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Abstract. The Stratified Foundations are a restriction of naive set the-
ory where the comprehension scheme is restricted to stratifiable proposi-
tions. It is known that this theory is consistent and that proofs strongly
normalize in this theory. Deduction modulo is a formulation of first-order
logic with a general notion of cut. It is known that proofs normalize
in a theory modulo if it has some kind of many-valued model called a
pre-model. We show in this paper that the Stratified Foundations can be
presented in deduction modulo and that the method used in the original
normalization proof can be adapted to construct a pre-model for this
theory.

The Stratified Foundations are a restriction of naive set theory where the
comprehension scheme is restricted to stratifiable propositions. This theory is
consistent [8] while naive set theory is not and the consistency of the Stratified
Foundations together with the extensionality axiom - the so-called New Foun-
dations - is open.

The Stratified Foundations extend simple type theory and, like in simple
type theory, proofs strongly normalize in The Stratified Foundations [2]. These
two normalization proofs, like many, have some parts in common, for instance
they both use Girard’s reducibility candidates. This motivates the investigation
of general normalization theorems that have normalization theorems for specific
theories as consequences. The normalization theorem for deduction modulo [7] is
an example of such a general theorem. It concerns theories expressed in deduction
modulo [5] that are first-order theories with a general notion of cut. According to
this theorem, proofs normalize in a theory in deduction modulo if this theory has
some kind of many-valued model called a pre-model. For instance, simple type
theory can be expressed in deduction modulo [5,6] and it has a pre-model [7,6]
and hence it has the normalization property. The normalization proof obtained
this way is modular: all the lemmas specific to type theory are concentrated
in the pre-model construction while the theorem that the existence of a pre-
model implies normalization is generic and can be used for any other theory in
deduction modulo.

The goal of this paper is to show that the Stratified Foundations also can
be presented in deduction modulo and that the method used in the original
normalization proof can be adapted to construct a pre-model for this theory. The
normalization proof obtained this way is simpler than the original one because
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it simply uses the fact that proofs normalize in the Stratified Foundations if this
theory has a pre-model, while a variant of this proposition needs to be proved
in the original proof.

It is worth noticing that the original normalization proof for the Stratified
Foundations is already in two steps, where the first is the construction of a so-
called normalization model and the second is a proof that proofs normalize in
the Stratified Foundations if there is such a normalization model. Normaliza-
tion models are, more or less, pre-models of the Stratified Foundations. So, we
show that the notion of normalization model, that is specific to the Stratified
Foundations, is an instance of a more general notion that can be defined for
all theories modulo, and that the lemma that the existence of a normalization
model implies normalization for the Stratified Foundations is an instance of a
more general theorem that holds for all theories modulo.

The normalization proof obtained this way differs also from the original one in
other respects. First, to remain in first-order logic, we do not use a presentation of
the Stratified Foundations with a binder, but one with combinators. To express
the Stratified Foundations with a binder in first-order logic, we could use de
Bruijn indices and explicit substitutions along the lines of [6]. The pre-model
construction below should generalize easily to such a presentation. Second, our
cuts are cuts modulo, while the original proof uses Prawitz’ folding-unfolding
cuts. It is shown in [4] that the normalization theorems are equivalent for the
two notions of cuts, but that the notion of cut modulo is more general that the
notion of folding-unfolding cut. Third, we use untyped reducibility candidates
and not typed ones as in the original proof. This quite simplifies the technical
details.

A last benefit of expressing the Stratified Foundations in deduction modulo
is that we can use the method developed in [5] to organize proof search. The
method obtained this way, that is an analog of higher-order resolution for the
Stratified Foundations, is much more efficient than usual first-order proof search
methods with the comprehension axioms, although it remains complete as the
Stratified Foundations have the normalization property.

1 Deduction modulo

1.1 Identifying propositions

In deduction modulo, the notions of language, term and proposition are that of
first-order logic. But, a theory is formed with a set of axioms Γ and a congru-
ence ≡ defined on propositions. Such a congruence may be defined by a rewrite
systems on terms and on propositions (as propositions contain binders - quan-
tifiers -, these rewrite systems are in fact combinatory reduction systems [9]).
Then, the deduction rules take this congruence into account. For instance, the
modus ponens is not stated as usual

A⇒ B A
B



as the first premise need not be exactly A ⇒ B but may be only congruent to
this proposition, hence it is stated

C A
if C ≡ A⇒ B

B

axiom if A ∈ Γ and A ≡ B
Γ ⊢≡ B

Γ,A ⊢≡ B
⇒-intro if C ≡ (A ⇒ B)

Γ ⊢≡ C

Γ ⊢≡ C Γ ⊢≡ A
⇒-elim if C ≡ (A ⇒ B)

Γ ⊢≡ B

Γ ⊢≡ A Γ ⊢≡ B
∧-intro if C ≡ (A ∧B)

Γ ⊢≡ C

Γ ⊢≡ C
∧-elim if C ≡ (A ∧ B)

Γ ⊢≡ A

Γ ⊢≡ C
∧-elim if C ≡ (A ∧ B)

Γ ⊢≡ B

Γ ⊢≡ A
∨-intro if C ≡ (A ∨B)

Γ ⊢≡ C

Γ ⊢≡ B
∨-intro if C ≡ (A ∨B)

Γ ⊢≡ C

Γ ⊢≡ D Γ,A ⊢≡ C Γ,B ⊢≡ C
∨-elim if D ≡ (A ∨B)

Γ ⊢≡ C

Γ ⊢≡ B
⊥-elim if B ≡ ⊥

Γ ⊢≡ A

Γ ⊢≡ A
(x,A) ∀-intro if B ≡ (∀x A) and x 6∈ FV (Γ )

Γ ⊢≡ B

Γ ⊢≡ B
(x,A, t) ∀-elim if B ≡ (∀x A) and C ≡ [t/x]A

Γ ⊢≡ C

Γ ⊢≡ C
(x,A, t) ∃-intro if B ≡ (∃x A) and C ≡ [t/x]A

Γ ⊢≡ B

Γ ⊢≡ C Γ,A ⊢≡ B
(x,A) ∃-elim if C ≡ (∃x A) and x 6∈ FV (ΓB)

Γ ⊢≡ B

B Excluded middle if A ≡ B ∨ (B ⇒ ⊥)
Γ ⊢≡ A

Fig. 1. Natural deduction modulo

All the rules of intuitionistic natural deduction may be stated in a similar
way. Classical deduction modulo is obtained by adding the excluded middle rule
(see figure 1).

For example, in arithmetic, we can define a congruence with the following
rewrite system

0 + y → y



S(x) + y → S(x+ y)

0× y → 0

S(x)× y → x× y + y

In the theory formed with a set of axioms Γ containing the axiom ∀x x = x and
this congruence, we can prove, in natural deduction modulo, that the number 4
is even

axiom
Γ ⊢≡ ∀x x = x

(x, x = x, 4) ∀-elim
Γ ⊢≡ 2× 2 = 4

(x, 2× x = 4, 2) ∃-intro
Γ ⊢≡ ∃x 2× x = 4

Substituting the variable x by the term 2 in the proposition 2 × x = 4 yields
the proposition 2 × 2 = 4, that is congruent to 4 = 4. The transformation of
one proposition into the other, that requires several proof steps in usual natural
deduction, is dropped from the proof in deduction modulo.

In this example, all the rewrite rules apply to terms. Deduction modulo
permits also to consider rules rewriting atomic propositions to arbitrary ones.
For instance, in the theory of integral domains, we have the rule

x× y = 0 → x = 0 ∨ y = 0

that rewrites an atomic proposition to a disjunction.

Notice that, in the proof above, we do not need the axioms of addition and
multiplication. Indeed, these axioms are now redundant: since the terms 0 + y
and y are congruent, the axiom ∀y 0+y = y is congruent to the axiom of equality
∀y y = y. Hence, it can be dropped. Thus, rewrite rules replace axioms.

This equivalence between rewrite rules and axioms is expressed by the the
equivalence lemma that for every congruence ≡, we can find a theory T such
that Γ ⊢≡ A is provable in deduction modulo if and only if T Γ ⊢ A is provable
in ordinary first-order logic [5]. Hence, deduction modulo is not a true extension
of first-order logic, but rather an alternative formulation of first-order logic. Of
course, the provable propositions are the same in both cases, but the proofs are
very different.

1.2 Model of a theory modulo

Amodel of a congruence≡ is a model such that if A ≡ B then for all assignments,
A and B have the same denotation. Amodel of a theory modulo Γ,≡ is a model of
the theory Γ and of the congruence ≡. Unsurprisingly, the completeness theorem
extends to classical deduction modulo [3] and a proposition is provable in the
theory Γ,≡ if and only if it is valid in all the models of Γ,≡.



1.3 Normalization in deduction modulo

Replacing axioms by rewrite rules in a theory changes the structure of proofs and
in particular some theories may have the normalization property when expressed
with axioms and not when expressed with rewrite rules. For instance, from the
normalization theorem for first-order logic, we get that any proposition that is
provable with the axiom A ⇔ (B ∧ (A ⇒ ⊥)) has a normal proof. But if we
transform this axiom into the rule A → B ∧ (A ⇒ ⊥) (Crabbé’s rule [1]) the
proposition B ⇒ ⊥ has a proof, but no normal proof.

We have proved a normalization theorem: proofs normalize in a theory mod-
ulo if this theory has a pre-model [7]. A pre-model is a many-valued model whose
truth values are reducibility candidates, i.e. sets of proof-terms. Hence we first
define proof-terms, then reducibility candidates and at last pre-models.

Definition 1 (Proof-term).
Proof-terms are inductively defined as follows.

π ::= α
| λα π | (π π′)
| 〈π, π′〉 | fst(π) | snd(π)
| i(π) | j(π) | (δ π1 απ2 βπ3)
| (botelim π)
| λx π | (π t)
| 〈t, π〉 | (exelim π xαπ′)

Each proof-term construction corresponds to an intuitionistic natural deduc-
tion rule: terms of the form α express proofs built with the axiom rule, terms of
the form λα π and (π π′) express proofs built with the introduction and elimina-
tion rules of the implication, terms of the form 〈π, π′〉 and fst(π), snd(π) express
proofs built with the introduction and elimination rules of the conjunction, terms
of the form i(π), j(π) and (δ π1 απ2 βπ3) express proofs built with the intro-
duction and elimination rules of the disjunction, terms of the form (botelim π)
express proofs built with the elimination rule of the contradiction, terms of the
form λx π and (π t) express proofs built with the introduction and elimination
rules of the universal quantifier and terms of the form 〈t, π〉 and (exelim π xαπ′)
express proofs built with the introduction and elimination rules of the existential
quantifier.

Definition 2 (Reduction). Reduction on proof-terms is defined by the follow-
ing rules that eliminate cuts step by step.

(λα π1 π2) ⊲ [π2/α]π1

fst(〈π1, π2〉) ⊲ π1

snd(〈π1, π2〉) ⊲ π2

(δ i(π1) απ2 βπ3) ⊲ [π1/α]π2

(δ j(π1) απ2 βπ3) ⊲ [π1/β]π3



(λx π t) ⊲ [t/x]π

(exelim 〈t, π1〉 αxπ2) ⊲ [t/x, π1/α]π2

Definition 3 (Reducibility candidates). A proof-term is said to be neutral
if it is a proof variable or an elimination (i.e. of the form (π π′), fst(π), snd(π),
(δ π1 απ2 βπ3), (botelim π), (π t), (exelim π xαπ′)), but not an introduction.
A set R of proof-terms is a reducibility candidate if

– if π ∈ R, then π is strongly normalizable,
– if π ∈ R and π ⊲ π′ then π′ ∈ R,
– if π is neutral and if for every π′ such that π ⊲1 π′, π′ ∈ R then π ∈ R.

We write C for the set of all reducibility candidates.

Definition 4 (Pre-model). A pre-model N for a language L is given by:

– a set N ,
– for each function symbol f of arity n a function f̂ from Nn to N ,
– for each predicate symbol P a function P̂ from Nn to C.

Definition 5 (Denotation in a pre-model). Let N be a pre-model, t be a
term and ϕ an assignment mapping all the free variables of t to elements of N .
We define the object JtKNϕ by induction over the structure of t.

– JxKNϕ = ϕ(x),

– Jf(t1, . . . , tn)K
N
ϕ = f̂(Jt1K

N
ϕ , . . . , JtnK

N
ϕ ).

Let A be a proposition and ϕ an assignment mapping all the free variables
of A to elements of N . We define the reducibility candidate JAKNϕ by induction
over the structure of A.

– If A is an atomic proposition P (t1, . . . , tn) then JAKNϕ = P̂ (Jt1K
N
ϕ , . . . , JtnKNϕ ).

– If A = B ⇒ C then JAKNϕ is the set of proofs π such that π is strongly

normalizable and whenever it reduces to λα π1 then for every π′ in JBKNϕ ,

[π′/α]π1 is in JCKNϕ .

– If A = B ∧ C then JAKNϕ is the set of proofs π such that π is strongly

normalizable and whenever it reduces to 〈π1, π2〉 then π1 is in JBKNϕ and π2
is in JCKNϕ .

– If A = B ∨ C then JAKNϕ is the set of proofs π such that π is strongly
normalizable and whenever it reduces to i(π1) (resp. j(π2)) then π1 (resp.
π2) is in JBKNϕ (resp. JCKNϕ ).

– If A = ⊥ then JAKNϕ is the set of strongly normalizable proofs.

– If A = ∀x B then JAKNϕ is the set of proofs π such that π is strongly nor-
malizable and whenever it reduces to λx π1 then for every term t and every
element a of N [t/x]π1 is in JBKNϕ+a/x.

– If A = ∃x B then JAKNϕ is the set of proofs π such that π is strongly normal-
izable and whenever it reduces to 〈t, π1〉 then there exists an element a in N
such that π1 is in JBKNϕ+a/x.



Definition 6. A pre-model is said to be a pre-model of a congruence ≡ if when
A ≡ B then for every assignment ϕ, JAKNϕ = JBKNϕ .

Theorem 1 (Normalization). [7] If a congruence ≡ has a pre-model all proofs
modulo ≡ strongly normalize.

2 The Stratified Foundations

2.1 The Stratified Foundations as a first-order theory

Definition 7. (Stratifiable proposition)
A proposition A in the language ∈ is said to be stratifiable if there exists a

function S mapping every variable (bound or free) of A to a natural number in
such a way that every atomic proposition of A, x ∈ y is such that S(y) = S(x)+1.

For instance, the proposition

∀v (v ∈ x⇔ v ∈ y) ⇒ ∀w (x ∈ w ⇒ y ∈ w)

is stratifiable (take, for instance, S(v) = 4, S(x) = S(y) = 5, S(w) = 6) but not
the proposition

∀v (v ∈ x⇔ v ∈ y) ⇒ x ∈ y

Definition 8. (The stratified comprehension scheme)
For every stratifiable proposition A whose free variables are among x1, . . . , xn, xn+1

we take the axiom

∀x1 . . . ∀xn ∃z ∀xn+1 (xn+1 ∈ z ⇔ A)

Definition 9. (The skolemized stratified comprehension scheme)
When we skolemize this scheme, we introduce for each stratifiable proposition

A in the language ∈ and sequence of variables x1, . . . , xn, xn+1 such that the free
variables of A are among x1, . . . , xn, xn+1, a function symbol fx1,...,xn,xn+1,A and
the axiom

∀x1 . . . ∀xn ∀xn+1 (xn+1 ∈ fx1,...,xn,xn+1,A(x1, . . . , xn) ⇔ A)

2.2 The Stratified Foundations as a theory modulo

Now we want to replace the axiom scheme above by a rewrite rule, defining a
congruence on propositions, so that the Stratified Foundations are defined as an
axiom free theory modulo.

Definition 10. (The rewrite system R)

tn+1 ∈ fx1,...,xn,xn+1,A(t1, . . . , tn) → [t1/x1, . . . , tn/xn, tn+1/xn+1]A

Proposition 1. The rewrite system R is confluent and terminating.



Proof. The system R is an orthogonal combinatory reduction system, hence it
is confluent [9].

For termination, if A is an atomic proposition we write ‖A‖ for the number
of function symbols in A and if A is a proposition containing the atomic propo-
sitions A1, . . . , Ap we write A◦ for the multiset {‖A1‖, . . . , ‖Ap‖}. We show that
if a proposition A reduces in one step to a proposition B then B◦ < A◦ for the
multiset ordering.

If the proposition A reduces in one step to B, there is an atomic proposition
of A, say A1, that has the form tn+1 ∈ fx1,...,xn,xn+1,C(t1, . . . , tn) and reduces to
B1 = [t1/x1, . . . , tn/xn, tn+1/xn+1]C. Every atomic proposition b of B1 has the
form [t1/x1, . . . , tn/xn, tn+1/xn+1]c where c is an atomic proposition of C. The
proposition c has the form xi ∈ xj for distinct i and j (since C is stratifiable)
xi ∈ y, y ∈ xi or y ∈ z. Hence b has the form ti ∈ tj for distinct i and j, ti ∈ y,
y ∈ ti or y ∈ z and ‖b‖ < ‖A1‖. Therefore B◦ < A◦.

Proposition 2. A proposition A is provable from the skolemized comprehension
scheme if and only if it is provable modulo the rewrite system R.

2.3 Consistency

We want now to construct a model for the Stratified Foundations.
If M is a model of set theory we writeM for the set of elements of the model,

∈M for the denotation of the symbol ∈ in this model, ℘M for the powerset in
this model, etc. We write also JAKMϕ for the denotation of a proposition A for
the assignment ϕ.

The proof of the consistency of the Stratified Foundations rests on the exis-
tence of a model of Zermelo’s set theory, such that there is a bijection σ from
M to M and a family vi of elements of M , i ∈ Z such that

a ∈M b if and only if σa ∈M σb

σvi = vi+1

vi ⊆M vi+1

℘M(vi) ⊆M vi+1

The existence of such a model is proved in [8].
Using the fact that M is a model of the axiom of extensionality, we prove that

a ⊆M b if and only if σa ⊆M σb, σ{a, b}M = {σa, σb}M, σ〈a, b〉M = 〈σa, σb〉M,
σ℘(a) = ℘(σa), etc.

For the normalization proof, we will further need that M is an ω-model. We
define 0 = ∅M, n+ 1 = n∪M{n}M. An ω-model is a model such that a ∈M NM

if and only if there exists n in N such that a = n. The existence of such a model
is proved in [8] (see also [2]).

Using the fact that M is a model of the axiom of extensionality, we prove
that σ∅M = ∅M and then, by induction on n that σn = n.



Notice that since ℘M(vi) ⊆M vi+1, ∅M ∈M vi and for all n, n ∈M vi. Hence
as the model is an ω-model NM ⊆M vi.

In an ω-model, we can identify the set N of natural numbers with the set
of objects a in M such that a ∈M NM. To each proof-term we can associate a
natural number n (its Gödel number) and then the element n ofM. Proof-terms,
their Gödel number and the encoding of this number in M will be identified in
the following.

We are now ready to construct a model U for the Stratified Foundations.
The base set is the set U of elements a of M such that a ∈M v0. The relation
∈U is defined by a ∈U b if and only if a ∈M σb. This permits to define the
denotation of propositions built without Skolem symbols. To be able to define
the denotation of Skolem symbols, we prove the following proposition.

Proposition 3. For every stratifiable proposition A in the language ∈ whose
free variables are among x1, . . . , xn, xn+1 and for all a1, . . . , an in U , there exists
an element b in U such that for every an+1 in U , an+1 ∈M σb if and only if
JAKUa1/x1,...,an/xn,an+1/xn+1

= 1

Proof. Let |A| be the proposition defined as follows.

– |A| = A if A is atomic,
– |A⇒ B| = |A| ⇒ |B|, |A ∧B| = |A| ∧ |B|, |A ∨B| = |A| ∨ |B|, |⊥| = ⊥,
– |∀x A| = ∀x ((x ∈ ES(x)) ⇒ |A|),
– |∃x A| = ∃x ((x ∈ ES(x)) ∧ |A|).

Notice that the free variables of |A| are among E0, . . . , Em, x1, . . . , xn, xn+1. Let

ϕ = a1/x1, . . . , an/xn, an+1/xn+1

ψ = v0/E0, . . . , vm/Em, σ
k1a1/x1, . . . , σ

knan/xn, σ
kn+1an+1/xn+1

where k1 = S(x1), . . . , kn+1 = S(xn+1). We check, by induction over the struc-
ture of A, that if A is a stratifiable proposition in the language ∈, then

J|A|KMψ = JAKUϕ

– If A is an atomic proposition xi ∈ xj , then kj = ki + 1, J|A|KMψ = 1 if and

only if σkiai ∈M σkjaj if and only if ai ∈M σaj , if and only if JAKUϕ = 1.

– if A = B ⇒ C then J|A|KMψ = 1 if and only if J|B|KMψ = 0 or J|C|KMψ = 1 if

and only if JBKUϕ = 0 or JCKUϕ = 1 if and only if JAKUϕ = 1.

– if A = B ∧ C then J|A|KMψ = 1 if and only if J|B|KMψ = 1 and J|C|KMψ = 1 if

and only if JBKUϕ = 1 and JCKUϕ = 1 if and only if JAKUϕ = 1.

– if A = B ∨ C then J|A|KMψ = 1 if and only if J|B|KMψ = 1 or J|C|KMψ = 1 if

and only if JBKUϕ = 1 and JCKUϕ = 1 if and only if JAKUϕ = 1.

– J|⊥|KMψ = 0 = J⊥KUϕ .

– if A = ∀x B then J|A|KMψ = 1 if and only if for every c in M such that

c ∈M vk, J|B|KMψ+c/x = 1, if and only if for every e in U , J|B|KMψ+σke/x = 1 if

and only if for every e in U , JBKUϕ+e/x = 1 if and only if JAKUϕ = 1.



– if A = ∃x B then J|A|KMψ = 1 if and only if there exists c in M such that

c ∈M vk and J|B|KMψ+c/x = 1, if and only if there exists e in U such that

J|B|KMψ+σke/x = 1 if and only if there exists e in U such that JBKUϕ+e/x = 1 if

and only if JAKUϕ = 1.

Then, the model M is a model of the comprehension scheme. Hence, it is a
model of the proposition

∀E0 . . . ∀Em ∀x1 . . . ∀xn ∀y ∃z ∀xn+1 (xn+1 ∈ z ⇔ (xn+1 ∈ y ∧ |A|))

Thus, for all a1, ..., an, there exists an object b0 such that for all an+1

J(xn+1 ∈ z ⇔ (xn+1 ∈ y ∧ |A|))KMψ+vkn+1
/y+b0/z

= 1

We have σkn+1an+1 ∈M b0 if and only if σkn+1an+1 ∈M vkn+1
and J|A|KMψ = 1

thus an+1 ∈M σ−kn+1b0 if and only if an+1 is in U and JAKUϕ = 1. We take

b = σ−(kn+1+1)b0. For all an+1 in U , we have an+1 ∈M σb if and only if JAKUϕ = 1.
Notice finally that b0 ∈M ℘M(vkn+1

), thus b0 ∈M vkn+1+1, b ∈M v0 and
hence b is in U .

Definition 11 (Jensen’s model). The model U = 〈U,∈U , f̂x1,...,xn,y,A〉 is de-
fined as follows. The base set is U . The relation ∈U is defined above. The func-
tion f̂x1,...,xn,xn+1,A maps (a1, . . . , an) to an object b such that for all an+1 in U ,
an+1 ∈M σb if and only if JAKUa1/x1,...,an/xn,an+1/xn+1

= 1.

Proposition 4. The model U is a model of the Stratified Foundations.

Proof. If A is a stratifiable proposition in the language ∈, then

Jtn+1 ∈ fx1,...,xn,xn+1,A(t1, . . . , tn)K
U
ϕ = 1

if and only if

Jtn+1K
U
ϕ ∈M σf̂x1,...,xn,xn+1,A(Jt1K

U
ϕ , . . . , JtnK

U
ϕ)

if and only if
J[t1/x1, . . . , tn/xn, tn+1/xn+1]AKUϕ = 1

Hence, if A ≡ B then A and B have the same denotation.

Corollary 1. The Stratified Foundations are consistent.

2.4 Normalization

We want now to construct a pre-model for the Stratified Foundations.
Let ui = v3i and τ = σ3. The function τ is an automorphism of M, τui =

ui+1, ui ⊆M ui+1 and ℘M (℘M (℘M (ui))) ⊆M ui+1.
As M is an ω-model of set theory, for each recursively enumerable relation

R on natural numbers, there is an object r in M such that R(a1, . . . , an) if and
only if 〈a1, . . . , an〉M ∈M r. In particular there is



– an object Proof such that π ∈M Proof if and only if π is (the encoding in
M of the Gödel number of) a proof,

– an object Term such that t ∈M Term if and only if t is (the encoding of
the Gödel number of) a term,

– an object Subst such that 〈π, π1, α, π2〉M ∈M Subst if and only if π, π1 and
π2 are (encodings of Gödel numbers of) proofs, α is (the encoding of the
Gödel number of) a proof variable and π = [π1/α]π2,

– an object Subst′ such that 〈π, t, x, π1〉M ∈M Subst′ if and only if π and π1
are (encodings of the Gödel numbers of) proofs, x is (the encoding of the
Gödel number of) a term variable and t (the encoding of the Gödel number
of) a term and π = [t/x]π1,

– an object Red such that 〈π, π1〉M ∈M Red if and only if π and π1 are
(encodings of Gödel numbers of) proofs and π ⊲∗ π1,

– an object Sn such that π ∈M Sn if and only if π is (the encoding of the
Gödel number of) a strongly normalizable proof,

– an object ImpI such that 〈π, α, π1〉M ∈M ImpI if and only if π and π1
are (encodings of Gödel numbers of) proofs, α is (the encoding of the Gödel
number of) a proof variable and π = λα π1,

– an object AndI such that 〈π, π1, π2〉M ∈M AndI if and only if π, π1 and π2
are (encodings of Gödel numbers of) proofs and π = 〈π1, π2〉,

– an objectOrI1 (resp.OrI2) such that 〈π, π1〉M ∈M OrI1 (resp. 〈π, π2〉M ∈M

OrI2) if and only if π and π1 (resp. π and π2) are (encodings of Gödel num-
bers of) proofs and π = i(π1) (resp. π = j(π2)),

– an object ForallI such that 〈π, α, π1〉M ∈M ForallI if and only π and π1
are (encodings of Gödel numbers of) proofs, α is (the encoding of the Gödel
number of) a proof variable, and π = λαπ1,

– an object ExistsI such that 〈π, t, π1〉M ∈M ExistsI if and only if π and π1
are (encodings of Gödel numbers of) proofs, t is (the encoding of the Gödel
number of) a term and π = 〈t, π1〉.

Notice also that, since M is a model of the comprehension scheme, there is
an object Cr such that α ∈M Cr if and only if α is a reducibility candidate (i.e.
the set of objects β such that β ∈M α is a reducibility candidate).

Definition 12 (Admissible). An element α of M is said to admissible at level
i if α is a set of pairs 〈π, β〉M where π is a proof and β an element of ui and
for each β in ui the set of π such that 〈π, β〉M ∈M α is a reducibility candidate.

Notice that if R is any reducibility candidate then the set R×M ui is admis-
sible at level i. Hence there are admissible elements at all levels.

Proposition 5. There is an element Ai in M such that α ∈M Ai if and only
if α is admissible at level i.

Proof. An element α of M admissible at level i if and only if

α ∈M ℘M(Proof ×M ui)
∧∀β (β ∈M ui ⇒ ∃C (C ∈M Cr ∧ (〈π, β〉M ∈M α ⇔ π ∈M C)))



Hence, as M is a model of the comprehension scheme, there is an element Ai in
M such that α ∈M Ai if and only if α is admissible at level i.

Notice that α ∈ τAi if and only if α ∈ Ai+1. Hence as M is a model of the
extensionality axiom, τAi = Ai+1.

Notice, at last, that Ai ⊆M ℘M(Proof ×M ui) ⊆M ℘M(ui ×M ui) ⊆M

℘M (℘M (℘M (ui))) ⊆M ui+1.

Proposition 6. If β ∈M Ai and α ∈M Ai+1 then the set of π such that
〈π, β〉 ∈M α is a reducibility candidate.

Proof. As α ∈M Ai+1 and β ∈M Ai ⊆M ui+1, the set of π such that 〈π, β〉 ∈M α
is a reducibility candidate.

We are now ready to construct a pre-model N of the Stratified Foundations.
The base set of this pre-model is the set N of elements of M that are admis-
sible at level 0. We take ∈N (α, β) = {π | 〈π, α〉M ∈M τβ}. This permits to
define the denotation of propositions built without Skolem symbols. To define
the denotation of Skolem symbols, we prove the following proposition.

Proposition 7. For every stratifiable proposition A in the language ∈ whose
free variables are among x1, . . . , xn, xn+1 and for all a1, . . . , an in N , there exists
an element b in N such that for every an+1 in N , 〈π, an+1〉M ∈M τb if and only
if π is in JAKNa1/x1,...,an+1/xn+1

.

Proof. Let |A| be the proposition (read p realizes A) defined as follows.

– |xi ∈ xj | = 〈p, xi〉 ∈ xj ,
– |A ⇒ B| = p ∈ sn ∧ ∀q ∀w ∀r (〈p, q〉 ∈ red ∧ 〈q, w, r〉 ∈ impI) ⇒

∀s [s/p]|A| ⇒ ∀t 〈t, s, w, r〉 ∈ subst⇒ [t/p]|B|),
– |A ∧ B| = p ∈ sn ∧ ∀q ∀r ∀s ((〈p, q〉 ∈ red ∧ 〈q, r, s〉 ∈ andI) ⇒ [r/p]|A| ∧

[s/p]|B|),
– |A ∨ B| = p ∈ sn ∧ ∀q ∀r ((〈p, q〉 ∈ red ∧ 〈q, r〉 ∈ orI1) ⇒ [r/p]|A|) ∧

∀q ∀r ((〈p, q〉 ∈ red ∧ 〈q, r〉 ∈ orI2) ⇒ [r/p]|B|),
– |⊥| = p ∈ sn,
– |∀x A| = p ∈ sn∧∀q ∀w ∀r (〈p, q〉 ∈ red∧ (〈q, w, r〉 ∈ forallI) ⇒ ∀x ∀y (x ∈
ES(x) ∧ y ∈ term) ⇒ ∀s (〈s, w, y, r〉 ∈ subst′ ⇒ [r/p, x/x]|A|)),

– |∃x A| = p ∈ sn ∧ ∀q ∀t ∀r (〈p, q〉 ∈ red ∧ (〈q, t, r〉 ∈ existsI) ⇒ ∃x x ∈
ES(x) ⇒ [r/p, x/x]|A|)).

Notice that the free variables of |A| are among term, subst, subst′, red, sn,
impI, andI, orI1, orI2, forallI, existsI, p, E0, . . . , Em, x1, . . . , xn, xn+1. Let

ϕ = a1/x1, . . . , an/xn, an+1/xn+1

ψ = Term/term, Subst/subst, Subst′/subst′, Red/red, Sn/sn,

ImpI/impI,AndI/andI,OrI1/orI1, OrI2/orI2, ForallI/forallI, ExistsI/existsI,

A0/E0, . . . , Am/Em, τ
k1a1/x1, . . . , τ

knan/xn, τ
kn+1an+1/xn+1

We check, by induction over the structure of A, that if A is a stratifiable
proposition in the language ∈, then the set of proofs π such that J|A|KMψ+π/p = 1

is JAKNϕ .



– If A is an atomic proposition xi ∈ xj , then kj = ki+1, we have J|A|KMψ+π/p =

1 if and only if 〈π, τkiai〉M ∈M τkjaj if and only if 〈τkiπ, τkiai〉M ∈M τkjaj
if and only if τki〈π, ai〉M ∈M τkjaj if and only if 〈π, ai〉M ∈M τaj if and
only if π is in JAKNϕ .

– if A = B ⇒ C then we have J|A|KMψ+π/p = 1 if and only if π is strongly

normalizable and whenever π reduces to λα π1 then for all π′ such that
J|B|KMψ+π′/p = 1 we have J|C|KMψ+[π′/α]π1/p

= 1 if and only if π is strongly

normalizable and whenever π reduces to λx π1 then for all π′ in JBKNϕ ,

[π′/α]π1 is in JCKNϕ if and only if π is in JAKNϕ .

– If A = B ∧ C then we have JAKMψ+π/p = 1 if and only if π is strongly

normalizable and whenever π reduces to 〈π1, π2〉 then JBKMψ+π1/p
= 1 and

JCKMψ+π2/p
= 1 if and only if π is strongly normalizable and whenever π

reduces to 〈π1, π2〉 then π1 is in JBKNϕ and π2 is in JCKNϕ if and only if π is

in JAKNϕ .

– If A = B ∨ C then we have JAKMψ+π/p = 1 if and only if π is strongly nor-

malizable and whenever π reduces to i(π1) (resp. j(π2)) then JBKMψ+π1/p
= 1

(resp. JCKMψ+π2/p
= 1) if and only if π is strongly normalizable and whenever

π reduces to i(π1) (resp. j(π2)) then π1 is in JBKNϕ (resp. JCKNϕ ) if and only

if π is in JAKNϕ .

– If A = ⊥ then JAKMψ+π/p = 1 if and only if π is strongly normalizable if and

only if π is in JAKNϕ .

– if A = ∀x B, then J|A|KMψ+π/p = 1 if and only if π is strongly normaliz-
able and whenever π reduces to λx π1, for all term t and for all c in M
such that c ∈M Ak, J|B|KMψ+c/x,[t/x]π1/p

= 1 if and only if π is strongly
normalizable and whenever π reduces to λx π1, for all t and for all e in N ,
J|B|KMψ+τke/x+[t/x]π1/p

= 1 if and only if π is strongly normalizable and when-

ever π reduces to λx π1, for all t and for all e in N , [t/x]π1 is in JBKNϕ+e/x if

and only if π is in JAKNϕ .

– if A = ∃x B, then J|A|KMψ+π/p = 1 if and only if π is strongly normalizable and

whenever π reduces to 〈t, π1〉, there exists a c in M such that c ∈M Ak and
J|B|KMψ+c/x,[t/x]π1/p

= 1 if and only if π is strongly normalizable and whenever

π reduces to 〈t, π1〉, there exists a e in N such that J|B|KMψ+τke/x+[t/x]π1/p
= 1

if and only if π is strongly normalizable and whenever π reduces to 〈t, π1〉,
there exists a e in N such that [t/x]π1 is in JBKNϕ+e/x if and only if π is in

JAKNϕ .

Then, the model M is a model of the comprehension scheme. Hence, it is a
model of the proposition

∀E0 . . . ∀Em ∀x1 . . . ∀xn ∃z ∀p ∀xn+1 〈p, xn+1〉 ∈ z ⇔ 〈p, xn+1〉 ∈ proof×U∧|A|

Thus, for all a1, ..., an, there exists an object b0 such that for all an+1

J〈p, xn+1〉 ∈ z ⇔ 〈p, xn+1〉 ∈ NM × U ∧ |A|KMψ+Proof/proof,b0/z,ukn+1+1/U,π/p
= 1



We have 〈π, τkn+1an+1〉M ∈M b0 if and only if π is a proof, τkn+1an+1 ∈M

ukn+1+1 and J|A|KMψ+π/p = 1. Thus 〈π, an+1〉M ∈M τ−kn+1b0 if and only if

an+1 ∈M u1 and π is in JAKNϕ . We take b = τ−(kn+1+1)b0 and for all an+1 in N

we have 〈π, an+1〉M ∈M τb if and only if π is in JAKNϕ . Finally, notice that b0 is a
set of pairs 〈π, β〉M where π is a proof and β an element of ukn+1+1 and for each
β in ukn+1+1 the set of π such that 〈π, β〉M ∈M b0 is J|A|KMψ+β/xkn+1

,π/p = 1,

hence it is a reducibility candidate. Hence b0 ∈M Akn+1+1 and b is in N .

Definition 13 (Crabbé’s pre-model).

The pre-model N = 〈N,∈N , f̂x1,...,xn,y,A〉 is defined as follows. The base

set is N . The function ∈N is defined above. The function f̂x1,...,xn,xn+1,A maps
(a1, . . . , an) to the object b such that for all an+1 in N , 〈π, an+1〉M ∈M τb if
and only if π is in JAKNa1/x1,...,an/xn,an+1/xn+1

.

Proposition 8. The pre-model N is a pre-model of the Stratified Foundations.

Proof. If A is a stratifiable proposition in the language ∈, then

π is in Jtn+1 ∈ fx1,...,xn,xn+1,A(t1, . . . , tn)K
N
ϕ

if and only if

〈π, Jtn+1K
N
ϕ 〉M ∈M τ f̂x1,...,xn,xn+1,A(Jt1K

N
ϕ , . . . , JtnK

N
ϕ )

if and only if

π is in J[t1/x1, . . . , tn/xn, tn+1/xn+1]AKNϕ

Hence, if A ≡ B then A and B have the same denotation.

Corollary 2. All proofs strongly normalize in the Stratified Foundations.

Remark 1. As already noticed in [2], instead of constructing the a pre-model
of the Stratified Foundations within an automorphic ω-model of Zermelo’s set
theory, we could construct it within an ω-model of the Stratified Foundations.
In such a model U , we can define recursively enumerable relations, because the
Stratified Foundations contains enough arithmetic and comprehension. Then we
can take the sequence ui to be the constant sequence equal to w where w is a
universal set, i.e. a set such that a ∈U w for all element a of the model. Such an
object obviously verifies ℘U (℘U(℘U (w))) ⊆U w. In other words, we say that an
element of U is admissible if it is a set of pairs 〈π, β〉U where π is a proof and
for each β in U , the set of π such that 〈π, β〉 ∈U α is a reducibility candidate.
Proposition 6 becomes trivial, but we need to use the existence of a universal set
to prove that there are admissible elements in the model and that there is a set
A of admissible elements in the model. Hence, the difficult part in this pre-model
construction (the part that would not go through for Zermelo’s set theory for
instance) is the construction of the base set.



Conclusion

In this paper, we have have shown that the Stratified Foundations can be ex-
pressed in deduction modulo and that the normalization proof for this theory
be decomposed into two lemmas: one expressing that it has a pre-model and the
other that proof normalize in this theory if it has a pre-model. This second lemma
is not specific to the Stratified Foundations, but holds for all theories modulo.
The idea of the first lemma is to construct a pre-model within an ω-model of
the theory with the help of formal realizability. This idea does not seems to be
specific to the Stratified Foundations either, but, its generality remains to be
investigated. Thus, this example contributes to explore of the border between
the theories modulo that have the normalization property and those that do not.
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