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Abstract. We consider 3D object retrieval in which a polygonal mesh
serves as a query and similar objects are retrieved from a collection of 3D
objects. Algorithms proceed first by a normalization step in which mod-
els are transformed into canonical coordinates. Second, feature vectors
are extracted and compared with those derived from normalized models
in the search space. In the feature vector space nearest neighbors are
computed and ranked. Retrieved objects are displayed for inspection, se-
lection, and processing. Our feature vectors are based on rays cast from
the center of mass of the object. For each ray the object extent in the
ray direction yields a sample of a function on the sphere. We compared
two kinds of representations of this function, namely spherical harmonics
and moments. Our empirical comparison using precision-recall diagrams
for retrieval results in a data base of 3D models showed that the method
using spherical harmonics performed better.

1 Introduction

Currently methods for retrieving multimedia documents using audio-visual con-
tent as a key in place of traditional textual annotation are developed in MPEG-7
[6]. Many similarity-based retrieval systems were designed for still image, audio
and video, while only a few techniques for content-based 3D model retrieval have
been reported [2, 5–11]. We consider 3D object retrieval in which a 3D model
given as a triangle mesh serves as a query key and similar objects are retrieved
from a collection of 3D objects. Content-based 3D model retrieval algorithms
typically proceed in three steps:

1. Normalization (pose estimation). 3D models are given in arbitrary units of
measurement and undefined positions and orientations. The normalization
step transforms a model into a canonical coordinate frame. The goal of this
procedure is that if one chose a different scale, position, rotation, or orien-
tation of a model, then the representation in canonical coordinates would
still be the same. Moreover, since objects may have different levels-of-detail
(e.g., after a mesh simplification to reduce the number of polygons), their
normalized representations should be similar as much as possible.

2. Feature extraction. The features capture the 3D shape of the objects. Pro-
posed features range from simple bounding box parameters [8] to complex
image-based representations [5]. The features are stored as vectors of fixed
dimension. There is a tradeoff between the required storage, computational
complexity, and the resulting retrieval performance.

3. Similarity search. The features are designed so that similar 3D-objects are
close in feature vector space. Using a suitable metric nearest neighbors are
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computed and ranked. A variable number of objects are thus retrieved by
listing the top ranking items.

We present an empirical study extending our contribution [11] in which we in-
troduced a modification of the Karhunen-Loeve transform and the application of
spherical harmonics to the problem of 3D object retrieval. We first review the 3D
model retrieval problem and previous work. Then we recall our approach based
on spherical harmonics and present an alternative using moments. We describe
our experiments that we designed to evaluate and contrast the two competing
methods. Finally, the results and conclusions are presented.

2 Previous work

The normalization step is much simpler than the pose estimation deeply stud-
ied in computer vision where a 3D pose must be inferred from one or more
images, i.e., projections of a 3D object. Here, the 3D models for the retrieval
problem are already given in 3D space, and, thus, the most prominent method
for normalization is the principle component analysis (PCA) also known as the
Karhunen-Loeve transform. It is an affine transformation based on a set of vec-
tors, e.g., the set of vertices of a 3D model. After a translation of the set moving
its center of mass to the origin a rotation is applied so that the largest vari-
ance of the transformed points is along the x-axis. Then a rotation around the
x-axis is carried out so that the maximal spread in the yz-plane occurs along
the y-axis. Finally, the object is scaled to a certain unit size. A problem is that
differing sizes of triangles are not taken into account which may cause widely
varying normalized coordinate frames for models that are identical except for
finer triangle resolution in some parts of the model. To address this issue we
introduced appropriately chosen vertex weights for the PCA [10], while Paquet
et al. [8] used centers of mass of triangles as vectors for the PCA with weights
proportional to triangle areas. Later we generalized the PCA so that all of the
(infinitely many) points in the polygons of an object are equally relevant for the
transformation [11].

Feature vectors for 3D model retrieval can be based on Fourier descriptors of
silhouettes [1, 5], on 3D moments [8], rendered images or depth maps [5], or on
volumetric representation of the model surface [2] or the corresponding volume
(if the surface bounds a solid) [7, 6, 8].

Using special moments of 3D objects the normalization step may be joined
with the feature extraction. In [3] a complete set of orthogonal 3D Zernike poly-
nomials provides spherical moments with advantages regarding noise effects and
with less information suppression at low radii. The normalization is done using
3D moments of degree not greater than 3. There were no examples demonstrating
the performance of these feature vectors in 3D model retrieval.

In this paper we consider a particular method to generate feature vectors for
3D object retrieval. In a first step the 3D shape is characterized by a function on
the sphere. For this function we empirically compare two kinds of representation,
one using spherical harmonics and the other by computing moments.
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Fig. 1. Multi-resolution representation of the function r(u) = max{r ≥ 0 | ru ∈
I∪{0}} used to derive feature vectors from Fourier coefficients for spherical harmonics.

3 Functions on the sphere for 3D shape feature vectors

In this section we describe the feature vectors used in our comparative study. As
3D models we take triangle meshes consisting of triangles {T1, . . . , Tm}, Ti ⊂ R

3,
given by vertices (geometry) {p1, . . . ,pn},pi = (xi, yi, zi) ∈ R

3 and an index
table with three vertices per triangle (topology). Then our object is I =

⋃m
i=1 Ti,

the point set of all triangles. We may assume that our models are normalized by
a modified PCA as outlined in Section 1. For details we refer to [11].

Some feature vectors can be considered as samples of a function on the sphere
S2. For example, for a (normalized) model I define

r : S2 → R

u �→ max{r ≥ 0 | ru ∈ I ∪ {0}}

where 0 is the origin. This function r(u) measures the extent of the object in
directions given by u ∈ S2. In [10] we took a number of samples r(u) as a
feature vector, which, however, is sensitive to small perturbations of the model.
In this paper we improve the robustness of the feature vector by sampling the
spherical function r(u) at many points but characterizing the map by just a few
parameters, using either spherical harmonics or moments. Other definitions of
features as functions on the sphere are possible. For example, one may consider
a rendered perspective projection of the object on an enclosing sphere, see [5].

The Fourier transform on the sphere uses the spherical harmonic func-
tions Y m

l to represent any spherical function r ∈ L2(S2) as r =∑
l≥0

∑
|m|≤l r̂(l, m)Y m

l . Here r̂(l, m) denotes a Fourier coefficient and the spher-
ical harmonic basis functions are certain products of Legendre functions and
complex exponentials. The (complex) Fourier coefficients can be efficiently
computed by a spherical FFT algorithm applied to samples taken at points
uij = (xij , yij , zij) = (cos ϕi sin θj , sinϕi sin θj , cos θj), where ϕi = 2iπ/n,
θj = (2j + 1)π/2n, i, j = 0, . . . , n − 1, and n is chosen sufficiently large. We
cannot give more details here and refer to the survey and software in [4]. One
may use the spherical harmonic coefficients to reconstruct an approximation of
the underlying object at different levels, see Figure 1. An example output of the
absolute values of the spherical Fourier coefficients (up to l = 3) is given here:

1.161329
0.063596 0.162562 0.063596

0.213232 0.037139 0.373217 0.037139 0.213232
0.016578 0.008051 0.009936 0.008301 0.009936 0.008051 0.016578
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Fig. 2. Precision vs. recall results for varying dimensions in spherical harmonics (left)
and moments (right). Results were averaged over all retrieval results in the class of
airplane models.

