Skip to main content

One-Sided Stability of Medial Axis Transform

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2191))

Abstract

Medial axis transform (MAT) is very sensitive to the noise, in the sense that, even if a shape is perturbed only slightly, the Hausdorff distance between the MATs of the original shape and the perturbed one may be large. But it turns out that MAT is stable, if we view this phenomenon with the one-sided Hausdorff distance, rather than with the two-sided Hausdorff distance. In this paper, we show that, if the original domain is weakly injective, which means that the MAT of the domain has no end point which is the center of an inscribed circle osculating the boundary at only one point, the one-sided Hausdorff distance of the original domain’s MAT with respect to that of the perturbed one is bounded linearly with the Hausdorff distance of the perturbation. We also show by example that the linearity of this bound cannot be achieved for the domains which are not weakly injective. In particular, these results apply to the domains with the sharp corners, which were excluded in the past. One consequence of these results is that we can clarify theoretically the notion of extracting “the essential part of the MAT”, which is the heart of the existing pruning methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. August, K. Siddiqi and S. W. Zucker, “Ligature instabilities and the perceptual organization of shape,” Computer Vision and Image Understanding, vol. 76, no. 3, pp. 231–243, Dec. 1999.

    Article  Google Scholar 

  2. H. Blum, “A transformation for extracting new descriptors of shape,” Proc. Symp. Models for the Perception of Speech and Visual Form (W.W. Dunn, ed.), MIT Press, Cambridge, MA, pp. 362–380, 1967.

    Google Scholar 

  3. H. I. Choi, S. W. Choi and H. P. Moon, “Mathematical theory of medial axis transform,” Pacific J. Math., vol. 181, no. 1, pp. 57–88, Nov. 1997.

    Article  MathSciNet  Google Scholar 

  4. H. I. Choi, S. W. Choi, H. P. Moon and N.-S. Wee, “New algorithm for medial axis transform of plane domain,” Graphical Models and Image Processing, vol. 59, no. 6, pp. 463–483, 1997.

    Article  Google Scholar 

  5. S. W. Choi and S.-W. Lee, “Stability analysis of medial axis transform,” Proc. 15th ICPR, (Barcelona, Spain), vol 3, pp. 139–142, Sept. 2000.

    Google Scholar 

  6. S. W. Choi and H.-P. Seidel, “Hyperbolic Hausdorff distance for medial axis transform,” Research Report, MPI-I-2000-4-003, 2000.

    Google Scholar 

  7. S. W. Choi and H.-P. Seidel, “Linear one-sided stability of MAT for weakly injective domain,” Research Report, MPI-I-2001-4-004, 2001.

    Google Scholar 

  8. S. W. Choi and H.-P. Seidel, “One-sided stability of MAT and its applications,” preprint, 2001.

    Google Scholar 

  9. M. P. Deseilligny, G. Stamon and C. Y. Suen, “Veinerization: A new shape descriptor for flexible skeletonization,” IEEE Trans. PAMI, vol. 20, no. 5, pp. 505–521, May 1998.

    Google Scholar 

  10. P. J. Giblin and B. B. Kimia, “On the local form and transitions of symmetry sets, medial axes, and shocks,” Proc. 7th ICCV, (Kerkyra, Greece), pp. 385–391, Sept. 1999.

    Google Scholar 

  11. F. Mokhtarian and A. K. Mackworth, “A theory of multiscale, curvature-based shape representation for planar curves,” IEEE Trans. PAMI, vol. 14, no. 8, pp. 789–805, Aug. 1992.

    Google Scholar 

  12. U. Montanari, “A method for obtaining skeletons using a quasi-Euclidean distance,” J. of the ACM, vol. 18, pp. 600–624, 1968.

    Article  Google Scholar 

  13. D. Shaked and A. M. Bruckstein, “Pruning medial axes,” Computer Vision and Image Understanding, vol. 69, no. 2, pp. 156–169, Feb. 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choi, S.W., Seidel, HP. (2001). One-Sided Stability of Medial Axis Transform. In: Radig, B., Florczyk, S. (eds) Pattern Recognition. DAGM 2001. Lecture Notes in Computer Science, vol 2191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45404-7_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-45404-7_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42596-0

  • Online ISBN: 978-3-540-45404-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics