ m ≤ p(n), 0 ≤ r ≤ p(n) − 1}

N4 = {instr(q, a, q ′, a′, d ,m) : im = 〈q, a, q ′, a′, d〉, 0 ≤ m ≤ p(n)}

N5 = {otherInstr(q ′′, a′′, q ′′′, a′′′, d ′′′,m) : 〈q ′′′, a′′′, d ′′′〉 ∈ δ(q ′′, a′′),

im = 〈q, a, q ′, a′, d〉, 〈q ′′, a′′, q ′′′, a′′′, d ′′′〉 6= 〈q, a, q ′, a′, d〉, 0 ≤ m ≤ p(n)}

N6 = {instr def(m) : 0 ≤ m ≤ p(n)}

N7 = {completion}

We show that NC is a stable model of edbM ,p,σ ∪ PTrg. Indeed, after we ground

edbM ,p,σ ∪PTrg and reduce it with respect to NC , it is straightforward to prove by

simultaneous induction on m that the least model of the reduct contains

(a) for each m, 0 ≤ m ≤ p(n) exactly one atom of the form

instr(q, a, q ′, a′, d ,m) and that this atom belongs to NC ,

(b) for each m, 0 ≤ m ≤ p(n) all atoms otherInstr(q ′′, a′′, q ′′′, a′′′, d ′′′,m) with

〈q ′′′, a′′′, d ′′′〉 ∈ δ(q ′′, a′′), where im = 〈q, a, q ′, a′, d〉, and

〈q ′′, a′′, q ′′′, a′′′, d ′′′〉 6= 〈q, a, q, a′, d〉,

and that these atoms belong to NC ,

(c) for each m and r , 0 ≤ m ≤ p(n), 0 ≤ r ≤ p(n) − 1 exactly one atom of the

form tape(r , x ,m) that these atoms belong to NC

(d) for each m, 0 ≤ m ≤ p(n) exactly one atom of the form position(m, k) and

that k = km ,

(e) for each m, 0 ≤ m ≤ p(n) exactly one atom of the form instr def(m), and
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(f) the atom completion.

Thus NC is a stable model of edbM ,p,σ ∪ PTrg. Moreover, it is clear that the

mapping C 7→ NC is an injection since two different valid runs C and C′ differ in

some least place m and, hence, the atoms of group N4 involving the relational

symbol instr at time m must differ in NC and NC′ .

Conversely, suppose that N is a stable model of edbM ,p,σ∪PTrg . First observe that

A /∈ N . That is, all the clauses that have A in the head also have ¬A in the body.

Thus if A ∈ N , then there are no clauses with head A in GL(edbM ,p,σ ∪ PTrg,N )

so that N could not be a stable model. Since, A is not in N , then it is easy to to

see that clause (6.2) forces N to contain the atom completion. Since the only way

to derive the atom completion is via clause (6.1), it follows that N must contain

the atom instr(f , q, f , q, λ, p(n)) for some symbol q ∈ Γ.

Similarly, by clause (5.7), for every 0 ≤ t ≤ p(n), it must be the case that

instr def (t) must be in N . Since the only way to derive instr def(t) is via clause

(5.6), it follows that for each 0 ≤ t ≤ p(n), there must exist s , q, s1, q1 and d such

that instr(s , q, s1, q1, d , t) ∈ N . There cannot be a time t with 0 ≤ t ≤ p(n) such

that there two different 6-tuples (s , q, s1, q1, d , t) and (s ′, q ′, s1′, q1′, d ′, t) such that

both atoms instr(s , q, s1, q1, d , t) and instr(s ′, q ′, s1′, q1′, d ′, t) are in N because

then it follows from clauses (5.1)-(5.5), that otherInstr(s2, q2, s3, q3, d3, t) holds

for all 5-tuples in S ×Γ×S ×Γ×D such that (s3, q3, d3) ∈ δ(s2, q2). But then the

only clauses that have instr(s , q, s1, q1, d , t) in the head are the clauses in either

(4.1) or (4.2) and all such clauses would all be eliminated in the construction of

GL(edbM ,p,σ ∪PTrg,N ) so that there could be no instr(s , q, s1, q1, d , t) in N . Thus

it follows that for each 0 ≤ t ≤ p(n), there is a unique (qt , at , q
′
t , a

′
t , dt ) such that

instr(qt , at , q
′
t , a

′
t , dt , t) is in N .

It is then easy to check that our clauses in groups (1) through (4) ensure that

the instructions {(qt , at , q
′
t , a

′
t , dt ) : 0 ≤ t ≤ p(n)} determine a valid run of the

Turing machine M started on input σ. In particular, for each 0 ≤ t ≤ p(n), there

is a unique position pt such that the atom position(pt , t) is in N and qt is the only

state such that state(qt , t) is in N and at is the only symbol such that tape(pt , at , t)

is in N . Moreover it is easy to check that for each time 0 ≤ t ≤ p(n) and each cell

0 ≤ c ≤ p(n)− 1, there is a unique symbol at,c such that tape(c, at,c , t) is in N . It

follows if we define the sequence

CN = 〈C0, . . . ,Cp(n)〉

so that for each 0 ≤ t ≤ p(n), Ct = 〈it , St , kt 〉 where

1. it = 〈qt , at , q
′
t , a

′
t , dt 〉 and instr(qt , at , q

′
t , a

′
t , dt , t) ∈ N ,

2. St = {< r , a >: tape(r , a, t) ∈ N } and

3. kt is the only k such that position(k , t) ∈ N ,

then CN is a valid run of M . Finally, it is easy to show by induction that NCN
= N .

This, together with the fact that C 7→ NC is one-to-one completes our argument. ✷

Corollary 1
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A search problem S can be solved by means of a uniform logic program in SLP if

and only if S is an NP -search problem.

A supported model M of a propositional logic program P is a subset of the

Herbrand base of P that is a fixed point of the one step provablility operator,

TP associated with P . That is, M is a supported model of P if and only if M =

TP (M ). Thus a supported model M consists precisely of heads of clauses with

bodies satisfied by M .

Given a logic program P we say that M is supported model of P if and only if

M is a supported model of Pg .

Lemma 1

For all M , p, and σ, M is a supported model of edbM ,p,σ ∪ PTrg if and only if M

is stable model of edbM ,p,σ ∪ PTrg.

Proof: It is well known that for every program P , every stable model of P is a

supported model of P .

For the other direction, suppose that R = edbM ,p,σ ∪ PTrg and suppose that M

is a supported model of R so that TR(M ) = M . First we observe that A cannot be

in M . That is, all the clauses that have A in the head also have ¬A in the body.

Thus if A ∈ M , then there are no clauses with head A whose body is satisfied by M

and hence A would not be in TR(M ) which would violate that our assumption that

TR(M ) = M . Since A is not in M , then it is easy to see that clause (6.2) forces M

to contain the atom completion since otherwise A would be in TR(M ). Similarly,

by clause (5.7), for every 0 ≤ t ≤ p(n), it must be the case that instr def (t)

must be in M . Since the only way to derive instr def(t) is via clause (5.6), it

follows that for each 0 ≤ t ≤ p(n), M must satisfy the body of clause (5.6) where

T = t . Thus there must exist s , q, s1, q1 and d such that instr(s , q, s1, q1, d , t) ∈ M .

We claim that there cannot be a time t with 0 ≤ t ≤ p(n) such that there two

different 6-tuples (s , q, s1, q1, d , t) and (s ′, q ′, s1′, q1′, d ′, t) such that both atoms

instr(s , q, s1, q1, d , t) and instr(s ′, q ′, s1′, q1′, d ′, t) are in M . Otherwise the clauses

(5.1)-(5.5) would show that that otherInstr(s2, q2, s3, q3, d3, t) ∈ TR(M ) = M for

all 5-tuples in S×Γ×S×Γ×D such that (s3, q3, d3) ∈ δ(s2, q2). But then the only

clauses that have instr(s , q, s1, q1, d , t) in the head are the clauses in either (4.1)

or (4.2) and the body of all such clauses would not be satisfied by M . Hence there

could be no instr(s , q, s1, q1, d , t) in TR(P) which would violate our assumption

that TR(M ) = M . Thus it follows that for each 0 ≤ t ≤ p(n), there is a unique

(qt , at , q
′
t , a

′
t , dt ) such that instr(qt , at , q

′
t , a

′
t , dt , t) is in M .

We can then proceed exactly as in our proof of Theorem 1 to prove by induction

that the fact TR(M ) = M implies that M must be of the form NC where C =

〈C0, . . . ,Cp(n)〉 is a valid run of the machine M started on input σ. Thus M must

be a stable model of M . ✷

Lemma 1 implies that analogue of Corollary 1 holds for Supported Logic Pro-

gramming, SuLP.

Corollary 2
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A search S problem can be solved by means of a uniform logic program in SuLP if

and only if S is an NP -search problem.

We can also prove similar results for default logic programs without function

symbols with respect to nondeterministic Turing machines with an oracle for 3-

SAT .

Theorem 2

For each n ∈ N there is a default theory 〈Wn ,Dn〉 such that for every 3-SAT

oracle Turing machine M , every polynomial p ∈ N [x ], and every finite input σ

where |σ| = n, there is a polynomial-time one-to-one correspondence between the

accepting computations of length p(n) of M on input σ and the Reiter extensions

of the default theory 〈edbM ,p,σ ∪Wn ,Dn〉.

The proof of this result is more involved and requires additional technical means.

It will be a subject of a separate publication. It follows from Theorem 2 that a

search problem S can be solved by means of a uniform default logic program if and

only if S is in ΣP
2 . A version of this result for decision problems has been proved in

(CEG97).
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