Lecture Notes in Computer Science 1808
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Santosh Pande Dharma P. Agrawal (Eds.)

Compiler Optimizations
for Scalable
Parallel Systems

Languages, Compilation Techniques,
and Run Time Systems

© Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Santosh Pande

Georgia Institute of Technology, College of Computing
801 Atlantic Drive, Atlanta, GA 30332, USA

E-mail: santosh@cc.gatech.edu

Dharma P. Agrawal

University of Cincinnati, Department of ECECS
P.O. Box 210030, Cincinnati, OH 45221-0030, USA
E-mail: dpa@ececs.uc.edu

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Compiler optimizations for scalable parallel systems : languages,
compilation techniques, and run time systems / Santosh Pande ; Dharma
P. Agrawal (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong
Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 2001
(Lecture notes in computer science ; 1808)
ISBN 3-540-41945-4

CR Subject Classification (1998): D.3,D.4,D.1.3,C2,F1.2,E3

ISSN 0302-9743
ISBN 3-540-41945-4 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 10720238 06/3142 543210

Preface

Santosh Pande! and Dharma P. Agrawal?

! College of Computing

801 Atlantic Drive,
Georgia Institute of Technology,
Atlanta, GA 30332

2 Department of ECECS, ML 0030,
PO Box 210030,
University of Cincinnati,
Cincinnati, OH 45221-0030

We are very pleased to publish this monograph on Compiler Optimizations
for Scalable Distributed Memory Systems. Distributed memory systems oller
a challenging model of computing and pose fascinating problems regarding
compiler optimizations ranging from language design to run time systems.
Thus, the research done in this area serves as foundational to many chal-
lenges from memory hierarchy optimizations to communication optimizations
encountered in both stand-alone and distributed systems. It is with this mo-
tivation that we present a compendium of research done in this area in the
form of this monograph.

This monograph is divided into Ove sections : section one deals with lan-
guages, section two deals with analysis, section three with communication
optimizations, section four with code generation, and section Ove with run
time systems. In the editorial we present a detailed summary of each of the
chapters in these sections.

We would like to express our sincere thanks to many who contributed
to this monograph. First we would like to thank all the authors for their
excellent contributions which really make this monograph one of a kind; as
readers will see, these contributions make the monograph thorough and in-
sightful (for an advanced reader) as well as highly readable and pedagogic (for
students and beginners). Next, we would like to thank our graduate student
Haixiang He for all his help in organizing this monograph and for solving
latex problems. Finally we express our sincere thanks to the LNCS Editorial
at Springer-Verlag for putting up with our schedule and for all their help and
understanding. Without their invaluable help we would not have been able
to put this monograph into its beautiful Onal shape!!! We sincerely hope the
readers Ond the monograph truly useful in their work U be it further research
or practice.

Introduction

Santosh Pande! and Dharma P. Agrawal?

1

College of Computing

801 Atlantic Drive,

Georgia Institute of Technology,
Atlanta, GA 30332

Department of ECECS, ML 0030,
PO Box 210030,

University of Cincinnati,
Cincinnati, OH 45221-0030

1. Compiling for Distributed Memory Multiprocessors

1.1 Motivation

The distributed memory parallel systems oller elegant architectural solutions
for highly parallel data intensive applications primarily because:

0

They are highly scalable. These systems currently come in a variety of
architectures like 3D torus, mesh and hypercube that allow addition of
extra processors should the computing demands increase. Scalability is an
important issue especially for high performance servers such as parallel
video servers, data mining and imaging applications.

With increase in parallelism, there is insignillcant degradation in mem-
ory performance since memories are isolated and decoupled from direct
accesses from processors. This is especially good for data intensive applica-
tions such as parallel databases and data mining that demand considerable
memory bandwidths. In contrast, the memory bandwidths may not match
the increase in number of processors in shared memory systems. In fact,
the overall system performance may degrade due to increased memory con-
tention. This in turn jeopardizes scalability of application beyond a point.
Spatial parallelism in large applications such as Fluid Flow, Weather Mod-
eling and Image Processing, in which the problem domains are perfectly
decomposable, is easy to map on these systems. The achievable speedups
are almost linear and this is primarily due to fast accesses to the data
maintained in local memory.

The interprocessor communication speeds and bandwidths have dramati-
cally improved due to very fast routing. The performance ratings ollered
by newer distributed memory systems have improved although they are
not comparable to shared memory systems in terms of MOops.

Medium grained parallelism can be ellectively mapped onto the newer sys-
tems like the Meiko CS-2, Cray T3D, IBM SP1/SP2 and EM4 due to a

XXII Santosh Pande and Dharma P. Agrawal

low ratio of communication/computation speeds. Communication bottle-
neck has decreased compared with earlier systems and this has opened up
parallelization of newer applications.

1.2 Complexity

However, programming distributed memory systems remains very complex.
Most of the current solutions mandate that the users of such machines must
manage the processor allocation, data distribution and inter-processor com-
munication in their parallel programs. Programming these systems for achiev-
ing the desired high performance is very complex. In spite of frantic demands
by programmers, current solutions provided by (semi-automatic) parallelizing
compilers are rather constrained. As a matter of fact, for many applications
the only practical success has been through hand parallelization of codes with
communication managed through MPI. In spite of a tremendous amount of
research in this area, applicability of many of the compiler techniques re-
mains rather limited and the achievable performance enhancement remains
less than satisfactory. The main reasons for the restrictive solutions ollered
by parallelizing compilers is the enormous complexity of the problem. Orches-
trating computation and communication by suitable analysis and optimizing
their performance through judicious use of underlying architectural features
demands a true sophistication on the part of the compiler. It is not even
clear whether these complex problems are solvable within the realm of com-
piler analysis and sophisticated restructuring transformations. Perhaps they
are much deeper in nature and go right into the heart of design of parallel
algorithms for such an underlying model of computation.

The primary purpose of this monograph is to provide an insight into cur-
rent approaches and point to potentially open problems that could have an
impact. The monograph is organized in terms of issues ranging from pro-
gramming paradigms (languages) to ellective run time systems.

1.3 Outline of the Monograph

Language design is largely a matter of legacy and language design for dis-
tributed memory systems is no exception to the rule. In section I of the
monograph we examine three important approaches (one imperative, one
object-oriented and one functional) in this domain that have made a sig-
nillcant impact. The Orst chapter on HPF 2.0 provides an in-depth view of
data parallel language which evolved from Fortran 90. They present HPF
1.0 features such as BLOCK distribution and FORALL loop as well as new fea-
tures in HPF 2.0 such as INDIRECT distribution and ON directive. They also
point to the complementary nature of MPI and HPF and discuss features
such as EXTRINSIC interface mechanism. HPF 2.0 has been a major commer-
cial success with many vendors such as Portland Group and Applied Paral-
lel Research providing highly optimizing compiler support which generates

Introduction XXIII

message passing code. Many research issues especially related to supporting
irregular computation could prove valuable to domains such as sparse matrix
computation etc. The next chapter on Sisal 90 provides a functional view
of implicit paralleism specillcation and mapping. Shared memory implemen-
tation of Sisal is discussed, which involves optimizations such as update in
place copy elimination etc. Sisal 90 and a distributed memory implemenata-
tion which uses message passing are also discussed. Finally multi-threaded
implementations of Sisal are discussed, with a focus on multi-threaded opti-
mizations. The newer optimizations which perform memory management in
hard-ware through dynamically scheduled multi-threaded code should really
prove benellcial for the performance of functional languages (including Sisal)
which have an elegant programming model. The next chapter on HPC++
provides an object oriented view as well as details on a library and compiler
strategy to support HPC++ level 1 release. The authors discuss interesting
features related to multi-threading, barrier synchronization and remote pro-
cedure invocation. They also discuss library features that are especially useful
for scientillc programming. Extensions of this work relating to newer portable
languages such as Java is currently an active area of research. We also have
a chapter on concurrency models of OO paradigms. The authors specillcally
address a problem called inheritance anomaly which arises when synchroniza-
tion constraints are implemented within methods of a class and an attempt is
made to specialize methods through inheritance mechanisms. They propose
a solution to this problem by separating the specillcation of synchronization
from the method specillcation. The synchronization construct is not a part
of the method body and is handled separately. It will be interesting to study
the compiler optimizations on this model related to strength reduction of
barriers, and issues such as data partitioning vs. barrier synchronizations.
In section IT of the monograph, we focus on various analysis techniques.
Parallelism detection is very important and the Orst chapter presents a very
interesting comparative study of dillerent loop parallelization algorithms by
Allen and Kennedy, Wolf and Lam, Darte and Vivien and by Feautrier. They
provide comparisons in terms of their performance (ability to parallelize as
well as quality of schedules generated for code generation) as well as complex-
ity. The comparison also focusses on the type of dependence information avail-
able. Further extensions could involve run-time parallelization given more
precise dependence information. Array data-ow is of utmost importance in
optimizations : both sequential as well as parallel. The Orst chapter on array
data-Oow analysis examines this problem in detail and presents techniques
for exact data Dow as well as for approximate data Dow. The exact solution
is shown for static control programs. Authors also show applications to inter-
procedural cases and some important parallelization techniques such as pri-
vatization. Some interesting extensions could involve run-time data Dow anal-
ysis. The next chapter discusses interprocedural analysis based on guarded
(predicated) array regions. This is a framework based on path-sensitive predi-

XXIV Santosh Pande and Dharma P. Agrawal

cated data-low which provides summary information. The authors also show
application of their work to improve array privatization based on symbolic
propagation. Extensions of these to newer object oriented languages such as
Java (which have clean class hierarchy and inheritance model) could be in-
teresting since these programs really need such summary MOD information
for performing any optimization. We Onally present a very important anal-
ysis/optimization technique for array privatization. Array privatization in-
volves removing memory-related dependences which have a signillcant impact
on communication optimizations, loop scheduling etc. The authors present
a demand-driven data-llow formulation of the problem; an algorithm which
performs single pass propagation of symbolic array expressions is also pre-
sented. This comprehensive framework implemented in a Polaris compiler is
making a signillcant impact in improving many other related optimizations
such as load balancing, communication etc.

The next section is focussed on communication optimization. The com-
munication optimization can be achieved through data (and iteration space)
distribution, statically or dynamically. These approaches further classify into
data and code alignment or simply interation space transformations such as
in tiling. The communication can also be optimized in data-parallel programs
through array region analysis. Finally one could tolerate some communication
latency through novel techniques such as multi-threading. We have chapters
which cover these broad range of topics about communication in depth.

The Orst chapter in this section focusses on tiling for cache-coherent mul-
ticomputers. This work derives optimal tile parameters for minimal com-
munication in loops with all ne index expressions. The authors introduce a
notion of data footprints and tile the iteration spaces so that the volume
of communication is minimized. They develop an important lattice theoretic
framework to precisely determine the sizes of data footprints which are very
valuable not only in tiling but in many array distribution transformations.
The next two chapters deal with the important problem of communication
free loop partitioning.

The second chapter in this section focusses on comparing dillerent meth-
ods of achieving communication-free partitioning for DOALL loops. This
chapter discusses several variants of the communication-free partitioning
problem involving duplication or non-duplication of data, load balancing of
iteration space and aspects such as statement level vs. loop level partitioning.
Several aspects such as trading parallelism to avoid inter-loop data distribu-
tion are also touched upon. Extending these techniques to broader classes of
DOALL loops could enhance their applicability.

The next chapter by Pingali et al. proposes a very interesting framework
which [rst determines a set of constraints on data and loop iteration place-
ment. They then determine which constraints should be left unsatised to
relax an overconstrained system to nd a solution involving a large amount
of parallelism. Finally, the remaining constraints are solved for data and code

Introduction XXV

distribution. The systematic linear algebraic framework improves over many
ad-hoc loop partitioning approaches.

These approaches trade parallelism for codes that allow decoupling the is-
sues of parallelism and communication by relaxing an appropriate constraint
of the problem. However, for many important problems such as image pro-
cessing applications such a relaxation is not possible. That is, one must resort
to a dillerent partitioning solution based on relative costs of communication
and computation. In the next chapter, for solving such a problem, a new
approach has been proposed to partition iteration space by determining di-
rections which maximally cover the communication by minimally trading par-
allelism. This approach allows mapping of general medium grained DOALL
loops. However, the communication resulting from this iteration space par-
titioning can not be easily aggregated without sophisticated Dacklylinpackl
mechanisms present at send/receive ends. Such extensions are desirable since
aggregating communication has as signillcant impact as reducing the volume.

The static data distribution and alignment typically solve the problems of
communication on a loop nest by loop nest basis but rarely in an intraproce-
dural scope. Most of the inter-loop nest level and interprocedural boundaries
require dynamic data redistribution. Banerjee et al. develop techniques that
can be used to automatically determine which data partitions are most ben-
ellcial over specillc sections of the program by accounting for redistribution
overhead. They determine split points and phases of communication and re-
distribution are performed at split points.

When communication must take place, it should be optimized. Also, any
redundancies must be captured and eliminated. Manish Gupta in the next
chapter proposes a comprehensive approach for performing global (interpro-
cedural) communication optimizations such as vectorization, PRE, coalesc-
ing, hoisting etc. Such an interprocedural approach to communication op-
timization is highly proltable in substantially improving the performance.
Extending this work to irregular communication could be interesting.

Finally, we present a multi-threaded approach which could hide the com-
munication latency. Two representative applications involving bitonic sort
and FFT are chosen and using One grained multi-threading on EM-X it is
shown that multi-threading can substantially help in overlapping computa-
tion with communication to hide latencies up to 35 %. These methods could
be especially useful for irregular computation.

The Onal phase of compiling for distributed memory systems involves
solving many code generation problems. Code generation problems involve,
determining communication generation and doing address calculation to map
global references to local ones. The next section deals with these issues. The
Orst chapter presents structures and techniques for communication genera-
tion. They focus on issues such as Jexible computation partitioning (going
beyond owner computes rule), communication adaptation based upon ma-
nipulating integer sets through abstract inequalities and control Dow simpli-

XXVI Santosh Pande and Dharma P. Agrawal

Ocation based on these. One good property of this work is that it can work
with many dillerent front ends (not just data parallel languages) and the code
generator has more opportunities to perform low level optimizations due to
simplilled control Dow.

The second chapter discusses basis vector based address calculation mech-
anisms for ell cient traversals of partitioned data. While one important issue
of code generation is communication generation, a very important issue is to
map global address space to local address space ell ciently. The problem is
complicated due to data distributions and access strides. Ramanujam et al.
present closed form expressions for basis vectors for several cases. Using the
closed form expressions for the basis vectors, they derive a non-unimodular
linear transformation.

The Onal section is on supporting task parallelism and dynamic data
structures. We also present a run-time system to manage irregular computa-
tion. The Orst chapter by Darbha et al. presents a task scheduling approach
that is optimal for many practical cases. The authors evaluate its perfor-
mance for many practical applications such as the Bellman-Ford algorithm,
Cholesky decomposition, the Systolic algorithm etc. They show that sched-
ules generated by their algorithm are optimal for some cases and near optimal
for most others. With HPF 2.0 supporting task parallelism, this could open
up many new application domains.

The next two chapters describe language supports for dynamic data struc-
tures such as pointers in distributed address space. Gupta describes several
extensions to C with declarations such as TREE, ARRAY, MESH to declare
dynamic data structures. He then describes name generation and distribu-
tion strategies for name generation and distribution strategies. Finally he
describes support for both regular as well as irregular dynamic structures.
The second chapter by Rogers et al. presents an approach followed in their
Olden project which uses a distributed heap. The remote access is handled
by software caching or computation migration. The selection of these mecha-
nisms is done automatically through a compile time heuristic. They provide
a data layout annotation to the programmer called local path lengths which
allows programmers to give hints regarding expected data layout thereby Ox-
ing these mechanisms. Both of these chapters provide highly useful insights
into supporting dynamic data strutures which are very important for scal-
able domains of computation supported by these machines. Thus, these works
should have a signillcant impact on future scalable applications supported by
these systems.

Finally, we present a run-time system called CHAOS which provides ell -
cient support for irregular computations. Due to indirection in many sparse
matrix computations, the communication patterns are unknown at compile
time in these applications. Indirection patterns have to be preprocessed, and
the sets of elements to be sent and received by each processor precomputed,

Introduction XXVII

in order to optimize communication. In this work, the authors provide details
of ell cient run time support for an inspectorllerecutor model.

1.4 Future Directions

The two important bottlenecks for the use of distributed memory systems
are the limited application domains and the fact that the performance is
less than satisfactory. The main bottleneck seems to be handling communi-
cation. Thus, ell cient solutions must be developed. Application domains be-
yond regular communication can be handled by supporting a general run-time
communication model. This run-time communication model must be latency
hiding and should give sull cient Oexibility to the compiler to defer the hard
decisions to run time yet allow static optimizations involving communication
motion etc. One of the big problems compilers face is that estimating cost of
communication is almost impossible. They can however gauge criticality (or
relative importance) of communication. Developing such a model will allow
compilers to more ellectively deal with issues of relative importance betwen
computation and communication and communication and communication.
Probably the best reason to use distributed memory systems is to benellt
from scalability even though application domains and performance might be
somewhat weaker. Thus, new research must be done in scalable code gen-
eration. In other words, as size of the problem and number of processors
increase, should there be a change in data/code partition or should it remain
the same? What code generation issues are related to this? How could one
potentially handle the Ohot spotsll that inevitably (although at much lower
levels than shared memory systems) arise? Can one benellt from the above
communication model and dynamic data ownerships discussed earlier?

Table of Contents

Preface
Santosh Pande and Dharma P. Agrawal bbopoobbbobBOIOEDIBIDEIEBD> V.

Introduction
Santosh Pande and Dharma P. Agrawal boopbopopBBBBBIBEDEBHRBHEEX X

1 Compiling for Distributed Memory Multiprocessors............... XXI
1.1 Motivation XXI
1.2 Complexityt XXII
1.3 Outline of the Monograph............... XXII
1.4 Future Directions XXVII

Section I : Languages

Chapter 1. High Performance Fortran 2.0
Ken Kennedy and Charles Koelbel pBoBOBOSBIBBIBIBDIOIBIBEIMSDM> 3

1 Introduction......... 3
2 History and Overview of HPF 3
3 Data Mappingo 7
3.1 Basic Language Features........ 7
3.2 Advanced TOpPICS. . ..ottt 13
4 Data Parallelism ... 18
4.1 Basic Language Features........ 19
4.2 Advanced Topics.ot 29
5 Task Parallelism 34
5.1 EXTRINSIC Procedures, 34
5.2 The TASK_REGION Directive., 37
6 Input and Output....... ... i 39

7 Summary and Future Outlook 41

VIII Table of Contents

Chapter 2. The Sisal Project: Real World Functional
Programming

Jean-Luc Gaudiot, Tom DeBoni, John Feo, Wim Bdhm,

Walid Najjar, and Patrick Miller pbooDODOOBOOOIDOOOIOIBDIDIDHBODD> 45

1
2
3

7

Introduction. 45
The Sisal Language: A Short Tutorial 46
An Early Implementation: The Optimizing Sisal Compiler......... 49
3.1 Update in Place and Copy Elimination 49
3.2 Buildin Place 50
3.3 Reference Counting Optimization 51
3.4 Vectorization 51
3.5 Loop Fusion, Double Bullering Pointer Swap, and Inversion ... 51
SISalO0 L . 53
4.1 The Foreign Language Interface............................ 54
A Prototype Distributed-Memory SISAL Compiler 58
5.1 Base Compiler...... 59
5.2 Rectangular Arrays i 59
5.3 Block Messages 60
5.4 Multiple Alignment 60
5.5 Results ... 61
5.6 Further Work. 62
Architecture Support for Multithreaded Execution 62
6.1 Blocking and Non-blocking Models 63
6.2 Code Generation................iiiiiiinn... 64
6.3 Summary of Performance Results 68
Conclusions and Future Research 69

Chapter 3. HPC++ and the HPC++Lib Toolkit
Dennis Gannon, Peter Beckman, Elizabeth Johnson, Todd Green,
and Mike Levine SoDOOODDOID>DDOIDDDBDDIDOIDDDEDDIDDSDDDISIDBIDDD> 73

1
2

Introduction. 73
The HPC++ Programming and Execution Model 74
2.1 Level 1 HPCHH ..o 75
2.2 The Parallel Standard Template Library 76
2.3 Parallel Tterators. 77
2.4 Parallel Algorithms 77
2.5 Distributed Containers 78
A Simple Example: The Spanning Tree of a Graph 78
Multi-threaded Programming 82
4.1 Synchronizationoieiiiiiin .. 84
4.2 Examples of Multi-threaded Computations 92

