
The complexity of β-reduction in low orders

Aleksy Schubert∗

Institute of Informatics
Warsaw University
alx@mimuw.edu.pl

9 November, 2000

Abstract

We study the complexity of β-reduction for redexes of order 2, 3
and 4. The obtained results are: evaluation of boolean expressions
can be reduced to β-reduction of order 2 and β-reduction of order 2
is in O(n log n), β-reduction of order 3 is complete for PTIME, and
β-reduction of order 4 is complete for PSPACE.

1 Introduction

The mechanism of evaluation in functional languages is based on β-reduction.
Thus, it is interesting issue to study the complexity of the decision problem
to answer if a given value (a lambda term) is a result of some program (an-
other lambda term). As most functional programs do not use functions of
very high order we chose to make research primarily for low orders. This
paper concerns reductions in 2nd, 3rd and 4th orders of simly typed lambda
calculus.

Another good reason to study these problems is application of the results
and techniques in the study of the problem of higher-order matching. Known
higher-order matching algorithms are usually based on check if a somehow
obtained term actually reduces to particular normal form. This exactly
corresponds to the situation in our problems. Additionally, obtained proofs
shed a better light into the nature of β-reduction which is essential for the
final solution for the higher-order matching problem.

Related research There is similar problem of β-equivalence. This was
studied in [Sta79] and non-elementary bound on the complexity of the prob-
lem was found. This problem was studied also in [Mai92] where an alterna-
tive proof of the result is described. Another similar problem of finding the

∗This work was partly supported by KBN grant no 8 T11C 035 14

1

length of a β-reduction sequence for a term is studied in [Sch91]. The first
attempt to analyse the complexity of β-reduction was presented in [HK96]
where a whole hierarchy of orders and complexities is discussed but for a
slightly different problem where restricted syntax is considered and some
δ-rules are allowed.

The content of the paper A reduction of evaluation of boolean ex-
pressions to 2nd-order β-reduction is proved in Section 3 together with a
O(n log n) algorithm for the reduction, PTIME-completeness for 3rd-order
β-reduction is proved in Section 4 and PSPACE-completeness for 4th-order
β-reduction is proved in Section 5.

2 Basic notions

We deal with simply typed λ-calculus denoted by λ→ as in [Bar92]. The
results we obtain here have their versions in both Curry and Church-style
version of the calculus. We study the β-reduction relation here. One step
reduction is denoted by →β . The transitive-reflexive closure of the relation
is denoted by →∗

β . The β-normal form of a term M is denoted by NF(M).
The relation of α-equivalence is denoted by ≡α. We use also the notion of
context which is usually denoted by C[·] and is a term with a single hole
that may be filled in by a term of a suitable type. The operation of ‘filling
in’ does not perform any variable renaming. A context where its hole is
filled in with the term M is denoted by C[M].

The notion of order is defined as:

Definition 1 (order)

The order of a type is defined as

ord(α) = 1 for α atomic;
ord(σ1 → σ2) = max(ord(σ1) + 1, ord(σ2))

In the Church-style calculus, the order of the redex (λx.M)N in the term
P = C[(λx.M)N] is the order of the type of λx.M assigned in the derivation
of the type of P . In the Curry-style calculus, the order of such a redex is
the minimum of orders assigned to types of λx.M in type derivations for P .

If the Curry-style definition is concerned then there occurs a question whether
there is a uniform derivation of a type for P in which all redexes have mini-
mal orders. The answer is ‘there is’. The derivation for principal type of P

has this property.
The most general formulation of the problem we deal with is presented

hereafter

2

Problem 2 (reducibility in order n)

Input: A λ→ term M1 with redexes of order at most n and a normal form

λ→ term M2.

Question: Does M1 β-reduce to M2?

We consider the problem for n = 2, 3, 4. Note, that we assume that the
input is already a term in λ→ and has redexes of suitable order. We do not
make any checks that the input values are correct in presented algorithms.
Such checks require at least essentially polynomial time algorithm which
majorises bounds on the resources needed in some of constructions presented
in the paper. In fact, all the presented reductions and algorithms may be
performed for both Curry and Church terms.

3 The order 2

3.1 Second order β-reduction is in O(n log n)

The second-order reduction can be performed in O(n log n) time. Our algo-
rithm uses the notion of graph reduction. We assume here that the reader
is familiar with this notion. The suitable texts about graph reduction in-
clude: [Lam90] or [AL93]. We use the presentation included in the latter
paper. For the sake of clarity of presentation we use the version of graph
reduction where fan-nodes have more than 2 auxiliary ports. This approach
can easily be translated to the one with 2-port fan-nodes without affecting
the complexity.

Definition 3 (algorithm for 2nd order β-reduction)

Let M1 and M2 be the input for the algorithm. The algorithm reduce 2nd

is described as follows. We need an additional stack S and a counter i.
Some nodes of the graph will be marked during the reduction. We proceed
as follows:

1. Translate M1 into its graph of reduction, initiate S to the empty stack.

2. Walk through the starting λ-nodes without any change.

3. Initiate i to 0.

4. Go through @-nodes incrementing i at each one and taking their left
branch until you meet a fan-node, an auxiliary port of a λ-node, a
marked node or a principal port of a λ-node.

(a) if it is a fan-node, an auxiliary port of a λ-node or a marked node
then check if S is empty if so go to the point (5) else pop the
value of i from S, pop a node A from the stack, and perform
the β-redex above the node A marking the topmost node of the
argument of the redex; go to the point 4;

3

(b) if it is a principal port of a λ-node and i > 0 then decrement i,
push the λ-node on S, push i, step to the right branch of the last
@-node and begin the whole procedure from the point (3);

(c) if it is a principal port of a λ-node and i = 0 then go through the
λ-node without any change and step to the point 4.

5. Perform the read-back of the graph; the resulting term is M3.

6. Check the α-equivalence of M3 and M2.

Theorem 3.1 (the algorithm reduce 2nd is in O(n log n))
Let M1 have redexes of order at most 2 and M2 be in normal form. The

algorithm reduce 2nd results in success on these terms iff M1 →∗

β M2.

Moreover, reduce 2nd needs only O(n) time to run.

Proof:

The algorithm is correct as it is only a strategy in an optimal reduction
algorithm.

Let us analyse the complexity of the algorithm. Let n be the size of the
input for reduce 2nd.

The translation of the term to the graph can be performed in O(n) time
using usual syntax analysis methods. The rest of the algorithm visits each
node at most 2 times and the number of steps performed for each node is
bounded by a constant except for the time needed to store i and a node on
the stack. The latter operation takes O(log n) time because of the length of
the counter and the pointer to the node.

This altogether gives O(n) time.

3.2 Boolean expressions reduce to second-order β-reduction

Boolean expression is an expression that is build from the connectives ∧,∨
and values true and false. An example is (true ∧ false) ∨ true. We can
associate with each such an expression its value which is generated according
to the truth tables of logical connectives ∧ and ∨. The problem of evaluation
of boolean expressions is:

Definition 4 (evaluation of boolean expressions)

Input: A boolean expression E.
Question: Is true the value of E.

The problem is in ALOGTIME (see [Bus87]). We present a first-order reduc-
tion of the problem to the second-order β-reduction problem. This presen-
tation is only for the sake of completeness with the rest of the paper where
some variations of boolean formulas are dealt with. A helpful definition of
logical values is

4

Definition 5 (boolean values)

TRUE = λx1x2.x1

FALSE = λx1x2.x2

The translation from boolean expressions is:

Definition 6 (translation from boolean expressions to λ→)

The translation from boolean expressions to λ→ has as an input a boolean
expression E and as a result two terms M1 and M2. We put M1 = E2L(E)
and M2 = TRUE. The function E2L is defined by induction on the form of
the boolean expression:

• E2L((E1 ∧ E2)) = λxy.(E2L(E1))((E2L(E2))xy)y;

• E2L((E1 ∨ E2)) = λxy.(E2L(E1))x((E2L(E2))xy);

• E2L(true) = TRUE;

• E2L(false) = FALSE.

Theorem 3.2 (boolean expression and λ→)

Let E be a boolean expression. E has the result true iff the term E2L(E)
reduces to TRUE.

Moreover, the term E2L(E) has redexes of order at most 2.

Proof:

The main claim follows by a routine induction on the expression E.
The only redexes in the term occur during the translation in cases for

∧ and ∨. By induction on E, we can show that E2L(E) is of the type
α → α → α so these redexes are of order 2.

Theorem 3.3 (the ‘running time’ for E2L)

The term E2L(E) may be represented by a first-order formula over the sig-

nature of boolean expressions.

Proof:

The formula that constituates the universe has 5 variables x1, . . . , x5. The
first one is used to determine which operator is encoded the rest is used to
encode the boolean representation of nodes needed to represent a boolean
connective. The first lambda node is encoded as 0000, then x as 0001, the
second λ node as 0010 and so on. The edge relation (in a λ) term is defined
so that the first coordinate is constant and the other coordinates represent
suitable bits as in the just mentioned encoding.

Details are left for the reader.

5

4 The order 3

4.1 Third order β-reduction is in PTIME

The third-order reduction can be performed in polynomial time. Our algo-
rithm uses again the notion of graph reduction.

Let us see how does the graph reduction in this case look like. The
starting point of such a reduction is shown on Figure 1(a). The figure
pictures a β-redex somewhere in some term (the omission of a part of the
context of the redex is denoted by the dotted line). The star denoted by
G0 symbolises the body of the λ-abstraction that takes part in β-reduction.
The circle denoted by G1 symbolises the body of the argument that takes
part in β-reduction. For the sake of clarity of presentation we represent a
set of fan-nodes by a single fan with many entry ports.

λ

G0

@

G1

(a)

G0

G1

(b)

Figure 1: (a) The starting point for 3rd-order β-reduction. (b) The result
of the first phase of β-reduction

The result of the first β-reduction step is shown on Figure 1(b). As we
see the argument G1 goes into several places of the subterm G0. Since we use
fan-node the argument is not copied. This kind of reduction is performed
during the first phase of our algorithm. Note that performing some β-redexes
may introduce other ones. There are two ways such a redex may occur: as
in the term (λx1.(λx2.M))N1N2 or as in the term (λx1.C[x1M])(λx2.N).
We conduct our reduction so that redexes of the first kind are contracted in
this phase whereas the redexes in the second kind are not. We achieve this
behaviour later in definitions by marking the edge outgoing from G1 (see
the point 2 in Definition 7). Note that this makes us not to reduce some
redexes but these redexes are certainly of order 2. We repeat this kind of
reduction until there are no redexes. The result of the process is a term that
has no 3rd-order redexes.

6

Whereas there are no explicit redexes (except for the marked ones) we
have some redexes hidden behind fan-nodes. We can extract these redexes
as on Figure 2(a) and then contract them so that the resulting term is as
on Figure 2(b). This process should be repeated until there are no λ-nodes
behind fan-nodes (in other words, until there are no paths which enter a fan-
node and then after some number of brackets and croissants immediately
enter a λ-node).

G0

G′

1

λ

λ

λ

λ

(a)

G′

0

base type

G′

1

(b)

Figure 2: (a) The λ-nodes are extracted from the fan-nodes. (b) After the
second-order reduction

Definition 7 (the algorithm for 3rd order)

Let M1 and M2 be the input data for the algorithm. The algorithm
reduce 3rd proceeds performing the following steps:

1. Translate the term M1 into the corresponding graph.

2. Perform one by one all the existing β-reductions (after performing a
reduction step mark the edge that goes from the argument; in future
reductions in this phase, omit redexes with such an edge going out of
a λ-node).

3. Push all the λ-nodes through fans.

4. Perform one by one all the existing β-reductions and if necessary go
to the point 3.

7

5. Reduce all matching fan-nodes so that they disappear.

6. Perform the read-back of the resulting graph; if the result is larger
than the term M2: fail. Let M3 be the result of the read-back.

7. If M2 ≡α M3 then success else fail.

For the sake of clarity, we omit reductions for brackets and croissants in
the description assuming that they are performed implicitly so that no such
nodes occur at principal ports of fan-nodes, λ-nodes and @-nodes.

Theorem 4.1 (partial correctness of reduce 3rd)

If reduce 3rd stops with success then NF(M1) ≡α M2. If reduce 3rd fails

then NF(M1) 6≡α M2.

Proof:

The correctness of reduce 3rd is implied by the correctness of the graph
reduction. The only thing that remains to be proved is that before entering
the point (6) in Definition 7, we obtain a graph that has no β-redexes in
any reduction sequence so that the read-back gives the normal form.

We prove the latter claim in two steps: First, we prove that after per-
forming the step (2) there will be no 3rd-order redexes. Second, we prove
that after performing the steps (3-4) there will be no 2nd-order redexes.

For the proof of the first step, we proceed by contradiction. Assume
that we have a 3rd-order redex that may be performed at some reduction
path starting from the result H0 of the step (2). The residual of the λ-node
that takes part in the reduction is present in H0. The λ-node may not be
reduced in H0 either because it does not interact with @-node or it interacts
with such a node via marked edge. The latter case is not possible since this
would mean that we performed a 4th-order reduction step earlier. So λ-node
interacts with: (1) another λ-node, (2) a @-node via non-principal port, (3)
fan-node, (4) bracket, (5) croissant.

1. In this case, we have again the same cases as in the main proof. Thus,
we may inductively continue in this case until some non-λ-node is
reached. Note that the type of the next λ-node includes the type of
the previous one.

2. This case is impossible since this would mean that at some point of
the reduction, there occurs a redex at the principal port of @-node,
but this redex would be of order greater than 3.

3. The λ node may interact with a fan-node at principal or at non-
principal port. The non-principal port is impossible at this stage of
reduction since we forbid in our algorithm fan-reductions at this stage.
The λ-node at principal port of a fan-node means that the λ-node was
an argument of some β-redex, but such a redex must have had the
order 4.

8

4. Interaction with bracket is impossible since such a node is implicitly
pushed either behind λ-node or before the preceding nodes.

5. The reasoning is similar to the one for bracket.

As no case is possible, we obtained contradiction.
For the proof of the claim that in the graph H1 obtained after the point

(4) there are no possible reductions with 2nd-order redexes, we proceed by
contradiction too. Suppose that at some reduction path of H1 we have a
2nd-order redex. The residual of the λ-node that takes part in the reduction
is present in H1. The λ-node may not be reduced in H1 because it does not
interact with @-node at principal port.

1. If λ-node interacts with another λ-node we may inductively apply our
reasoning to the next λ-node.

2. If λ-node interacts with an @-node at non-principal port then the @
node should be reduced in the reduction so there is another λ-node
that will be reduced we may inductively apply our reasoning to the
node.

3. If λ-node interacts with a fan-node at its principal port then the point
(3) may be applied so we are not after the (4) point. If λ-node interacts
with a fan-node at its non-principal port then the type of the λ-node
must be a base type (see Figure 2(b)), but this is impossible.

4. If λ-node interacts with a bracket- or croissant-node then these nodes
may be pushed behind the λ-node or before the preceding nodes.

Again, no case is possible so we obtained contradiction. This ends the whole
proof as 2-nd order redexes are the redexes of lowest possible order.

The algorithm fails only in points (6) and (7). NF(M1) 6≡α M2 is obvious
in these cases.

In order to perform an analysis of the complexity of the algorithm
reduce 3rd, we have to introduce the notion of mixed bracket property. This
notion formalises and generalises the property of old-fashioned arithmetical
notation where different kinds of parenthesis are used as in the expression:
[(2 + 3) · 5 + 6] · 11. This property says that a parenthesis of a kind A may
be closed only if each parenthesis of any other kind B that is opened after
the parenthesis of the kind A is closed. For example, if we open [and then
afterwards (then in order to put] we have to put) first.

Definition 8 (the mixed parenthesis property)

We say that a path ρ has the mixed parenthesis property iff for any fan-nodes
A and B if ρ enters a fan-node A at an auxiliary port α and afterwards a
fan-node B at an auxiliary port β then it must exit the auxiliary port β

of a node corresponding to B before it exits the auxiliary port α of a node
corresponding to A.

9

Fact 4.2 (mixed parenthesis property in third-order reduction)

During the reductions performed in reduce 3rd all the paths have mixed

parenthesis property.

Proof:

The proof is by the number of steps of reduction during the algorithm
reduce 3rd. Before the point (2) of Definition 7, our property is retained
as there is no path that exits a fan-node.

Assume that our property is retained until n-th step. We show that it
is retained in the next step too.

If the step is inside point (2) then the property is retained as there is no
path that exits a fan-node.

If the step is inside point (3) then the property is retained as its violation
would require bounding outside of the scope of λ.

If the step is inside point (4) then the move corresponds to concatenating
well formed sequences of parenthesis. This does not violate our property.

If the step is inside point (5) then we only erase only matching inmost
parenthesis which does not violate our property.

Points (6–7) do not change the graph so they retain our property.
Details are left for the reader.

Theorem 4.3 (reduce 3rd runs in polynomial time)

The procedure reduce 3rd runs in O(n2) time.

Proof:

Let n = |M1| + |M2|. Performing the translation in the point (1) takes
O(n) time since the translation is local. Performing the point (2) takes also
O(n). This is so since there is a constant k that bounds the number of
relinkings and implicit reductions that should be made in order to go from
the situation on Figure 1(a) to the situation on Figure 1(b). Moreover, these
operations need to be performed at most as many times as the number of
3rd order variables in the original term. This is so because graph reduction
implements the optimal reduction. The points (3–4) need O(n) time since
we have to produce as many new λ-nodes as the number of occurrences of
second-order variables and as many new fan-nodes as the number of third-
order variables. Such a creation together with linking these new nodes needs
a constant time so the time is linear. The point (5) needs also O(n) time
since the number of fan-nodes linearly depends on the size of the input. The
point (6) needs O(n2) steps since the mixed parenthesis property (Fact 4.2)
ensures that there are no two fan-nodes that meet with principal ports. If
it were matching fan-nodes then they would be reduced in point (5), if it
were non-matching fan-nodes then they would break the mixed parenthesis
property. As there are no fan-nodes that meet with principal ports, each
path that exits a principal port of a fan-node and then after some, possibly
non-zero, number of other (non-bracket and non-croissant) nodes enters a
principal port of a fan-node must go through either @-node or λ-node. This

10

ensures that such a node is visited once at least after visiting all the fan-
nodes. At last (7) can be performed in O(n) time since M2 is a part of input
and α conversion can be performed in O(m) where m is the size of terms to
be checked.

This altogether gives the time O(n2).

4.2 Third order β-reduction is PTIME-hard

The problem of evaluation of boolean circuits is reduced to the problem of
β-reduction in third order in this section. The reduction is in LOGSPACE.
This implies that third-order β-reduction is PTIME-hard (see. [Pap95])

Definition 9 (boolean circuit)

A boolean circuit is a directed acyclic graph such that:

• its nodes are labelled with ∨,∧,¬, true, or false and a single node
labelled with result;

• nodes labelled with ∨ and ∧ have two outgoing edges;

• nodes labelled with ¬ and result have a single outgoing edge;

• nodes labelled with true and false have no outgoing edges.

The result of a boolean circuit is defined recursively as follows

Definition 10 (the result of a circuit)

The result of a boolean circuit is defined as the value of its node labelled
with result. The value of a node is defined recursively as follows

• the value of true is true;

• the value of false is false;

• the value of ∨ is v1 ∨ v2 where v1 is the value of the node at the end
of the first outgoing edge and v2 is the value of the node at the end of
the second outgoing edge;

• the value of ∧ is v1 ∧ v2 where v1 is the value of the node at the end
of the first outgoing edge and v2 is the value of the node at the end of
the second outgoing edge;

• the value of ¬ is ¬v where v is the value of the node at the end of the
outgoing edge;

• the value of result is v where v is the value of the node at the end of
the outgoing edge.

11

Definition 11 (the problem of evaluation of a boolean circuit)

The problem of evaluation of a boolean circuit is the following:
Input: A boolean circuit C
Question: Does the circuit have the result true?

We define level of a node in boolean circuit. This notion helps in defining
our reduction.

Definition 12 (level of a node)

In a boolean circuit C, the node result has the level 0. A node n has the
level l if l = max{l1, . . . , lk} + 1 where {l1, . . . , lk} is the set of levels for
nodes n′ such that (n′, n) is an edge in C.

We denote by Cn the set of nodes of the level n.

As boolean circuits use logical connectives ∨,∧ and ¬, we should define
their counterparts in λ-calculus. We define also logical values and quantifiers
which are needed in forthcoming parts of the paper.

Definition 13 (connectives for translations)

TRUE = λx1x2.x1

FALSE = λx1x2.x2

AND = λb1b2x1x2.b1(b2x1x2)x2

OR = λb1b2x1x2.b1x1(b2x1x2)
NOT = λb1x1x2.b1x2x1

∀∀ = λφx1x2.AND(φTRUE)(φFALSE)
∃∃ = λφx1x2.OR(φTRUE)(φFALSE)

Definition 14 (reduction from boolean circuits)

This reduction is recursively defined on the level of nodes. We introduce
variables {xj

i | i is a node on the level j}.

• The term LEVEL−1 is defined as x0
result

.

• The term LEVELn+1 is defined based on the term LEVELn as

(λxn+1
1

. . . xn+1

k .LEVELn)B1 . . . Bk

where

– Bi = ANDxl
kx

l′

k′ if the i-th node on the level n + 1 is ∧ and one
of its outgoing edges leads to k-th node on the l-th level and the
other to k′-th node on the l′-th level;

– Bi = ORxl
kx

l′

k′ if the i-th node on the level n + 1 is ∨ and one
of its outgoing edges leads to k-th node on the l-th level and the
other to k′-th node on the l′-th level;

12

– Bi = NOTxl
k if the i-th node on the level n + 1 is ¬ and its

outgoing edge leads to k-th node on the l-th level;

– Bi = TRUE if the i-th node on the level n + 1 is true;

– Bi = FALSE if the i-th node on the level n + 1 is false.

Theorem 4.4 (boolean circuits and λ→)

Let G be a boolean circuit and n its maximum level of nodes. G has the

result true iff the term LEVELn reduces to TRUE.

Moreover, the term LEVELn has redexes of order at most 3.

Proof:

The proof is by induction on the maximal level of the graph G.
If the level is 0 then G consists only of two vertices: result and one

of true or false. So, LEVEL0 has either the form (λx0
result

.x0
result

)TRUE
or (λx0

result
.x0

result
)FALSE respectively. These terms reduce to TRUE and

FALSE respectively. This proves our claim in this case.
If the level is n > 0 then the term LEVELn has the form

(λxn+1
1

. . . xn+1

k .LEVELn)B1 . . . Bk

where Bi for i = 1, . . . , k are either TRUE or FALSE. We reduce this term
to

LEVELn[xn+1
1

:= B1, . . . , x
n+1

k := Bk]

then we replace subterm of the form

• AND MTRUE with M ;

• AND MFALSE with FALSE;

• ORMTRUE with TRUE;

• ORMFALSE with M ;

• NOT FALSE with TRUE;

• NOT TRUE with FALSE

(we have omitted the cases symmetric wrt. the position of M). The modi-
fications performed to the term LEVELn correspond directly to performing
evaluation steps for one level of the graph G. The modified term evaluates
to TRUE iff the original one evaluates to TRUE. This is true as there is
only one normal form and our modifications may be performed as usual
β-reduction. The modified graph gives the result true iff the original one
does. This is true as a simple verification according Definition 10 reveals.
The partially evaluated graph evaluates to true iff the modified term re-
duces to TRUE by induction hypothesis. This completes the proof. Details
are left for the reader.

13

The redexes in LEVELn occur in subterms of the form: OPERM1M2

where OPER is AND or OR, NOTM , and (λ~x.LEVELl)B1 . . . Bk. The
arguments for all those terms have the type α → α → α so these terms are
of order 3. Thus the redexes in terms LEVELn are of order at most 3.

Theorem 4.5 (boolean circuits and λ→)

The term LEVELn may be generated with use of additional O(log |G|) space.

Proof:

W.l.o.g. we may assume that boolean circuits have assigned to each node
its level. This allows us to use a counter that says on which level we are.
This is enough to identify where should be placed appropriate variables and
terms AND, OR, NOT, TRUE and FALSE. Such a counter needs O(log n)
space. Another counter is needed for names of variables, but O(log n) is
sufficient here too. Details are left for the reader.

5 The order 4

5.1 Fourth order β-reduction is in PSPACE

The fourth order reduction can be performed in polynomial space. Our algo-
rithm, similarly to the third-order case, uses the notion of graph reduction.

Let us see how does the process of graph reduction look like in this case.
The starting point of such a reduction may look like on Figure 3(a). The
figure pictures a β-redex somewhere in some term. The star denoted by
G0 symbolises the body of the λ-abstraction that takes part in β-reduction.
The circle denoted by G1 symbolises the body of the argument that takes
part in β-reduction. The dotted lines represent parts of the term that are
missing on the picture.

The result of the first β-reduction step is shown on Figure 3(b). As we
see, the argument G1 goes into several places of the subterm G0 similarly
to the 3rd order case. This kind of reduction is performed during the first
phase of our algorithm. Again, performing some β-redexes may introduce
other ones. Again, we perform only some of the new redexes similarly to the
3rd-order case. We repeat this kind of reduction until there are no redexes.
The result of the process is a term that has no 4th-order redexes.

Whereas there are no explicit redexes (except for the marked ones) we
have some redexes hidden behind fan-nodes. We can extract these redexes
as on Figure 4(a) and then contract them with @-nodes that come from G0

as depicted on Figure 4(b). This process should be repeated until there are
no λ-nodes behind fan-nodes (in other words, until there are no paths which
enter a fan-node and then after some number of brackets and croissants
immediately enter a λ-node).

The result of such reduction is depicted on Figure 5(a). We have two
fan-nodes surrounding G′

1 — the upper one because the term occurs in

14

λ

G0

@

Gn

G1

@

(a)

G0

G1

(b)

Figure 3: (a) The starting point for 4th-order β-reduction. (b) The result
of the first phase of β-reduction

G0

G′

1

λ

λ

λ

λ

(a)

G′

1

@@@@

λ

λ

λ

λ

G′

0

(b)

Figure 4: (a) The λ-nodes are extracted from fan-nodes. (b) The λ-nodes
meet suitable @-nodes

15

G′

1

G′

0

(a)

G′′

0

λλλλ

G′

1

(b)

Figure 5: (a) The result of the second phase of reduction. (b) Second-order
λ-nodes begin to reduce

several places and the lower one because different terms are substituted for
a variable depending on which place is taken into account. This ends the
second phase of the reduction (the reduction of 3rd-order redexes).

The last phase of the reduction begins — the reduction of 2nd-order
redexes. These redexes occur as on Figure 5(b) and begin to interact with
the graph G′

1. As the 2nd-order variable that took part in the 3rd-order
reduction (the lambdas of which were multiplied on Figure 4(a)) can occur
in several places inside G′

1, several @-nodes will take part in the reduction
of 2nd-order redexes. We can see these @-nodes on Figure 6(a). As this
multiplication concerns only one variable, we have a fan-node that performs
this operation — also visible on Figure 6(a).

The fan-nodes that meet begin to interact. The result of the interaction
is depicted on Figure 6(b) where it is denoted by the letter F. When we zoom
the area denoted by F we will see a complicated web of links which is shown
on Figure 7. The next step to perform is to push @-nodes through fan-nodes.
The result of performing such a step is partially shown on Figure 8(a). Each
upper fan-node gets multiplied as it must go into two edges outgoing from
each @-node. The next phase is to push λ-nodes through fan-nodes and
perform β-redexes. The result of these operations is depicted on Figure 8(b).
The left, big fan-node indicates that the body of the applied function goes
into the place where application was situated previously. The right, big
fan-node indicates that arguments of the application are placed in variables.

Definition 15 (the algorithm for 4th order)

16

G′′

0

λλλλ

G′′

1

@@@

(a)

G′′

0

λλλλ

G′′

1

@@@

F

(b)

Figure 6: (a) Multiple occurrences of 2nd-order variables with surrounding
@-nodes. (b) Fan-nodes interact

Figure 7: The interaction of fan-nodes

17

G′′

0

λλλλ

@

G′′

1

@

@@@@

F’

base type

(a)

G′′

0

@

G′′

1

@

F”

base type

(b)

Figure 8: (a) One application goes between fan-nodes. (b) After pushing
λ-nodes through fans, applications are reduced

Let M1 and M2 be the input data for the algorithm. The algorithm reduce 4th

proceeds performing the following steps:

1. Translate the term M1 into corresponding graph.

2. Perform one by one all the existing β-reductions (after performing a
reduction step mark the edge that goes from the argument; in future
reductions in this phase, omit redexes with such an edge going out of
a λ-node).

3. Clear all the markings.

4. Push all the fans through λ-nodes.

5. Perform one by one all the existing β-reductions (again with marking).

6. Perform all the interactions between fans and afterwards push all the
fans through λ- and @-nodes.

7. Perform one by one all the existing β-reductions.

8. Perform the read-back of the resulting graph; if the result is larger
than the term M2 to be equated: fail. Let M3 be the result of the
read-back.

9. If M2 ≡α M3 then success else fail.

18

In order to precisely describe the complexity we need a special notion
called level of redex.

Definition 16 (level of a redex)

Let us define a special kind of reduction where

(λx.M)N →β′ M [x := N∗]

where N∗ is the term N with a special marking (the marking should be
understood as a new kind of language symbol similar to the application or
abstraction, i.e. the marking is applied locally not throughout the whole
term N and thus is not visible in redexes inside N). Note that we forbid
the reduction

(λx.M)∗N →β M [x := N∗].

Of course, all the reductions performed in this framework may be performed
as the usual β-reduction. Thus paths of β′-reduction may be treated as paths
of β-reduction. On the other hand, each path of β-reduction M1, . . . , Mn

may be presented as M1, . . . , Mi1 , Mi1+1, . . . , Mi2 , . . . , Mik−1+1, . . . , Mik where
redexes between terms Mij+1, . . . , Mij+1+1 can be performed using β′-reduction
and Mij+1+1 is a β′-normal form. The β-redexes in j-th such section are
called redexes of the level j.

It is easily verified that each reduction of a term with redexes with order
at most n has redexes of order at most n−2. If n is the highest order of the
redex in a term then redexes of the order n are reduced during the 0-level
section, the redexes of the level n− 1 are reduced during the 1-level section
and so on. Also the notion of level of a redex straightforwardly translates
to graph reduction. The algorithm for 4th order reduction needs redexes of
order at most 2. The redexes of level 0 are reduced in the step (2) of the
algorithm, the redexes of level 1 are reduced in the step (5) of the algorithm
and at last redexes of level 2 are reduced in the step (7) of the algorithm.

Theorem 5.1 (the algorithm reduce 4th is in PSPACE)

Let M1 have redexes of order at most 4 and M2 be in normal form. The

algorithm reduce 4th results in success on these terms iff M1 →∗

β M2.

Moreover, reduce 4th needs only O(n3) space to run.

Proof:

The algorithm is correct as it is only a strategy in an optimal reduction
algorithm.

Let us analyse the complexity of the algorithm. Let n be the size of the
input for reduce 4th.

The point (1) is the matter of usual syntax analysis and may be per-
formed in O(n) time and thus in O(n) space.

19

The point (2) does not add any new nodes to the reduced graph and
requires a simple walk through the graph so may be performed in O(n) time
and thus in O(n) space (see Figure 3).

The point (3) is again linear since it requires a walk through the graph
in hand while the size of the graph is linear.

The point (4) requires multiplication of λ-nodes and fan-nodes. This
multiplication is performed as on Figure 4(a) and so the number of new
λ-nodes is bounded by k1 · k2 where k1 is the number of variables that take
part in the step (2) of the algorithm and k2 is the number of variables that
are in the arguments of the former variables in the input. This gives the
O(n3) space. The fan-nodes are replicated only O(n) times as the number of
variables that take part in the step (2) majorises the number of replications.

The point (5) is a usual walk through the graph in hand. As the size of
the graph is O(n3), the time and thus the space is O(n3).

The point (6) (see Figure 5(b), Figure 6, and Figure 8) requires a copying
of fan-nodes, then a copying of @-nodes, λ-nodes and fan-nodes. As the
result of the first operation of copying, we obtain at most k3 · k4 fan-nodes
where k3 is the number of redexes of level 0 and k4 is the number of places
where a second-order symbol occurs. Both these numbers may be bounded
by n so the final number of nodes is O(n2). The @- and λ-nodes occur at
most the same number of times so again the number is majorised by O(n2).
At the same time the fan-nodes duplicate so we obtain O(n2) nodes.

The point (7) is a usual walk through the graph in hand. As the size of
the graph is O(n3), the time and thus the space is O(n3).

The point (8) gives the size O(n3) as it cannot produce an output which
is greater than n and it must walk through the graph in hand.

The point (9) needs O(n) space.
There are of course also bracket- and croissant-nodes. The number of

them is closely connected to the number of fan-nodes so we do not mention
analysis of complexity for them.

This altogether gives O(n3) space.

5.2 Fourth order β-reduction is PSPACE-hard

We present a PTIME reduction of the QBF problem to the 4th order reduc-
tion problem.

The translation is defined as follows

Definition 17 (translation from QBF to λ→)

The translation from QBF to λ→ has as an input a QBF sentence φ and as
a result two terms M1 and M2. We put M1 = Q2L(φ) and M2 = TRUE.
The function Q2L is defined by induction on the form of the QBF formula:

• Q2L(true) = TRUE;

20

• Q2L(false) = FALSE;

• Q2L(x) = x where x is a variable;

• Q2L(φ1 ∧ φ2) = AND(Q2L(φ1))(Q2L(φ2));

• Q2L(φ1 ∨ φ2) = OR(Q2L(φ1))(Q2L(φ2));

• Q2L(¬φ) = NOT(Q2L(φ));

• Q2L(∀x.φ) = ∀∀(λx.Q2L(φ))

• Q2L(∃x.φ) = ∃∃(λx.Q2L(φ))

Theorem 5.2 (QBF and λ→)

A QBF sentence φ is true iff the term Q2L(φ) reduces to TRUE.

Moreover, the term Q2L(φ) has redexes of order at most 4.

Proof:

We need a little bit extended version of the claim:

Let φ be a QBF formula with free variables in A = {x1, . . . , xn}.
The formula φ is true under the valuation v : A → {true, false}
iff the term Q2L(φ)[x1 := Q2L(v(x1)), . . . , xn := Q2L(v(xn))] re-
duces to TRUE.

The proof is by straightforward induction on the structure of φ and is left
for the reader.

The redexes in the result of translation occur in subterms beginning
with AND, OR, NOT,∀∀,∃∃. The type for AND, OR and NOT is of order 3.
These terms take as arguments values of the type α → α → α (which is
the type of booleans TRUE and FALSE). The type for ∀∀ and ∃∃ is more
complicated and is of order 4. These terms take an argument of the type
(α → α → α) → α → α → α. No other terms occur in redex positions in
translated terms.

Theorem 5.3 (the running time for Q2L)

The translation from QBF to λ→ can be performed in O(n log n).

Proof:

Parsing of QBF formulas using usual syntax analysis methods can be per-
formed in O(n) time. The result of the parsing is a pointer structure rep-
resenting the formula. This pointer structure may be traversed recursively
in order to obtain the term defined by Q2L. The recursive traversal needs
to visit each node of the pointer structure once and we need log n storage
for recursive step. Thus the traversal may be performed in O(n). At last
we add the TRUE term in constant time, so the whole procedure runs in
O(n log n) time.

21

6 Acknowledgements

I would like to thank Damian Niwiński for his hints concerning good prob-
lems to reduce from.

References

[AG98] Andrea Asperti and Stefano Guerrini, The optimal implementation

of functional programming languages, Cambridge University Press,
1998.

[AL93] Andrea Asperti and Cosimo Laneve, Interaction Systems II: the

practice of optimal reductions, Tech. Report UBLCS-93-12, Labo-
ratory for Computer Science, Universitá di Bologna, 1993.

[Bar92] H. P. Barendregt, Lambda calculi with types, Handbook of Logic
in Computer Science (S. Abramsky, D. M. Gabbay, and T. S. E.
Mainbaum, eds.), vol. 2, Oxford University Press, 1992, pp. 117–
309.

[Bus87] S.R. Buss, The boolean formula value problem is in ALOGTIME,
Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, ACM Press, 1987, pp. 123–131.

[HK96] G. Hillebrand and P. Kanellakis, On the expressive power of simply

typed and let-polymorphic lambda calculi, Proceedings of the 11th
IEEE Conference on Logic in Computer Science, 1996, pp. 253–263.

[Lam90] John Lamping, An algorithm for optimal lambda calculus reduc-

tions, Proceedings of 17th ACM Symposium on Principles of Pro-
gramming Languages, 1990, pp. 16–30.

[Mai92] H. Mairson, A simple proof of a theorem of statman, Theoretical
Computer Science (1992), no. 103, 213–226.

[Pap95] Ch. H. Papadimitriou, Computational complexity, Addison–
Wesley, 1995.

[Sch91] H. Schwichtenberg, An upper bound for reduction sequences in the

typed λ-calculus, Archive for Mathematical Logic (1991), no. 30,
405–408.

[Sta79] R. Statman, The typed λ-calculus is not elementary recursive, The-
oretical Computer Science (1979), no. 9, 73–81.

22

