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Abstract. In this paper we propose a bracket algebra based elimination method
for automated generation of readable proofs for theorems in incidence geometry. This
method is based on two techniques, the first being some heuristic elimination rules which
improve the performance of the area method of Chou et al. (1994) without introduc-
ing signed length ratios, the second being a simplification technique called contraction,
which reduces the size of bracket polynomials. More than twenty theorems in incidence
geometry have been proved, for which short proofs are produced swiftly. An interesting
phenomenon is that a proof composed of polynomials of at most two terms can always
be found for any of these theorems, similar to that by the final biquadratic polynomial
method of Richter-Gebert (1995).

1. Introduction

According to Richter-Gebert (1995), brackets are the fundamental invariants under pro-
jective transformations. From an invariant theoretic point of view, the ring of brackets forms
a suitable algebraic setting to deal with projective configurations. The bracket algebra is the
most general structure in which projective properties can be expressed in a coordinate-free
way.

Let V"' be an (n + 1)-dimensional vector space. For a sequence of n + 1 vectors
Ay, ..., A1 € V"L the corresponding bracket is defined by

[Al s An—f—l} = det(A1 cee An+1). (1)

Let Aj,..., A, be indeterminates (vectors) in V"' m > n. The bracket algebra generated
by them is the polynomial algebra R([A;, ---A;, . ]|l < i; < m) generated by all possible
brackets of the indeterminates modulo the ideal generated by the following Grassmann-
Pliicker polynomials:

n—+2
gP = {ki_fl(—l)k[Am T AinAjk][Ajl T Ajk—lAjk+1 o 'Ajn+2] (2)

] 1<i] < <ip<m, 1§j1<--~<jn+2§m}.

On the level of bracket algebra, a geometric theorem prover can be implemented using
the straightening algorithm (Young, 1928; Doubilet et al., 1974). The main idea behind this
approach is to rewrite the projective incidence statement as a term in Grassmann algebra
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which vanishes if and only if the statement is true. After this, the Grassmann algebra term
is expanded into a bracket one. If this term vanishes modulo the ideal generated by the
Grassmann-Pliicker polynomials, then the theorem is proved. It is proved by Sturmfels and
White (1989) that the straightening algorithm can be considered as a special kind of Grébner
bases algorithm for bracket polynomials. The algorithm works in full generality, but requires
over-exponential CPU time.

The prover proposed by Richter-Gebert (1995) is based on the final biquadratic poly-
nomial method (see also Bokowski and Richter-Gebert, 1990; Sturmfels, 1989). A proof
produced by this prover is extremely short and geometrically meaningful. In particular,
every polynomial occurred in the proof is composed of two terms. Although the algorithm
does not work in general, it could manage almost all projective incidence theorems.

Another prover is proposed by Chou et al. (1994) and is based on the area method. This
is an elimination method whose rules are derived from properties of signed areas, or brackets
in 2-d projective space. This method is complete when area coordinates are used. When the
coordinates are avoided, proofs produced by the prover are often short and readable.

Our work is inspired both by the area method and by the final polynomial method. First,
we propose a set of heuristic elimination rules to improve the performance of the area method
by producing shorter proofs. Second, we propose a new technique for bracket polynomial
simplification, a special case of which is used as the foundation for setting up biquadratic
equations in the final polynomial method. We build up a prover based on the two techniques.

The performance of the prover is very satisfactory: more than twenty incidence theorems
have been tested, which covers all the 2-d incidence theorems in (Chou et al., 1994) and
(Richter-Gebert, 1995). For every theorem, a proof composed of polynomials of at most two
terms can be produced very fast. Furthermore, every proof finishes before any free point
in the plane is eliminated, and in some cases, even before some semifree points on lines are
eliminated.

The prover is complete for 2-d incidence theorems of the following constructive types.

Constructive type 1. Take a free point in the plane.
Constructive type 2. Take a semifree point on a line.
Constructive type 3. Take the intersection of two lines.

2. Algorithm

The following is an algorithm which can produce a proof in the form of brackets for a
theorem whose conclusion is either an equality or an inequality.

Input.

e A set of constructions of points.
e An order for eliminations of points.

e A conclusion conc = 0 or conc # 0, where conc is a polynomial of brackets.

Preprocess. Change every collinearity constraint in the constructions into a rule for com-
puting brackets.
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Step 1. Eliminate constrained points and semifree points. First, assume that point
X is the intersection of lines AB and CD. To eliminate X from a bracket [XPQ)],
there are three formulas available:

[XPQ =XV (PAQ) =(AAB)V(CAD)V (PAQ)

[ABD][CPQ] — [ABC|[DPQ] (?7.1)
—{ [ACDI|[BPQ] — [BCD]|[APQ] (?7.2) (3)
[ABP][CDQ] — [ABQ][CDP] (?7.3)

Rule 1. (same as in the area method) If a bracket in (??) equals zero, use the
corresponding formula.

Rule 2. (heuristic) In general, use the formula which separates into different brack-
ets the pair of points in (A, B), (C,D), (P, Q) having the largest number of con-
current lines.

In the area method, (?7.2) is generally adopted.

Second, assume that point X is on line AB. Let A,B,C be linearly independent
vectors. To eliminate X from a bracket polynomial p, first contract p (see Step 2),
then for each [XPQ] in p, apply the following formula:

[ABC]XPQ] = [XBC][APQ] - [XAC][BPQ), (4)
which is a Grassmann-Pliicker relation in the case [ XAB] = 0.

Rule 3. (heuristic) In general, choose C to be the free point outside line AB that
has the largest number of occurrences in p. The nondegeneracy condition is
[ABC] # 0 if [ABC] occurs in the denominator of p.

Step 2. Simplification by contraction. For any vectors Ai,..., A5 in R?,
[A1A2A5][A3ALA5] + [A1A3A5][ALA2A5] = [A1ALA5][A3ALA5].
This is a Grassmann-Pliicker relation.

Let p be a bracket polynomial of two terms. If p is reduced to a single monomial by
the above identity, this reduction is called a contraction. It can be extended to any
bracket polynomial.

It can be proved that a polynomial is reduced to zero modulo the ideal generated by
the Grassmann-Pliicker polynomials if and only if when multiplied by some bracket
polynomial, it is reduced to zero through contractions. As a result, the outcome of the
contraction is always zero for conc = 0, and nonzero for conc # 0.

Output. The proving procedure and the nondegeneracy conditions.

Remark 1. The heuristic rules Rule 2 and Rule 3 can contribute to obtaining short
proofs. When searching for a proof composed of polynomials of at most two terms, these
rules can serve as guidelines for setting up precedence tables.

Remark 2. To improve the performance of the algorithm for conc = 0, after each
elimination we can delete the common bracket factors in conc. These factors are not nonde-
generacy conditions.
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3. Examples

Below is a collection of 23 examples and their machine generated proofs composed of
polynomials of at most two terms. The program is written in Maple V.4 and runs on an
IBM compatible Pentium 1I/366 with Microsoft Windows 98. The generation of each proof
is very fast. The nondegeneracy conditions are generated at the same time.

For theorems of equality type, common bracket factors (underlined) are found out in
each step and are deleted before the next step starts.

Example 1. [See also Chou et. al. (1994), Example 6.203]

Free points: 1, 2, 3, 4.

Intersections:
5=12N 34, 6 =13N24, 7=23N14,

8=23N56, 9=24N57, 0=34N6T7.

Conclusion: 8, 9, 0 are collinear.

Fig. 1. Example 1.

Proof:
Rules [890]
2 [347)[689]—[346][789]
[689] = [248][567) 9
= [248][347][567]—[247][346][578]
[789] = [247][578)
[248] = [236][245] 2 (567)[236][245][347]— [567][235][247][346
578] — [235][567] = [567](236][245][347]-[567][235][247][346]
[347) = [134)[234] T (234][134)[245][236] — [234][124][235] 346
247 — [124][234 = [234][134][245][236]-[234][124][235][346]
(236] = [123][234] 5 (134)[234)([123][245]— [124][235
46) — [134][234] = [134][234]([123][245]—[124][235])
[245] = —[124][234] 5,
[235] = —[123][234] o

Nondegeneracy condition: none.
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Example 2. [See also Kadison and Kromann (1996), Proposition 5.8]

Free points: 1, 2, 3, 4.

Intersections:
5=12N34, 6=13N24, 7=23N14,

8 =13N57, 9=67N48, 0=24N5T7.

Conclusion: 3, 9, 0 are collinear.

Fig. 2. Example 2.

Proof:
Rules [390]
. —[257][349]—[239][457]
[349] = —[348][467] 9
= [257][348][467]—[236][457][478]
[239] = [236][478]
[348) = —[134][357] 2 134][257][357][467)+[137][236][457]>
478] = —{17)[457] = —[134)[257][357)[467]+[137][236][457)
[257] = [124][235]
[467] = [146][234]
357] = [134][235] z [134][234](—[124][134][146][235]%2—[123][145]%[234][236])
[457] = [145][234]
[187] = —[123][134]
[146] = —[124][134) s [124]2[134]2[235]2—[123]?[145]%[234]?
[236] = [123][234]
[235] = —[123][234] 5 o
[145] = —[124][134] o

Nondegeneracy condition: none.

Example 3. [See also Pedoe (1963), p. 63]

Free points: 1, 2, 3, 4.

Intersections:
5=12N34, 6=13N24, 7=23N14,

8=13N57, 9=14N56, 0=34N67.
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Conclusion: 8, 9, 0 are collinear.

Fig. 3. Example 3.

Proof:
Rules (890]

9 |347](689)[346][789]
[689] =  [156][468] D (156|(347](468|+(148)(346]/567
789] = —[148][567] - eelariesasielze
[468] = —[134][567] B 134][567](~[156][347]—[157][346
a8 - —{sasT = [134][567](—[156][347]—[157][346])
[347] = [134][234] 7

= —[134][156][234]—[123][145][346]
[157] = [123][145]
[156] = —[124][135] S 134)234]([124][135)—[123][145
[346] = [134][234] - sy
[185] = —[123][134] 5 4
[145] = —[124][134] o

Nondegeneracy condition: none.

Example 4. [See also Chou et. al. (1994), Example 6.32]

Free points: 1, 2, 3, 4, 5.
Intersections:

6=12N34, 7T=13Nn24, 8=23N14, 9=56N78,
0=57N68, A=39N20, B=67N58.

Conclusion: 1, A, B are collinear.
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Fig. 4. Example 4.

Proof:
Rules [1AB]
E [17A][568]—[16A][578]

ATAL = TeliEso A 179][230][568]+[160][239][578

[16A] — —[160][239] = —[179][230][568]+[160][239][578]

280) = [23e]l5T8 O (578)[179][236][568]+ [578][168][239] 567
[160] = [168][567] - 7u[ ]I I ]Jru[ Il I ]
Arop = rsiser 2 [567)[568)([178](236]+[168][237

239] —  [237][568] = [567][568]([178][236]+[168][237])

s = s B 123)[147][236)+ [123][146][237

[168] = [123][146] = [123][147][236]+([123][146][237]

ar = sy Z 124][134][236]+([123][146][234

(237] —  [123][234] = —[124][134][236]+[123][146][234]

[236] = —[123][234] s

[146] = —[124][134] T

Nondegeneracy condition: none.

Example 5. [Pappus point theorem, see also Chou et. al. (1994), Example 6.22]

Free points: 1, 2, 3, 4, 5.
Intersections:

6=13N24, 7T=23N56, 8=25N34, 9=12N68,
0=79N24, A=39Nn67, B=15n4A, C=28N39.

Conclusion: 0, B, C are collinear.

61
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Fig. 5. Example 5.

Proof:
Rules [0BC]
< [280][39B]—[28B][390]
[39B] = —[15A][349] B
= _[15A][280][349]—[128][390][45A]
[28B] =  [128][45A]
[15A] = [167][359] A (350][167](280][349] — [359][128][390][467
45A] — [359[467] = —[359][167][280][349]-[359][128](390][467]
[280] = [248][279] 0 167][248][279][349]— [128][249][379][467
290 - [249]370) 2 [167][248)[279][349) ~[128][249] 379 [467]
[279] = —[127][268]
[349] [128][346] D (128](268]([127][167][248][346] — [124][137][268] 467
379 — —[137)[268] = [128][268]([127][167][248][346]—[124][137][268][467])
[249] = —[124][268]
[248] = [234][245] B 1234)[127)[167][245][346] - [234][124][137] [256] (467
208 — (234250 2 [284)127][167)[245][346] + 234)124][137)[256] 467]
[127] =  [123][256]
167] = —[156]236] T [123][236][256](—[156][245[346] [124][356][456
467 — —[236][456] = [123][236][256](—[156][245][346]—[124][356][456))
[137] =  [123][356]
[156] = —[124][135]
[346] =  [134][234] s
[456] =  [134][245] o
(356] [135][234]

Nondegeneracy condition: none.
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Example 6. [Pappus Theorem, see also Chou et. al. (1994), Example 6.20]

Free points: 1,2,3,4.

Semifree points: 5 on 12, 6 on 34.

Intersections: 7=23N14, 8 =35N16, 9 =45N 26.
Conclusion: 7, 8, 9 are collinear.

Fig. 6. Example 6.

Proof:
Rules [789]
2 [278][456]—[245][678]
[278] = [136][257]
= [136][257][456]—[167][245][356]
[678] [167][356]
[257] = [124][235] T [124][136][235)[456] — [123][146][245] 356
167 = [128][146] = [124][136][235][456]—[123][146][245][356]
[134][456] = —[146][345] 6 [136][146][345](_[124}[235““23”245])
[134][356] = —[136][345] [134]

Nondegeneracy condition: [134] # 0.

Example 7. [Desargues Theorem, see also Chou et. al. (1994), Example 6.24]
Free points: 1,2,3,4,5.
Semifree point: 6 on 13.

Intersections: 7=12N45, 8 =15N24, 9=38N56, 0=23MN49.
Conclusion: 6, 7, 0 are collinear.
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Fig. 7. Example 7.

Proof:
Rules [670]
2 [239][467]—[234][679)
[239] = —[238][356] 9
=  _[238][356][467]—[234][368][567]
[679] =  [368][567]
238] = —[125][234] B 1234][356]([125][467] [124][567
368 —  [124][356] = [234][356]([125][467]—[124][567])
[467] = [124][456] LA
[567] = [125][456] o

Nondegeneracy condition: none.

Example 8. [See also Chou et. al. (1994), Example 6.34]

Free points: 1, 2, 3.
Semifree points: 4 on 12, 5 on 12, 6 on 13, 7 on 23.
Intersections:

8=23N46, 9=23N56, 0=13N57, A=13N47, B=12N80.

Conclusion: 9, A, B are collinear.
Proof:



Theorem Proving in Incidence Geometry 65

Fig. 8. Example 8.

Rules [9AB]

B

= [120][89A]+[128][90A]
[89A] = [137][489] A 1120][137][489]+[128][139][470
0A] — [139[470] = [120][137][489]+[128][139][470]
120] = [123]i157) O 137][123][157][489]—[137][128][139][457
a70] — _[137][457] = [137][123][157][489]-[137][128][139][457]
[489] = —[236]458] D 123)157][236][458]  [123][128][356][457
130] —  [123]356] = —[123][157][236][458]—[123][128](356][457]
[458] = —[234][456] 2 [157)[234][236][456][123][246][356] 457
128] =  [123)[246] = [157][234][236][456]—[123][246][356][457]
[123][157] = —[127]135] | 7 [127]

= =—=(—[135][234][236][456]—[123][246][345][356])
[123][457] =  [127][345] [123]
[123][456] =  [126][345]

6
[123][356] =  [135][236] | = 0.
[123][246] = —[126][234]

Nondegeneracy condition: [123] # 0.

Example 9. [See also Chou et. al. (1994), Example 6.38|

Free points: 1, 2, 3, 4.

Semifree point: 5 on 12.

Intersections:
6=12N34, 7=13N24, 8=23N14, 9=13N45, 0=23N45,
A=14Nn35 B=24n35 C=12n89, D=12n70, E=12N0A.
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Conclusions: (1) 7, A, C are collinear; (2) 8, B, D are collinear; (3) 9, B, E are
collinear.

Fig. 9. Example 9.

Proof: (1)
Rules [TAC]
C  (189][27A]—[17A][289]
[27A] = [127][345] A [127][189][345)+ [135][147][289
[17A] = —[135][147] - (s
[189] = —[138][145] 2 _[345)[127][138][145]— [345][128][135][147
[289] = —[128][345] - smrisisms s
[138] = -—[123][134] B [123)[127][134][145)+ [123][124][135][147
[128] = —[123][124] - sl
[127) = [123][124] T [124)[134]([123][145]—[124][135
147 = —[124][134] - s e

= 0.
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(2)
Rules
[28B] —[235][248]
[18B] = —[128][345]
[170] =  [127][345]
[270] = —[237][245]
[248] = —[124][234]
[128] = —[123][124]
[127] = —[123][124]
[237] =  [123][234]
(3)
Rules
[29B] = —[235][249]
[19B] —[159][234]
[10A] —[135][140]
[20A] —[134][250]
[140] = —[145][234]
[250] —[235][245]
[249] = —[134][245]
[159] —[145][135]

Nondegeneracy condition: none.

o

[loe e ||t

=

Il &

lle (> I]es

lle

[8BD]
[170][28B]—[18B][270]

—[170][235][248]+[128][270][345]

—[345][127][235][248] —[345][128][237][245]

[124][127](234][235]+ [124][123][237][245]

[123][234] (—[124][235]+[123][245])

0.

[9BE]

[10A][29B]—[19B][20A]

—[10A][235][249]+[159][234][20A]

[135][140][235][249] —[134][159][234][250]

[234][235](—[135][145][249]+[134][159][245])

Example 10. [See also Chou et. al. (1994), Example 6.208]

Free points: 1, 2, 3, 4.

Semifree point:

Intersections:

6=12N34, 7=13N24,

5 on 12.

8 =13N45, 9=23N67,

0=24N19, A=34Nn19, B=23Nn80, C =49 30.

Conclusions: (1) 5, A, B are collinear; (2) 7, A, C are collinear.

67
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Fig. 10. Example 10.

Proof: (1)
Rules [5AB]
B |2s0]354]—[25A](380]
85A] —  [139][345] A
= [139][280][345]+[134][259][380]
[25A] = —[134][259]
(280] = [120](248] 9 120][139][248)[345) [124][134][259] 389]
[380] = —[124][389] = [29139]
[129] =  [123][267]
[139] =  [123][367] 9 ) -
389] _ _[238][367] = [267][367]([123]2[248][345]—[124][134][235][238])
[259] = —[235][267]
[248] = —[134][245] 8 -
28] — (123845 = [123][134][345](—[123][245]+[124][235])

= 0.
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(2)
Rules [TAC]
C
= [340][79A]+[390][47A]
[79A] = [179][349] A 179](349][340]+ [149][347][390
47A] = [149]347] = [179][349][340]+[149][347][390]
[340] = [149][234) O (149][179][234][349]+ [149][139][249] 347
890] = [139][249] = [149][179][234][349]+[149][139][249](347]
[179] = —[167][237]
[349] = —[234][367] D 1234)[367)([167][234][237] [123][267][347
249 = _[234][267] = [234][367]([167][234][237]-[123][267][347])
[139] =  [123][367]
[237] =  [123][234]
[e7] = -{124]1136] T (123][234](_[124][136][234] + [123][134] 246
847 =  [134][234] = [123][234](-[124][136][234]+[123][134][246])
[267] = —[123][246]
[136] = —[123][134] s
[246] = —[124][234] o

Nondegeneracy condition: none.

Example 11. [Nehring’s theorem, see also Chou et.al. (1994), Example 6.27]

Free points: 1, 2, 3, 4.
Semifree point: 5 on 12.
Intersections:

6=12N34, 7=13N24, 8=23N14, 9=13N58,
0=23N69, A=12N70, B=13N8A, C=23nN6B.

Conclusion: 5, 7, C are collinear.

69
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Fig. 11. Example 11.

Proof:
Rules [57C]
€ _[235)[67B]-[237][56B]
[67B] = [136][7T8A] B
= _[136][235][78A]—[13A][237][568]
[56B] = [13A][568]
[78A] = —[127]780] A (127](136][235][780] +[123][170][237] 568
13A] — _[128][170] = [127][136][235][780]+[123][170][237][568]
[780] = —[237]689] O 127)1237)(— [136)[235][689] - [123][369][568
170] =  [127]369] = [127][287)(—[136][235][689]+[123][369](568])
(689] = [138](568] 2 1136][568](—[138][235]—[123][358
869] — _[136]358] = [136][568](—[138][235]—[123][358])
[138] = —[123][134] s
[358] =  [134][235] o

Nondegeneracy condition: none.

Example 12. [See also Richter-Gebert (1995), Example 7]

Free points: 1, 2, 3, 4, 5,6, 7, 8, 9.
Semifree point: 0 on 19.

Intersections:
A=13Nn24, B =24N35, C =35n46, D =46nN57,
E =57N68, F=68N17, G =17nN28, H=28N13,

Ay =29N0H, B1=39nAA;, C;:=49nBB;, D; =59NnCC,,
E1=69NnDD;, F1=7T9NEE;, G;=89NFF;.

Conclusion: 0, G, G are collinear.
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Proof:

Rules
[SFF;] = —[79E|[SFE;]
[9FF;] = —[79F|[9EE,]
[BFE;] = —[6DD;][89F]
[OEE;] = —[69E|[9DDy]
[6DD;] = —[59C][6DC1]
[ODD;] = —[59D][9CC:]
[6DCi] = —[4BB;][69D]
[0CC1] = —[49C|[9BB4]
[4BB1] = —[39A][4BA;]
[9BB1] = —[39B][9AA,]
[ABA;] = —[20H][49B]
[9AA;] = —[29A][90H]
[20H] =  [123][280]
[90H] = —[128][390]
[90G] = [128][790]
[80G] [178][280]

Fig. 12.

2
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Example 12.

[0GG1]

[8FF1][90G]—[80G|[9FF,]

—[79E][8FE1][90G|+[79F]|[80G]|[9EE, |

[6DD;][79E][89F|[90G|—[69D][79F][80G]|[9DD; ]

—[59C][6DC |[79E][89F][90G] +[59D][69E][TIF][80G][9CC |

[4BB1][59C][69D][79E|[89F][90G]
—[49C][59D][69E|[79F|[9BB1][0GS]
—[39A][4BA][59C][69D][79E][89F|[90G]
+[39B][49C][59D][69E][79F][S0G][9A A ]
[20H][39A][49B][59C][69D][79E] [89F][90G]
—[29A][39B][49C][59D)][69E|[79F][80G][90H]
[123][280][39A][49B][59C][69D] [79E|[89F][90G]

+[128][29A][390][39B][49C][59D][69E][79F]|[80G)]

[128][280][123][39A][49B][59C][69D][790][79E][89F]

+[128][280][178][29A][390][39B][49C][59D]|[69E] [79F]
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[89F] = —[178][689] F
= —[178][123][39A][49B]|[59C][689][69D][790][79E]
[79F] = —[179][678] —
—[178][179][29A][390][39B][49C][59D] [678] [69E]
[T9E] =  [579][678] E
= —[678][689][123][39A][49B][579][59C][69D][790]
[69E] = —[567][689]
+[678][689][179][29A][390][39B][49C][567][59D]
[69D] =  [469][567] D
= —[567][579][123][39A][469][49B][59C][790]
[59D] = —[456][579)
—[567][579][179][29A][390][39B][456][49C]
[59C] =  [359][456] C
= _[456][469][123][359][39A][49B][790]
[49C] = —[345][469] —_—
+[456][469][179][29A][345][390][39B]
[49B] = [249][345] B 345)359)(—[123](249][39.A][790]— [179)[234][29A][390
30B] — _[234][359) = [345][359](—[123][249][39A][790] - [179][234][29.A][390])
[39A] = [139][234] A [123)[234][249)(—[139][790)+ [179][390
20A] = _[123][249] = [123][234][249](—[139][790]+[179][390])

= 0.

