Skip to main content

Higher-Order Intuitionistic Formalization and Proofs in Hilbert’s Elementary Geometry

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2061))

Abstract

We propose the basis of a higher-order logical framework to axiomatize and build proofs in Hilbert’s elementary geometry in which intuitionistic aspects are emphasized. More precisely, we use the Calculus of inductive constructions and the system Coq to specify geometric concepts and to study and interactively handle proofs for the first two groups of Hilbert’s axiomatics. It is the first step to a formalization well adapted to the definition of primitive operations that are used in many different geometric algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balbiani, P., Dugat, V., Fariñas del Cerro, L., Lopez, A.: Eléments de Géométrie Mécanique. Hermèes (1994).

    Google Scholar 

  2. Barras, B. et al.: The Coq Proof Assistant Reference Manual (Version 6.3.1). INRIA (1999), http://pauillac.inria.fr/coq/doc/main.html

  3. Chou, S.-C.: Mechanical Geometry Theorem Proving. D. Reidel (1988).

    Google Scholar 

  4. Coquand, T., Huet, G.: Constructions: A higher order proof system for mechanizing mathematics. EUROCAL’ 85, Linz, LNCS 203, Springer-Verlag (1985), 151–184.

    Google Scholar 

  5. Coquand, T., Paulin, C.: Inductively defined types. P. Martin-Löf and G. Mints, editors, COLOG-88, LNCS 417, Springer-Verlag (1990), 50–66.

    Google Scholar 

  6. Dufourd, J.-F., Mathis, P., Schreck, P.: Geometric construction by assembling solved subfigures. Artificial Intelligence 99 (1998), 73–119.

    Article  MATH  MathSciNet  Google Scholar 

  7. Dufourd, J.-F., Puitg, F.: Functional specification and prototyping with combinatorial maps. Computational Geometry-Theory and Applications 16 (2000), 129–156.

    MATH  MathSciNet  Google Scholar 

  8. Essert-Villard, C., Schreck, P., Dufourd, J.-F.: Sketch-based pruning of a solution space within a formal geometric constraint solver. Submitted (2000).

    Google Scholar 

  9. Gelernter, H.: Realization of a geometry theorem proving machine. Computers and Thought, Mac Graw Hill (1963), 134–163.

    Google Scholar 

  10. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in Theoretical Computer Science, Cambridge University Press (1989).

    Google Scholar 

  11. Heyting, A.: Intuitionism-An Introduction. North Holland (1956).

    Google Scholar 

  12. Heyting, A.: Axioms for intuitionistic plane affine geometry. Proceedings of an International Symposium on the Axiomatic Method with Special Reference to Geometry and Physics (1959), 160–173.

    Google Scholar 

  13. Hilbert, D.: Fondations de la Géométrie-Edition critique préparée par P. Rossier, CNRS, Dunod (1971).

    Google Scholar 

  14. Knuth, D.E.: Axioms and Hulls. LNCS 606, Springer-Verlag (1992).

    MATH  Google Scholar 

  15. Paulin-Mohring, C.: Inductive Definition in the System Coq-Rules and Properties. Typed Lambda-Calculi and Applications, LNCS 664, Springer-Verlag (1993).

    Chapter  Google Scholar 

  16. Toussaint, G.: A new look at Euclid’s second proposition. Technical Report No SOCS 90.21 (1990).

    Google Scholar 

  17. von Plato, J.: The axioms of constructive geometry. Annals of Pure and Applied Logic 76 (1995), 169–200.

    Article  MATH  MathSciNet  Google Scholar 

  18. von Plato, J.: Organization and development of a constructive axiomatization. LNCS 1158, Springer-Verlag (1996), 288–296.

    Google Scholar 

  19. von Plato, J.: A constructive theory of ordered affine geometry. Indagationes Mathematicae N.S. 9(4) (1998), 549–562.

    Article  MATH  MathSciNet  Google Scholar 

  20. Puitg, F., Dufourd J.-F.: Formal program development in geometric modelling. Current Trends in Applied Formal Methods, Boppard, LNCS 1641, Springer-Verlag (1998), 62–76.

    Chapter  Google Scholar 

  21. Puitg, F., Dufourd J.-F.: Formal specifications and theorem proving breakthroughs in geometric modelling. Theorem Proving in Higher Order Logics, Canberra, LNCS 1479, Springer-Verlag (1998), 401–427.

    Chapter  Google Scholar 

  22. Puitg, F., Dufourd J.-F.: Formalizing mathematics in higher logic: A case study in geometric modelling. Theoretical Computer Science 234 (M. Nivat, ed.), Elsevier Science (2000), 1–57.

    Google Scholar 

  23. Wu, W.-T.: Mechanical Theorem Proving in Geometries. Springer-Verlag (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dehlinger, C., Dufourd, JF., Schreck, P. (2001). Higher-Order Intuitionistic Formalization and Proofs in Hilbert’s Elementary Geometry. In: Richter-Gebert, J., Wang, D. (eds) Automated Deduction in Geometry. ADG 2000. Lecture Notes in Computer Science(), vol 2061. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45410-1_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-45410-1_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42598-4

  • Online ISBN: 978-3-540-45410-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics