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Preface

Santosh Pande! and Dharma P. Agrawal?

! College of Computing

801 Atlantic Drive,
Georgia Institute of Technology,
Atlanta, GA 30332

2 Department of ECECS, ML 0030,
PO Box 210030,
University of Cincinnati,
Cincinnati, OH 45221-0030

We are very pleased to publish this monograph on Compiler Optimizations
for Scalable Distributed Memory Systems. Distributed memory systems oller
a challenging model of computing and pose fascinating problems regarding
compiler optimizations ranging from language design to run time systems.
Thus, the research done in this area serves as foundational to many chal-
lenges from memory hierarchy optimizations to communication optimizations
encountered in both stand-alone and distributed systems. It is with this mo-
tivation that we present a compendium of research done in this area in the
form of this monograph.

This monograph is divided into Ove sections : section one deals with lan-
guages, section two deals with analysis, section three with communication
optimizations, section four with code generation, and section Ove with run
time systems. In the editorial we present a detailed summary of each of the
chapters in these sections.

We would like to express our sincere thanks to many who contributed
to this monograph. First we would like to thank all the authors for their
excellent contributions which really make this monograph one of a kind; as
readers will see, these contributions make the monograph thorough and in-
sightful (for an advanced reader) as well as highly readable and pedagogic (for
students and beginners). Next, we would like to thank our graduate student
Haixiang He for all his help in organizing this monograph and for solving
latex problems. Finally we express our sincere thanks to the LNCS Editorial
at Springer-Verlag for putting up with our schedule and for all their help and
understanding. Without their invaluable help we would not have been able
to put this monograph into its beautiful Onal shape!!! We sincerely hope the
readers Ond the monograph truly useful in their work U be it further research
or practice.
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1. Compiling for Distributed Memory Multiprocessors

1.1 Motivation

The distributed memory parallel systems oller elegant architectural solutions
for highly parallel data intensive applications primarily because:

0

They are highly scalable. These systems currently come in a variety of
architectures like 3D torus, mesh and hypercube that allow addition of
extra processors should the computing demands increase. Scalability is an
important issue especially for high performance servers such as parallel
video servers, data mining and imaging applications.

With increase in parallelism, there is insignillcant degradation in mem-
ory performance since memories are isolated and decoupled from direct
accesses from processors. This is especially good for data intensive applica-
tions such as parallel databases and data mining that demand considerable
memory bandwidths. In contrast, the memory bandwidths may not match
the increase in number of processors in shared memory systems. In fact,
the overall system performance may degrade due to increased memory con-
tention. This in turn jeopardizes scalability of application beyond a point.
Spatial parallelism in large applications such as Fluid Flow, Weather Mod-
eling and Image Processing, in which the problem domains are perfectly
decomposable, is easy to map on these systems. The achievable speedups
are almost linear and this is primarily due to fast accesses to the data
maintained in local memory.

The interprocessor communication speeds and bandwidths have dramati-
cally improved due to very fast routing. The performance ratings ollered
by newer distributed memory systems have improved although they are
not comparable to shared memory systems in terms of MOops.

Medium grained parallelism can be ellectively mapped onto the newer sys-
tems like the Meiko CS-2, Cray T3D, IBM SP1/SP2 and EM4 due to a
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low ratio of communication/computation speeds. Communication bottle-
neck has decreased compared with earlier systems and this has opened up
parallelization of newer applications.

1.2 Complexity

However, programming distributed memory systems remains very complex.
Most of the current solutions mandate that the users of such machines must
manage the processor allocation, data distribution and inter-processor com-
munication in their parallel programs. Programming these systems for achiev-
ing the desired high performance is very complex. In spite of frantic demands
by programmers, current solutions provided by (semi-automatic) parallelizing
compilers are rather constrained. As a matter of fact, for many applications
the only practical success has been through hand parallelization of codes with
communication managed through MPI. In spite of a tremendous amount of
research in this area, applicability of many of the compiler techniques re-
mains rather limited and the achievable performance enhancement remains
less than satisfactory. The main reasons for the restrictive solutions ollered
by parallelizing compilers is the enormous complexity of the problem. Orches-
trating computation and communication by suitable analysis and optimizing
their performance through judicious use of underlying architectural features
demands a true sophistication on the part of the compiler. It is not even
clear whether these complex problems are solvable within the realm of com-
piler analysis and sophisticated restructuring transformations. Perhaps they
are much deeper in nature and go right into the heart of design of parallel
algorithms for such an underlying model of computation.