Nondegeneracy condition: none.

Example 13. [Saam’s theorem, see also Richter-Gebert (1995), Example 6]

Free points: 1, 2, 3, 4, 5, 6.

Semifree point: 7 on 12.

Intersections:
8=13N24, 9=23N14, 0=15N46,
A=35n16, B=13n67, C=16N90,
D=15Nn8A, E=12NnBC, F=57N14.

Conclusion: D, E, F are collinear.

Fig. 13. Example 13.
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Proof:
Rules [DEF]

Y 145)7DE|-[147]5DE]
[TDE] = —[12D][7BC] E

= _[12D][145][7BC]-[147][1BC][25D]
[DE] = [1BC|[25D]
12Dl = [125][8A) D 125][145][18A][7BC]+[125][147][1BC][58 A
(25D] — —[125][58A] = —[125][145][18A][7BC]+[125][147][1BC][58A]
[7TBC] = —[17B][690)] c

= [145][17B][18A][690]—[147][16B][190][58A]
[1BC] = —[16B][190]
78] = ~[37[167] B 167)][137][145][18A][690]+[167][136][147][190][58 A
16B] = —[136][167] = —[167][137][145][18A][690]+[167][136][147][190][58A]
18A] = [asies] A 135][137][145][168][690]+[136][147][156][190][358
(58A] — [156][358] = —[135][137][145][168][690]+[136][147][156][190][358]
[690] = [156][468] 3 156][135][137][145][168][469]—[156][136][146][147][159][358
190] — —[146][159] = —[156][135][137][145][168][469]—[156][136][146][147][159][358]
[469] = [146][254] 2 |145][146)(~ [135][137][168][234] [123][136][147] 358
(159] — [123][145] = [145][146](—[135][137][168][234]—[123][136][147][358])
[168] = —[124][136] B 135][136][234)([124][137]—[123][147
(358] —  [135][234] = [135][136][234]([124][137]-[123][147])

= o
Nondegeneracy condition: none.

Example 14. [See also Chou et. al. (1994), Example 6.190] Two doubly perspective
triangles are also triply perspective.

Free points: 1, 2, 3, 4, 5.
Intersections: 6 =12N34, 7=24N15, 8 =13N45, 9=156nN37.
Conclusion: 2, 8, 9 are collinear.

Fig. 14. FExample 14.
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Proof:
Rules [289]
2 268[357]—[258][367]
[268] = —[145](236] B [145)[236][357]+[135][245][367
258 — _[135][245] = —[145][236][357]+[135][245][367]
[357] = [135][245] T,
[367] = [145][236] 7

Nondegeneracy condition: none.

Example 15. [See also Chou et. al. (1994), Example 6.26] In a hexagon whose vertices are
1, 2, 3, 4, 5, 9, if both 39, 12, 45 and 19, 34, 25 are concurrent, then 14, 59, 23 are
concurrent.

Free points: 1,2,3,4,5.
Intersections: 6 =23 N14, 7=12N45, 8=34N25, 9=37N18.
Conclusion: 5, 6, 9 are collinear.

Fig. 15. Example 15.

Proof:
Rules [569]
2 [178][356]—[138][567]

(78] = [157][234] 2 (157)[234][356] + [134][235][567
138 — (134235 = [157][234][356][134][235](567]
[157] = —[125][145] T |125[145][234)[356] - [125][134][235][456
567 —  [125)456 = —[125][145](234][356]+[125][134](235](456]
(356] — [134]235] s
[456] = [145][234] o

Nondegeneracy condition: none.

Example 16. [Permutation Theorem, see also Richter-Gebert (1995), Example 3] If 6, 7,
8, 9 are collinear, then there exits a projectivity between (8,9,7,6) and (6,7,9,8).
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Free points: 1, 2, 3, 4.
Semifree point: 5 on 23.
Intersections:

6=12N34, 7=13N24, 8=15N67, 9=45N67, 0=23N48.

Conclusion: 1, 9, 0 are collinear.

Fig. 16. FExample 16.

Proof:
Rules [190]

O 189][234)—[149][238]
[189] = [148][567] 9

= [148][234][567]—[145][238][467]
[149] = [145][467]
[148] = [145]267] 2 145)(567)([167](234] + [123][467
238 — _[123][567] = [145][567]([167][234]+[123][467])
167] = —[124]136] T 124][136][234)+ [123][134][246
467 —  [134]246] = —[124][136][234]+([123][134][246]
[136] = —[123][134] 6
[246] = —[124][234] o

Nondegeneracy condition: none.

Example 17. [Harmonic points, see also Chou et. al. (1994), Example 6.236, and Richter-
Gebert (1995), Example 4] If 6, 7, 8, B is a harmonic quadruple of points, then B is uniquely
determined by 6, 7, 8.

Free points: 1, 2, 3, 4, 5.
Semifree point: 9 on 58.

Intersections:
6=12N34, 7=23N14, 8 =67N13,

0=79N56, A=69N57, B=67nN24.

Conclusion: 0, A, B are collinear.
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Fig. 17. Example 17.

Proof:
Rules [0DAB]

B [246][70A]—[247][60A]
[T0A] = —[570][679] A

= _[246][570][679]—[247][567][690]
[60A] =  [567][690]
570 = [567][579] O (567](679](—[246][579] — [247][569
690] — [569679] = [567][679](—[246][579]—[247][569)])
158][579] = [159][578] 5 @(—[246}[578]—[247][568])
[158][569] = [159][568] [158]
[578] = [137][567] 8

=  _[567][137][246]—[567][136][247]
[568] = [136][567] _— —
[137] = —[123][134] 7

= [123][134][246]—[124][136][234]
[247] =  [124][234]
[246] = —[124][234] s
[136] = —[123][134] o

Nondegeneracy condition: [158] # 0.

Example 18. [See also Chou et. al. (1994), Example 6.237, and Richter-Gebert (1995),
Example 5] If the intersections of five correponding sides of two complete quadrilaterals are
on the same line [, then the remaining sides also meet in .

Free points: 1, 2, 3, 4, 5, 6.

Semifree point: 7 on 12.

Intersections:

8=23N56, 9=13N78, 0=14N78, A =24NT78,
B=34Nn78, C=57N69, D=5AN6B.

Conclusion: 0, C, D are collinear.
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Fig. 18. Example 18.

Proof:
Rules [0CD]
D s0c)6AB]-[56B]0AC]
[500] - [569] [570] 9 569|[570][6 AB|+[56B|[579][60A
[0AC] = —[579][60A] = [569][570][6AB]+[56B][579][60A]
[GAB} B _[34A][678] B 34A][569][570][678]+[348][567]|[579][60A
som —  massen | 13AJISGOISTO678]+(348)(567](579][60A]
BaA] = —l234llaT) A 678][234][478][569][570]—[678][240][348][567][579
[60A] = —[240](678] = [678][234][478][569][570] - [678][240][348][567][579]
oT0] = 4TS > 478][147][234][569][578]+[478][124][348][567]|[579
[240] = —[124][478] = —[478](147][234][569][578]+[478][124][348][567][579)]
so9) = [asiiveT] 2 567)[578)(—[138][147][234] — [124][137][348
(579] — —[137][578] = [567][578](—[138][147][234]—[124][137][348])
198 = [123][356] L1 234|[356 123](147]+[124|(137
(348] = —[234](356] = [234][356](—[123][147]+[124][137))

= 0.

Nondegeneracy condition: none.

Example 19. [Pascal’s theorem, see also Chou et al. (1994), Example 6.390]

Free points: 1,2,3,4,5.
Semifree point: 6 on 12.

Intersections:
7=34N15 8=46Nn59, 2=16nN39,

A=36Nn15, B=45Nn69, 0=34N19.
Conclusion: If 2,7, 8 are collinear, so are 0, A, B.
Reformulation of the theorem:

Free points: 1, 2, 3, 4, 5.
Semifree point: 6 on 12.

7
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Intersections:
7=15N34, 8 =27N46, 9 =58N23,

0=19Nn34, A=36N15 B =69N45.

Conclusion: 0, A, B are collinear.

Fig. 19. Example 19.

Proof:
Rules [0AB]
B 1456][90A] - [459](60A]
[90A] = —[136][590] A |136[456][590]+[156]360][459
60A] = —[156][360] - eeleelmonseeoli
[590] = —[159][349] 2 [136]159](349][456] — [139][156][346][459
[360] = —[139][346] - (ol isslisesaeiee
[159] =  [158][235]
[849] =  [234][358] D 1235)(358)([136][158][234] [456] - [123][156][346][458
[459] =  [235][458] - eelismssaashea ey
[189] = —[123][358]
[158] = [125][467] 2 [456][125][136][234][467]+ [456][123][156][247][346
ussl _ (24756 = [456][125][136][234][467]+[456][123][156][247][346]
[467] = —[145][346) T [145)[234)[346](— [125][136]+ [123][156
pa7) = [145][234] - e

= o
Nondegeneracy condition in the proof of the reformulated theorem: none.