Implementing the HPC++ Parallel Loop Directives 96

Table of Contents IX

6 Multi-context Programming and Global Pointers 99
6.1 Remote Function and Member Calls........................ 101
6.2 Using Corba IDL to Generate Proxies 103

7 The SPMD Execution Model o i, 105
7.1 Barrier Synchronization and Collective Operations 105

8 Conclusion i 106

Chapter 4. A Concurrency Abstraction Model for Avoiding
Inheritance Anomaly in Object-Oriented Programs
Sandeep Kumar and Dharma P. Agrawal poooOOOOOOOEOOOOBBIBBR> 109

1 Introduction...... i 109
2 Approaches to Parallelism Specillcation 113
2.1 TIssues in Designing a COOPL 113
2.2 Issues in Designing Libraries 114
3 What Is the Inheritance Anomaly? 115
3.1 State Partitioning Anomaly (SPA) 116
3.2 History Sensitiveness of Acceptable States Anomaly (HSASA) . 118
3.3 State Modillcation Anomaly (SMA) 118
3.4 Anomaly A .. 119
3.5 Anomaly B. ... 120
4 What Is the Reusability of Sequential Classes?................... 120
5 A Framework for Specifying Parallelism......................... 121
6 Previous Approaches 122
7 The Concurrency Abstraction Model 123
8 The CORE Language.uiuiiiiii i 126
8.1 Specifying a Concurrent Region............ 126
8.2 Dellning an AC 126
8.3 Dellning a Parallel Block, 127
8.4 Synchronization Schemes........ i, 129
9 THustrationsot 129
9.1 Reusability of Sequential Classes 130
9.2 Avoiding the Inheritance Anomaly 131
10 The Implementation Approach 133
11 Conclusions and Future Directions oo, 134

Section II : Analysis

Chapter 5. Loop Parallelization Algorithms
Alain Darte, Yves Robert, and Frpdpric Vivien pooOODOODOOOOOOOOO>O> 141

1 Introduction.............c..iiiii i e 141
Input and Output of Parallelization Algorithms 142
2.1 Input: Dependence Graph.......... 143

2.2 Output: Nested Loops oot 144

7
8

Table of Contents

Dependence Abstractions, 145
3.1 Dependence Graphs and Distance Sets...................... 145
3.2 Polyhedral Reduced Dependence Graphs 147
3.3 Dellnition and Simulation of Classical Dependence

Representations........... .o i i 148
Allen and Kennedylk Algorithm............... 149
4.1 Algorithm.o 150
4.2 Power and Limitations. i, 151
Wolf and Lamlk Algorithm 152
5.1 Purpose 153
5.2 Theoretical Interpretation........... 153
5.3 The General Algorithm 154
5.4 Power and Limitations............, 155
Darte and Vivienlk Algorithm 156
6.1 Another Algorithm Is Needed 156
6.2 Polyhedral Dependences: A Motivating Example 158
6.3 Illustrating Example 160
6.4 Uniformization Step i 162
6.5 Scheduling Step. 162
6.6 Schematic Explanations......... i, 165
6.7 Power and Limitations............ i .. 166
Feautrierls Algorithm 167
ConcluSionu 169

Chapter 6. Array Datallow Analysis
Paul Feautrier pSODBOOODOOODDDODDDBDDDIDBIDDDBDDDDBSIDDSIDBS>DD> 173

1
2

Introduction. 173
Exact Array Datallow Analysis 176
2.1 Notationsot 176
2.2 The Program Model i 176
2.3 Data Flow Analysis i i 181
2.4 Summary of the Algorithm 189
2.5 Related Work 190
Approximate Array Datallow Analysis.......................... 190
3.1 From ADA to FADA 191
3.2 Introducing Parameters......... i, 195
3.3 Taking Properties of Parameters into Account 197
3.4 Eliminating Parameters......... i, 201
3.5 Related Work ... 202
Analysis of Complex Statements, 204
4.1 What Is a Complex Statement, 204
4.2 ADA in the Presence of Complex Statements 206

4.3 Procedure Calls as Complex Statements 206

Table of Contents XI

Applications of ADA and FADA, 208
5.1 Program Comprehension and Debugging 209
5.2 Parallelization 211
5.3 Array Expansion and Array Privatization 212
CONCIUSIONS .« . oottt e 214
Appendix : Mathematical Tools......... 214
A.1 Polyhedra and Polytopes.......... i i 214
A2 Z-modules ... 215
A3 Z-polyhedra 216
A.4 Parametric Problems 216

Chapter 7. Interprocedural Analysis Based on Guarded
Array Regions
Zhiyuan Li, Junjie Gu, and Gyungho Lee pbOOSODOIBOIOOIOOOIDOIDHM> 221

1
2

7
8

Introduction. 221
Preliminary 223
2.1 Traditional Flow-Insensitive Summaries 223
2.2 Array Data Flow Summaries oo, 225
Guarded Array Regions.......... .. i 226
3.1 Operationson GAR.......... 228
3.2 Predicate Operations i, 230
Constructing Summary GARI Interprocedurally 232
4.1 Hierarchical Supergraph 232
4.2 Summary Algorithms i 233
4.3 EXPansionsottt 235
Implementation Considerations 238
5.1 Symbolic Analysis. 238
5.2 Region Numbering i 239
5.3 Range Operationsouiiiiniininennan.. 240
Application to Array Privatization and Preliminary Experimental