The primary purpose of this monograph is to provide an insight into cur-
rent approaches and point to potentially open problems that could have an
impact. The monograph is organized in terms of issues ranging from pro-
gramming paradigms (languages) to ellective run time systems.

1.3 Outline of the Monograph

Language design is largely a matter of legacy and language design for dis-
tributed memory systems is no exception to the rule. In section I of the
monograph we examine three important approaches (one imperative, one
object-oriented and one functional) in this domain that have made a sig-
nillcant impact. The Orst chapter on HPF 2.0 provides an in-depth view of
data parallel language which evolved from Fortran 90. They present HPF
1.0 features such as BLOCK distribution and FORALL loop as well as new fea-
tures in HPF 2.0 such as INDIRECT distribution and ON directive. They also
point to the complementary nature of MPI and HPF and discuss features
such as EXTRINSIC interface mechanism. HPF 2.0 has been a major commer-
cial success with many vendors such as Portland Group and Applied Paral-
lel Research providing highly optimizing compiler support which generates
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message passing code. Many research issues especially related to supporting
irregular computation could prove valuable to domains such as sparse matrix
computation etc. The next chapter on Sisal 90 provides a functional view
of implicit paralleism specillcation and mapping. Shared memory implemen-
tation of Sisal is discussed, which involves optimizations such as update in
place copy elimination etc. Sisal 90 and a distributed memory implemenata-
tion which uses message passing are also discussed. Finally multi-threaded
implementations of Sisal are discussed, with a focus on multi-threaded opti-
mizations. The newer optimizations which perform memory management in
hard-ware through dynamically scheduled multi-threaded code should really
prove benellcial for the performance of functional languages (including Sisal)
which have an elegant programming model. The next chapter on HPC++
provides an object oriented view as well as details on a library and compiler
strategy to support HPC++ level 1 release. The authors discuss interesting
features related to multi-threading, barrier synchronization and remote pro-
cedure invocation. They also discuss library features that are especially useful
for scientillc programming. Extensions of this work relating to newer portable
languages such as Java is currently an active area of research. We also have
a chapter on concurrency models of OO paradigms. The authors specillcally
address a problem called inheritance anomaly which arises when synchroniza-
tion constraints are implemented within methods of a class and an attempt is
made to specialize methods through inheritance mechanisms. They propose
a solution to this problem by separating the specillcation of synchronization
from the method specillcation. The synchronization construct is not a part
of the method body and is handled separately. It will be interesting to study
the compiler optimizations on this model related to strength reduction of
barriers, and issues such as data partitioning vs. barrier synchronizations.
In section IT of the monograph, we focus on various analysis techniques.
Parallelism detection is very important and the Orst chapter presents a very
interesting comparative study of dillerent loop parallelization algorithms by
Allen and Kennedy, Wolf and Lam, Darte and Vivien and by Feautrier. They
provide comparisons in terms of their performance (ability to parallelize as
well as quality of schedules generated for code generation) as well as complex-
ity. The comparison also focusses on the type of dependence information avail-
able. Further extensions could involve run-time parallelization given more
precise dependence information. Array data-ow is of utmost importance in
optimizations : both sequential as well as parallel. The Orst chapter on array
data-Oow analysis examines this problem in detail and presents techniques
for exact data Dow as well as for approximate data Dow. The exact solution
is shown for static control programs. Authors also show applications to inter-
procedural cases and some important parallelization techniques such as pri-
vatization. Some interesting extensions could involve run-time data Dow anal-
ysis. The next chapter discusses interprocedural analysis based on guarded
(predicated) array regions. This is a framework based on path-sensitive predi-
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cated data-low which provides summary information. The authors also show
application of their work to improve array privatization based on symbolic
propagation. Extensions of these to newer object oriented languages such as
Java (which have clean class hierarchy and inheritance model) could be in-
teresting since these programs really need such summary MOD information
for performing any optimization. We Onally present a very important anal-
ysis/optimization technique for array privatization. Array privatization in-
volves removing memory-related dependences which have a signillcant impact
on communication optimizations, loop scheduling etc. The authors present
a demand-driven data-llow formulation of the problem; an algorithm which
performs single pass propagation of symbolic array expressions is also pre-
sented. This comprehensive framework implemented in a Polaris compiler is
making a signillcant impact in improving many other related optimizations
such as load balancing, communication etc.

The next section is focussed on communication optimization. The com-
munication optimization can be achieved through data (and iteration space)
distribution, statically or dynamically. These approaches further classify into
data and code alignment or simply interation space transformations such as
in tiling. The communication can also be optimized in data-parallel programs
through array region analysis. Finally one could tolerate some communication
latency through novel techniques such as multi-threading. We have chapters
which cover these broad range of topics about communication in depth.

The Orst chapter in this section focusses on tiling for cache-coherent mul-
ticomputers. This work derives optimal tile parameters for minimal com-
munication in loops with all ne index expressions. The authors introduce a
notion of data footprints and tile the iteration spaces so that the volume
of communication is minimized. They develop an important lattice theoretic
framework to precisely determine the sizes of data footprints which are very
valuable not only in tiling but in many array distribution transformations.
The next two chapters deal with the important problem of communication
free loop partitioning.

The second chapter in this section focusses on comparing dillerent meth-
ods of achieving communication-free partitioning for DOALL loops. This
chapter discusses several variants of the communication-free partitioning
problem involving duplication or non-duplication of data, load balancing of
iteration space and aspects such as statement level vs. loop level partitioning.
Several aspects such as trading parallelism to avoid inter-loop data distribu-
tion are also touched upon. Extending these techniques to broader classes of
DOALL loops could enhance their applicability.

The next chapter by Pingali et al. proposes a very interesting framework
which [rst determines a set of constraints on data and loop iteration place-
ment. They then determine which constraints should be left unsatised to
relax an overconstrained system to nd a solution involving a large amount
of parallelism. Finally, the remaining constraints are solved for data and code
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distribution. The systematic linear algebraic framework improves over many
ad-hoc loop partitioning approaches.

These approaches trade parallelism for codes that allow decoupling the is-
sues of parallelism and communication by relaxing an appropriate constraint
of the problem. However, for many important problems such as image pro-
cessing applications such a relaxation is not possible. That is, one must resort
to a dillerent partitioning solution based on relative costs of communication
and computation. In the next chapter, for solving such a problem, a new
approach has been proposed to partition iteration space by determining di-
rections which maximally cover the communication by minimally trading par-
allelism. This approach allows mapping of general medium grained DOALL
loops. However, the communication resulting from this iteration space par-
titioning can not be easily aggregated without sophisticated Dacklylinpackl
mechanisms present at send/receive ends. Such extensions are desirable since
aggregating communication has as signillcant impact as reducing the volume.

The static data distribution and alignment typically solve the problems of
communication on a loop nest by loop nest basis but rarely in an intraproce-
dural scope. Most of the inter-loop nest level and interprocedural boundaries
require dynamic data redistribution. Banerjee et al. develop techniques that
can be used to automatically determine which data partitions are most ben-
ellcial over specillc sections of the program by accounting for redistribution
overhead. They determine split points and phases of communication and re-
distribution are performed at split points.

When communication must take place, it should be optimized. Also, any
redundancies must be captured and eliminated. Manish Gupta in the next
chapter proposes a comprehensive approach for performing global (interpro-
cedural) communication optimizations such as vectorization, PRE, coalesc-
ing, hoisting etc. Such an interprocedural approach to communication op-
timization is highly proltable in substantially improving the performance.
Extending this work to irregular communication could be interesting.

Finally, we present a multi-threaded approach which could hide the com-
munication latency. Two representative applications involving bitonic sort
and FFT are chosen and using One grained multi-threading on EM-X it is
shown that multi-threading can substantially help in overlapping computa-
tion with communication to hide latencies up to 35 %. These methods could
be especially useful for irregular computation.