Example 20. [See also Chou et. al. (1994), Example 6.28]

Free points: 1, 2, 3, 4, 5, 6.
Semifree points: 7 on 12, 8 on 13.

Intersections:
9=14Nn56, 0=15Nn46, A =37N28,

B=34Nn89, C=25n70, D=58n30.
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Fig. 20. Example 20.

Conclusion: A, C, D are collinear.

Proof:
Rules [ACD)]
D 380]54C)-[350]8AC]
[5AC] = —[25A][570 C
= —[25A][380][570]—[270][350][58A]
[BAC] =  [270][58A]
254] = —[237][258] A 258][237][380][570]—[258][270][350][378
58A] —  [258]378] = [258][237][380][570]—[258][270][350](378]
[380] = —[146][358]
570l = [157][456] 2 146](456]|(157](237]|358|+(146]|(456](135][257||378
350] —  [135][456] = —[146][456][157][237][358]+[146][456][135][257][378]
[270] = —[146][257]
[135][378] = [137][358] 2 [358](—[157](237]+([257][137])

= 0.

Nondegeneracy condition: [135] # 0.

Example 21. [See also Chou et. al. (1994), Example 6.33]

Free points: 3, 4, 6, 7.

Intersections: 1 =36MN47, 2=46N37, 8 =67N 34.

Semifree points: 9 on 18, 0 on 12.

Intersections: A =28N190, B=36N7A, C=67Nn39, 5=37N60.
Conclusion: B, C, 5 are collinear.

Reformulation of the theorem:

Free points: 1, 2, 3, 4.
Semifree points: 5 on 23, 9 on 12.
Intersections:

6=13N24, 7=23N14, 8=34N67, 0=56N18,
A=28Nn90, B=7AN13, C=39N6T7.

79
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Conclusion: 5, B, C are collinear.

Fig. 21. Example 21.

Proof:
Rules [5BC]
€ (379]56B]—[369][57B]
[56B] = —[135][67A] B
= _[135][379][67A]—[137][369][57A]
[57B] =  [137][57A]
[67A] = —[267][890] A
= [135][267][379][890]—[137][290][369][578]
[57A] =  [290]578]
[890] = [189][568] 9 135)[189][267][379][568]— [137][156][289] 369] 578
200] — [156][289] = [135][189][267][379][568]—[137][156][289][369][578]
[123][379] =  [137][239]
[123][189] = [128][139] o9 [128][137][139][239]
n2j36] — —3ol[236] | 237 ([135][267][568]+[156][236][578])
[123][289] =  [128][239] o
[568] = —[346][567] 2 567)[135][267][346] [567][156][236] 347
578 = —[347)[567] = —[567][135][267][346][567][156][236][347]
[267] = [124][236] L _236)[124][135][346]— [236][134] [156] 234
serl — sa254 L —(286](124135] 346)[286][134[156][234]
[346] =  [134][234] s
[156] = —[124][135] o

Nondegeneracy condition in the proof of the reformulated theorem: [123] # 0.

Example 22. [Non-realizable 103-configuration, see also Richter-Gebert (1995), Example
9]

Free points: 1, 2, 3, 4, 5.

Semifree point: 6 on 12.

Intersections: 7=23N14, 8 =15N46, 9=25N36, 0=34N5T7.

Conclusion: 8, 9, 0 are not collinear.
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Fig. 22. Example 22.

Proof:
Rules [890]
° [357][489]—[389][457]
[489] = [256](348] D 1256)[348][357] - [235][368] [457
ss9] — _[235]368] = [256](348][357]+[235][368](457]
[348] - = [145][346] B 346][145)[256][357) [346][156][235] (457
368] — _[156][346] = [346][145][256][357]-[346][156][235][457]
357 = [134][235] T [145)[235][346]([134][256]— [156][234
457 = [145][234] = [145][235][346]([134][256]—[156][234])
[123][256] = [125][236] 6 [145][235}[346][125]([134”236}_[136”234])
[123][156] = [125][136] [123]

= [125][145][235][346]>.

Nondegeneracy conditions: [125],[145],[235],[346] # 0.

Example 23. [Fano’s axiom, see also Kadison and Kromann (1996), p. 46, and O’hara and
Ward (1936), p. 66 ] There is no complete quadrilateral whose three diagonal points are
collinear.

Free points: 1,2,3,4.
Intersections: 5 =12N34, 6 =23N14, 7=13N24.
Conclusion : 5, 6, 7 are not collinear.

Proof:
Rules [567]
z [124][356]+[156][234]
[356] = [134][235] 8 |124)134)[235)+ [123][145][234
1s6] — [123][145] = [124][134][235]+[123][145][234]
[235] = —[123][234] 5
= —2[123][124][134][234].
[145] = —[124][134]

Nondegeneracy conditions: [123],[124],[134], [234] # 0.
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Fig. 23. Example 23.
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