Results ... 240
6.1 Array Privatization i 241
6.2 Preliminary Experimental Results............. 241
Related Works.o e 243
ConcluSION . .. oot 244

Chapter 8. Automatic Array Privatization
Peng Tu and David Padua poobbBOODODODOODBDBIDDDDDOIBDBBIBIB>H> 247

1
2
3

Introduction. 247
Background 248
Algorithm for Array Privatization................ 250
3.1 Data Flow Framework 250
3.2 Inner Loop Abstraction, 252

3.3 AnExample. 256

XII

5

Table of Contents
3.4 Prolltability of Privatization.................. 257
3.5 Last Value Assignment i, 258
Demand-Driven Symbolic Analysis 261
4.1 Gated Single Assignment 263
4.2 Demand-Driven Backward Substitution 264
4.3 Backward Substitution in the Presence of Gating Functions ... 266
4.4 Examples of Backward Substitution 267
4.5 Bounds of Symbolic Expression 269
4.6 Comparison of Symbolic Expressions 269
4.7 Recurrence and the § Function 272
4.8 Bounds of Monotonic Variables 273
4.9 Index ATTay .. .ot 274
4.10 Conditional Data Flow Analysis 275
4.11 Implementation and Experiments 276
Related Work 277

Section III : Communication Optimizations

Chapter 9. Optimal Tiling for Minimizing Communication in
Distributed Shared-Memory Multiprocessors
Anant Agarwal, David Kranz, Rajeev Barua, and Venkat Natarajan s> 285

1

w

Introduction. 285
1.1 Contributions and Related Work 286
1.2 Overview of the Paper i .. 288
Problem Domain and Assumptions 289
2.1 Program Assumptions i, 289
2.2 System Model 291
Loop Partitions and Data Partitions.............. 292
A Framework for Loop and Data Partitioning 295
4.1 Loop Tiles in the Iteration Space 296
4.2 Footprints in the Data Space 298
4.3 Size of a Footprint for a Single Reference 300
4.4 Size of the Cumulative Footprint........................... 304
4.5 Minimizing the Size of the Cumulative Footprint............. 311
General Case of G ... 314
5.1 G Is Invertible, but Not Unimodular 314
5.2 Columns of G Are Dependent and the Rows Are Independent . 316
5.3 The Rows of G Are Dependent 316
Other System Environments......... 318
6.1 Coherence-Related Cache Misses 318
6.2 Elect of Cache Line Size............ccouiiiiiiiinannn... 320

6.3 Data Partitioning in Distributed-Memory Multicomputers. 320

Table of Contents XIII

7 Combined Loop and Data Partitioning in DSMs 322
7.1 The Cost Model i, 322
7.2 The Multiple Loops Heuristic Method 325

8 Implementation and Results L. 328
8.1 Algorithm Simulator Experiments.......................... 330
8.2 Experiments on the Alewife Multiprocessor.................. 330

9 Conclusions 334

A A Formulation of Loop Tiles Using Bounding Hyperplanes 337

B Synchronization References.......... i, 337

Chapter 10. Communication-Free Partitioning of Nested
Loops
Kuei-Ping Shih, Chua-Huang Huang, and Jang-Ping Sheu boopoobpoon> 339

1 Introduction. 339

2 Fundamentals of Array References 341

2.1 Tteration Spaces and Data Spaces 342

2.2 Reference Functions 343

2.3 Properties of Reference Functions 343

3 Loop-Level Partitioning. 347
3.1 Tteration and Data Spaces Partitioning [l Uniformly Generated

References 347

3.2 Hyperplane Partitioning of Data Space 353

3.3 Hyperplane Partitioning of Iteration and Data Spaces 359

4 Statement-Level Partitioning oo, 365

4.1 Al ne Processor Mappingoouiiiiineeinnnenninann. 366

4.2 Hyperplane Partitioning, 372

5 Comparisons and Discussions i, 377

6 ConcCluSIoNSot 381

Chapter 11. Solving Alignment Using Elementary Linear

Algebra

Vladimir Kotlyar, David Bau, Induprakas Kodukula, Keshav Pingali,

and Paul Stodghill popBEIEEIEEOIDEIBBDEDDIDBISBHEDDIDBISHEHH> 385

1 Introduction......... ... i 385
2 Linear Alignment it 388
2.1 Equational Constraints 388
2.2 Reduction to Null Space Computation 390
2.3 Remarkso 391
2.4 Reducing the Solution Basis 392
3 Allne Alignment.ttt 393
3.1 Encoding Al ne Constraints as Linear Constraints 393
4 Replication. 396

4.1 Formulation of Replication 397

XIV Table of Contents

5 Heuristicso 398
5.1 Lessons from Some Common Computational Kernels 399
5.2 Implications for Alignment Heuristic 402

6 COonCluSIONv ot 402

A Reducing the Solution Matrix i, 404
A.1 Unrelated Constraints, 404
A.2 General Procedure i 405

B A Comment on All ne Encoding, 408

Chapter 12. A Compilation Method for
CommunicationEll cient Partitioning of DOALL Loops
Santosh Pande and Tareq Bali boopobbobBIBIBBBEIBDIBBIBIBHBBIISHH> 413

1
2

ot

Introduction. 413
DOALL Partitioning i, 414
2.1 Motivating Example......... 415
2.2 Our Approach 419
Terms and Dellnitionsiiiiiiiiiin... 421
3.1 Example . ..o 422
Problem 423
4.1 Compatibility Subsets 423
4.2 Cyclic Directions. 424
Communication Minimization 427
5.1 Algorithm : Maximal Compatibility Subsets 427
5.2 Algorithm : Maximal Fibonacci Sequence 428
5.3 Data Partitioning 428
Partition Merging 429
6.1 Granularity Adjustment 431
6.2 Load Balancing 431
6.3 Mappingo 432
Example : Texture Smoothing Code 432
Performance on Cray T3D i, 435
8.1 Conclusions 440

Chapter 13. Compiler Optimization of Dynamic Data
Distributions for Distributed-Memory Multicomputers
Daniel J. Palermo, Eugene W. Hodges IV, and Prithviraj Banerjee s> 445

1
2
3

Introduction. 445
Related Work 447
Dynamic Distribution Selection 449
3.1 Motivation for Dynamic Distributions 449
3.2 Overview of the Dynamic Distribution Approach............. 450
3.3 Phase Decomposition i 451

3.4 Phase and Phase Transition Selection....................... 457

4

7

Table of Contents XV

Data Redistribution Analysis i 462
4.1 Reaching Distributions and the Distribution Flow Graph. 462
4.2 Computing Reaching Distributions 463
4.3 Representing Distribution Sets......... 464
Interprocedural Redistribution Analysis........... 465
5.1 Distribution Synthesis 467
5.2 Redistribution Synthesis o i 468
5.3 Static Distribution Assignment (SDA) 471
Results ... 472
6.1 Synthetic HPF Redistribution Example 473
6.2 2-D Alternating Direction Implicit (ADI2D) Iterative Method . 475
6.3 Shallow Water Weather Prediction Benchmark............... 478
ConcluSionSo 480

Chapter 14. A Framework for Global Communication
Analysis and Optimizations
Manish Gupta DEPEIBOOEIBISBIBIBBBBIBDBBIDIBBIISDIBIBHHIMHH> 485

1
2
3

Introduction. 485
Motivating Example. 487
Available Section Descriptor. 488
3.1 Representation of ASD 490
3.2 Computing Generated Communication...................... 492
Data Flow Analysis, 494
4.1 Data Flow Variables and Equations 495
4.2 Decomposition of Bidirectional Problem 498
4.3 Overall Data-Flow Procedure............... 499
Communication Optimizations., 505
5.1 Elimination of Redundant Communication 505
5.2 Reduction in Volume of Communication 506
5.3 Movement of Communication for Subsumption and for Hiding
Latency 507
Extensions: Communication Placement 508
Operations on Available Section Descriptors..................... 510
7.1 Operations on Bounded Regular Section Descriptors.......... 512
7.2 Operations on Mapping Function Descriptors................ 514
Preliminary Implementation and Results 516
Related Work 519
9.1 Global Communication Optimizations 519
9.2 Data Flow Analysis and Data Descriptors 520

10 Conclusions 521

XVI Table of Contents

Chapter 15. Tolerating Communication Latency through
Dynamic Thread Invocation in a Multithreaded Architecture
Andrew Sohn, Yuetsu Kodama, Jui-Yuan Ku, Mitsuhisa Sato, and
Yoshinori Yamaguchi SoopoBboopopBbBBBBEBIBDDBIBDBBIBIBDEIBHBHDS> 525

1
2

4
)
6

Introduction. 525
Multithreading Principles and Its Realization.................... 527
2.1 The Principle. 527
2.2 The EM-X Multithreaded Distributed-Memory Multiprocessor . 530
2.3 Architectural Support for Fine-Grain Multithreading 533
Designing Multithreaded Algorithms 535
3.1 Multithreaded Bitonic Sorting 535
3.2 Multithreaded Fast Fourier Transform 538
Overlapping Analysis 540
Analysis of Switches. 544
ConclUSIONS . . .ottt e 547

Section IV : Code Generation

Chapter 16. Advanced Code Generation for High
Performance Fortran
Vikram Adve and John Mellor-Crummey BBODOSIDODIDBIDBIBOIDBHIB> 553

1
2

ot

Introduction. 553
Background: The Code Generation Problem for HPF 556
2.1 Communication Analysis and Code Generation for HPF 556
2.2 Previous Approaches to Communication Analysis and Code
Generationt 558
An Integer Set Framework for Data-Parallel Compilation 561
3.1 Primitive Components of the Framework 561
3.2 Implementation of the Framework.......................... 562
Computation Partitioning o i, 565
4.1 Computation Partitioning Models 565
4.2 Code Generation to Realize Computation Partitions.......... 567
Communication Code Generationcooven.... 573
5.1 Communication Generation with Message Vectorization and
CoalesSCing . ..o vt 577
5.2 Recognizing In-Place Communication....................... 581
5.3 Implementing Loop-Splitting for Reducing Communication
Overhead 582
Control Flow Simplillcation iiiiiin... 584
6.1 Motivationo 584
6.2 Overview of Algorithm 588
6.3 Evaluation and Discussion, 589

ConclusionSt 590

Table of Contents XVII

Chapter 17. Integer Lattice Based Methods for Local
Address Generation for Block-Cyclic Distributions
J. Ramanujam boOoSO>OBOBDIBDBODDDBBBHBDBDDDEDDBDDBBBIBIDHHHH> 59T

1
2

10
11

12

Introduction. 597
Background and Related Work 599
2.1 Related Work on One-Level Mapping 600
2.2 Related Work on Two-Level Mapping 602
A Lattice Based Approach for Address Generation 603
3.1 ASSUMPLIONS ..ottt 603
3.2 Lattices. ..o 604
Determination of Basis Vectors, 605
4.1 Basis Determination Algorithm 607
4.2 Extremal Basis Vectors i 609
4.3 Improvements to the Algorithm for s <k 612
4.4 Complexity ...t 613
Address Sequence Generation by Lattice Enumeration 614
Optimization of Loop Enumeration: GO-LEFT and GO-RIGHT 616
6.1 TImplementation......... 620
Experimental Results for One-Level Mapping 620
Address Sequence Generation for Two-Level Mapping 626
8.1 Problem Statement............. 626
Algorithms for Two-Level Mapping.......... ... oo .. 628
9.1 TItable: An Algorithm That Constructs a Table of Olsets 629
9.2 Optimization of the Itable Method 631
9.3 Search-Based Algorithms 634
Experimental Results for Two-Level Mapping 635
Other Problems in Code Generation............................ 638
11.1 Communication Generation 639
11.2 Union and Dillerence of Regular Sections 640
11.3 Code Generation for Complex Subscripts. 640
11.4 Data Structures for Runtime EO ciency 640
11.5 Array Redistribution 641
Summary and Conclusionsoiiiiiiiiina... 641

Section V : Task Parallelism, Dynamic Data
Structures and Run Time Systems

Chapter 18. A Duplication Based Compile Time Scheduling
Method for Task Parallelism
Sekhar Darbha and Dharma P. Agrawal pobOOSOODOBOIOOIDOEBHOBB> 649

1
2

Introduction. 649
STDS Algorithm 652
2.1 Complexity Analysiso 663

XVIII Table of Contents

w

>

Tlustration of the STDS Algorithm...... 664
Performance of the STDS Algorithm 670
4.1 CRC TIsSatisled.........co i 670
4.2 Application of Algorithm for Random Data 672
4.3 Application of Algorithm to Practical DAGs................. 674
4.4 Scheduling of Diamond DAGs 675
4.5 Comparison with Other Algorithms 680
ConcluSIOnSt 680

Chapter 19. SPMD Execution in the Presence of Dynamic
Data Structures
Rajiv Gupta bOODEIBDBEIBISBIDIBBBBIBDISBIDIBBIIBDBBIBHHIMHHS 683

1
2

4
5
6

Introduction. 683
Language Support for Regular Data Structures 684
2.1 Processor Structuresouiiiiiiii 685
2.2 Dynamic Data Structures 685
2.3 Name Generation and Distribution Strategies................ 688
2.4 Examples 689
Compiler Support for Regular Data Structures................... 693
3.1 Representing Pointers and Data Structures.................. 693
3.2 Translation of Pointer Operations 694
Supporting Irregular Data Structures 703
Compile-Time Optimizationst .. 705
Related Work 706

Chapter 20. Supporting Dynamic Data Structures with
Olden
Martin C. Carlisle and Anne Rogers boopopOBOOBOIEBDIDDIDHIBHHHHH> 709

1
2

Introduction. 709
Programming Model 711
2.1 Programming Language......... 711
2.2 Data Layout 711
2.3 Marking Available Parallelism 714
Execution Model 715
3.1 Handling Remote References 715
3.2 Introducing Parallelism 718
3.3 A Simple Example 719
Selecting Between Mechanisms. oo, 722
4.1 Using Local Path Lengths......... 723
4.2 Update Matricest 724

4.3 The HeuristiC. i 726

5

8

Table of Contents XIX

Experimental Results.......... 731
5.1 Comparison with Other Published Work 733
5.2 Heuristic Results. 733
5.3 SUIMIMATY .ottt et e e e e e 735
Proling in Olden 735
6.1 Verifying Local Path Lengths 736
Related Work 739
7.1 Guptalb Work 741
7.2 Object-Oriented Systems., 741
7.3 Extensions of C with Fork-Join Parallelism 743
7.4 Other Related Work........ i, 744
ConCluSIONS . ..ottt 745

Chapter 21. Runtime and Compiler Support for Irregular
Computations
Raja Das, Yuan-Shin Hwang, Joel Saltz, and Alan Sussman bbBOOBODB> 751

1
2
3

5

Introduction. 751
Overview of the CHAOS Runtime System 753
Compiler Transformations 758
3.1 Transformation Example 759
3.2 Dellnitionsttt 763
3.3 Transformation Algorithm 765
Experiments 769
4.1 Hand Parallelization with CHAOS 769
4.2 Compiler Parallelization Using CHAOS 773
Conclusionst 775

Author Index SOODOOIODOOODDDIDODBDDIDBIDDDDSDDDDSIDDSSHDBH>DD> 779

	Lecture Notes in Computer Science

	Compiler Optimizations
for Scalable
Parallel Systems

	Preface

	Introduction

	Compiling for Distributed Memory Multiprocessors

	Motivation
	
Complexity
	
Outline of the Monograph
	
Future Directions

	Table of Contents