The Onal phase of compiling for distributed memory systems involves
solving many code generation problems. Code generation problems involve,
determining communication generation and doing address calculation to map
global references to local ones. The next section deals with these issues. The
Orst chapter presents structures and techniques for communication genera-
tion. They focus on issues such as Jexible computation partitioning (going
beyond owner computes rule), communication adaptation based upon ma-
nipulating integer sets through abstract inequalities and control Dow simpli-
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Ocation based on these. One good property of this work is that it can work
with many dillerent front ends (not just data parallel languages) and the code
generator has more opportunities to perform low level optimizations due to
simplilled control Dow.

The second chapter discusses basis vector based address calculation mech-
anisms for ell cient traversals of partitioned data. While one important issue
of code generation is communication generation, a very important issue is to
map global address space to local address space ell ciently. The problem is
complicated due to data distributions and access strides. Ramanujam et al.
present closed form expressions for basis vectors for several cases. Using the
closed form expressions for the basis vectors, they derive a non-unimodular
linear transformation.

The Onal section is on supporting task parallelism and dynamic data
structures. We also present a run-time system to manage irregular computa-
tion. The Orst chapter by Darbha et al. presents a task scheduling approach
that is optimal for many practical cases. The authors evaluate its perfor-
mance for many practical applications such as the Bellman-Ford algorithm,
Cholesky decomposition, the Systolic algorithm etc. They show that sched-
ules generated by their algorithm are optimal for some cases and near optimal
for most others. With HPF 2.0 supporting task parallelism, this could open
up many new application domains.

The next two chapters describe language supports for dynamic data struc-
tures such as pointers in distributed address space. Gupta describes several
extensions to C with declarations such as TREE, ARRAY, MESH to declare
dynamic data structures. He then describes name generation and distribu-
tion strategies for name generation and distribution strategies. Finally he
describes support for both regular as well as irregular dynamic structures.
The second chapter by Rogers et al. presents an approach followed in their
Olden project which uses a distributed heap. The remote access is handled
by software caching or computation migration. The selection of these mecha-
nisms is done automatically through a compile time heuristic. They provide
a data layout annotation to the programmer called local path lengths which
allows programmers to give hints regarding expected data layout thereby Ox-
ing these mechanisms. Both of these chapters provide highly useful insights
into supporting dynamic data strutures which are very important for scal-
able domains of computation supported by these machines. Thus, these works
should have a signillcant impact on future scalable applications supported by
these systems.

Finally, we present a run-time system called CHAOS which provides ell -
cient support for irregular computations. Due to indirection in many sparse
matrix computations, the communication patterns are unknown at compile
time in these applications. Indirection patterns have to be preprocessed, and
the sets of elements to be sent and received by each processor precomputed,
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in order to optimize communication. In this work, the authors provide details
of ell cient run time support for an inspectorllerecutor model.

1.4 Future Directions

The two important bottlenecks for the use of distributed memory systems
are the limited application domains and the fact that the performance is
less than satisfactory. The main bottleneck seems to be handling communi-
cation. Thus, ell cient solutions must be developed. Application domains be-
yond regular communication can be handled by supporting a general run-time
communication model. This run-time communication model must be latency
hiding and should give sull cient Oexibility to the compiler to defer the hard
decisions to run time yet allow static optimizations involving communication
motion etc. One of the big problems compilers face is that estimating cost of
communication is almost impossible. They can however gauge criticality (or
relative importance) of communication. Developing such a model will allow
compilers to more ellectively deal with issues of relative importance betwen
computation and communication and communication and communication.
Probably the best reason to use distributed memory systems is to benellt
from scalability even though application domains and performance might be
somewhat weaker. Thus, new research must be done in scalable code gen-
eration. In other words, as size of the problem and number of processors
increase, should there be a change in data/code partition or should it remain
the same? What code generation issues are related to this? How could one
potentially handle the Ohot spotsll that inevitably (although at much lower
levels than shared memory systems) arise? Can one benellt from the above
communication model and dynamic data ownerships discussed earlier?
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