Feature vectors can be extracted from the first l + 1 rows of coefficients. This
implies that such a feature vector contains all feature vectors of the same type
of smaller dimension, thereby providing an embedded multi-resolution approach
for 3D shape feature vectors. We have chosen to use only the absolute values
as components of our feature vectors. Because of the symmetry in the rows of
the coefficients (for real functions on the sphere coefficients in rows are pairwise
complex conjugate) we therefore obtain feature vectors of dimension

∑l+1
1 k =

(l + 1)(l + 2)/2 for l = 0, 1, 2, . . ., i.e., 1, 3, 6, 10, 15, an so forth.
An alternative to the representation of a spherical function by spherical har-

monics is given by moments. To be consistent we sample the spherical function
r(u) at the same n2 points uij , i, j = 0, . . . , n − 1, as for the representation by
spherical harmonics. As moments we define

Mq,r,s =
n−1∑

i,j=0

r(uij) ∆sij xq
ij yr

ij zs
ij

for q, r, s = 0, 1, 2, . . . The factor ∆sij represents the surface area on the sphere
corresponding to the sample point uij = (cos ϕi sin θj , sinϕi sin θj , cos θj) and
compensates for the nonuniform sampling. For example, when n = 128 we have
∆sij = π

64 (cos(θi− π
256 )−cos(θi + π

256 )). For the feature vector we ignore M0,0,0,
and use 1 ≤ q + r + s ≤ m. As m grows from 2 to 6 the dimension of the corre-
sponding feature vectors increases from 9 to 19, 34, 55, and 83 (the dimension
is (m + 1)(m + 2)(m + 3)/6 − 1).

4 Results and conclusion

For our tests we collected a data base of 1829 models which we manually classi-
fied. For example, we obtained 52 models of cars, 68 airplanes, 26 bottles, and
28 swords. On average a model contains 5667 vertices and 10505 triangles. We
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Fig. 3. Precision vs. recall results for four classes (airplanes, cars, bottles, and swords)
using three methods, the ray-based feature vectors with spherical harmonics (Rays-
SH), with moments (Ray-moments), and a method based on statistical moments [8]
(Moments). The dimensions of the feature vectors are shown in the legends in brackets.

used n2 = 1282 = 16384 samples r(uij) of the spherical function for the com-
putation of the spherical harmonics and the moments. For the nearest neighbor
computation in feature vector space we used the l1-distance.

The retrieval performance can be expressed in so-called precision-recall dia-
grams. Briefly, precision is the proportion of retrieved models that are relevant
(i.e., in the correct class) and recall is the proportion of the relevant models ac-
tually retrieved. By increasing the number of nearest neighbors in the retrieval
the recall value increases while the precision typically decreases. By examining
the precision-recall diagrams for different queries (and classes) we obtained a
measure of the retrieval performance. For our tests we selected one class of ob-
jects (e.g., cars) and used each of the objects in the class as a query model.
The precision-recall values for these experiments were averaged and yielded one
curve in the corresponding diagram.

In our first test series we studied the dependency of the retrieval performance
on the dimensionality of the feature vectors. The class of objects was given by
the 68 airplanes. We conclude that both types of ray-based feature vectors yield
a better performance when the dimension is increased.
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In our second test series we compared the performance of the feature vectors
for retrieving 3D models in four classes. In all cases the representation of the
ray-based feature vector using spherical harmonics performed best, see Figure 3.

The graphs also include results for feature vectors based on statistical mo-
ments from [8], defined as Mq,r,s =

∑
i Si xq

i yr
i zs

i where the point (xi, yi, zi) is
the centroid of the i-th triangle and Si is the area of that triangle. Due to the
normalization the moments with q + r + s ≤ 1 are zero and can be omitted in
the moment feature vectors. The retrieval performance was tested for several
dimensions, and we found that the performance decreased for dimensions larger
than 31. As shown in Figure 3 the retrieval performance of these feature vectors
was inferior to that produced by the ray-based feature vectors.

To conclude we summarize that the Fast Fourier Transform on the sphere
with spherical harmonics provides a natural approach for generating embedded
multi-resolution 3D shape feature vectors. In tests using a ray-based feature
vector the representation with spherical harmonics performed better than a rep-
resentation using moments.
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