Skip to main content

Evaluation of Convex Optimization Techniques for the Weighted Graph-Matching Problem in Computer Vision

  • Conference paper
  • First Online:
Book cover Pattern Recognition (DAGM 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2191))

Included in the following conference series:

Abstract

We present a novel approach to the weighted graph-matching problem in computer vision, based on a convex relaxation of the underlying combinatorial optimization problem. The approach always computes a lower bound of the objective function, which is a favorable property in the context of exact search algorithms. Furthermore, no tuning parameters have to be selected by the user, due to the convexity of the relaxed problem formulation.

For comparison, we implemented a recently published deterministic annealing approach and conducted numerous experiments for both established benchmark experiments from combinatorial mathematics, and for random ground-truth experiments using computer-generated graphs. Our results show similar performance for both approaches. In contrast to the convex approach, however, four parameters have to be determined by hand for the annealing algorithm to become competitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Herbert, J. Ponce, T. Boult, and A. Gross, editors. Object Representation in Computer Vision, volume 994 of Lect. Not. Comp. Sci. Springer-Verlag, 1995.

    Google Scholar 

  2. H.H. Bültho and S. Edelman. Psychophysical support for a two-dimensional view interpolation theory of object recognition. Proc. Nat. Acad. Science,, 92:60–64, 1992.

    Article  Google Scholar 

  3. S. Umeyama. An eigendecomposition approach to weighted graph matching problems. IEEE Trans. Patt. Anal. Mach. Intell., 10(5):695–703, 1988.

    Article  MATH  Google Scholar 

  4. G. Vosselmann. Relational matching, volume 628 of Lect. Not. Comp. Sci. Springer, 1992.

    Google Scholar 

  5. W.K. Konen, T. Maurer, and C. von der Malsburg. A fast dynamic link matching algorithm for invariant pattern recognition. Neural Networks, 7(6/7):1019–1030, 1994.

    Article  MATH  Google Scholar 

  6. S. Gold and A. Rangarajan. A graduated assignment algorithm for graph matching. IEEE Trans. Patt. Anal. Mach. Intell., 18(4):377–388, 1996.

    Article  Google Scholar 

  7. A.D.J. Cross, R.C. Wilson, and E.R. Hancock. Inexact graph matching using genetic search. Pattern Recog., 30(6):953–970, 1997.

    Article  Google Scholar 

  8. A.D.J. Cross and E.R. Hancock. Graph-matching with a dual-step em algorithm. IEEE Trans. Patt. Anal. Mach. Intell., 20(11):1236–1253, 1998.

    Article  Google Scholar 

  9. W. Förstner. A framework for low level feature extraction. In J.O. Eklundh, editor, Computer Vision-ECCV’ 94, volume 801 of Lect. Not. Comp. Sci., pages 61–70. Springer-Verlag, 1994.

    Chapter  Google Scholar 

  10. S. Ishii and M. Sato. Doubly constrained network for combinatorial optimization. Neurocomputing, 2001. to appear.

    Google Scholar 

  11. G. Finke, R.E. Burkard, and F. Rendl. Quadratic assignment problems. Annals of Discrete Mathematics, 31:61–82, 1987.

    MathSciNet  Google Scholar 

  12. K.M. Anstreicher and N.W. Brixius. A new bound for the quadratic assignment problem based on convex quadratic programming. Technical report, Dept. of Management Sciences, University of Iowa, 1999.

    Google Scholar 

  13. R.E. Burkard, S. Karisch, and F. Rendl. Qaplib ‐ a quadratic assignment problem library. J. Global Optimization, 10:391–403, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Bunke. Error correcting graph matching: On the in uence of the underlying cost function. IEEE Trans. Patt. Anal. Mach. Intell., 21(9):917–922, 1999.

    Article  Google Scholar 

  15. A. Rangarajan, A. Yuille, and E. Mjolsness. Convergence properties of the softassign quadratic assignment algorithm. Neural Computation, 11(6):1455–1474, 1999.

    Article  Google Scholar 

  16. C. Schellewald, S. Roth, and C. Schnörr. Evaluation of spectral and convex relaxations to the quadratic assignment of relational object views. Comp. science series, technical report, Dept. Math. and Comp. Science, University of Mannheim, Germany, 2001. in preparation.

    Google Scholar 

  17. S.W. Hadley, F. Rendl, and H. Wolkowicz. A new lower bound via projection for the quadratic assignment problem. Math. of Operations Research,, 17:727–739, 1992.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schellewald, C., Roth, S., Schnörr, C. (2001). Evaluation of Convex Optimization Techniques for the Weighted Graph-Matching Problem in Computer Vision. In: Radig, B., Florczyk, S. (eds) Pattern Recognition. DAGM 2001. Lecture Notes in Computer Science, vol 2191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45404-7_48

Download citation

  • DOI: https://doi.org/10.1007/3-540-45404-7_48

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42596-0

  • Online ISBN: 978-3-540-45404-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics