
Biharmonic Many Body Calculations for Fast
Evaluation of Radial Basis Function Interpolants

in Cluster Environments

George Roussos and B.J.C. Baxter

Imperial College, 180 Queen’s Gate, London SW7 2BZ, U.K.

Abstract. This paper discusses the scalability properties of a novel al-
gorithm for the rapid evaluation of radial basis function interpolants.
The algorithm is associated with the problem of force calculation in
many-body calculations. Contrary to previously developed fast summa-
tion schemes including treecodes and fast multipole methods, this algo-
rithm has simple communication patterns which are achieved by exploit-
ing the localisation and smoothness properties of radial basis functions.
Thus, the algorithm is scalable even in low bandwidth environments like
clusters of workstations and even for relatively small problem sizes.

1 Introduction

Recent results show that the radial basis function method produces high quality
solutions to the multivariate scattered data interpolation problem, especially in
higher dimensions. On the other hand, the method is associated with higher com-
putational cost when compared against alternative methods, such as finite ele-
ments or multivariate spline interpolation. Indeed, solving directly the interpola-
tion equations for N data points requires O(N3) floating-point operations, while
direct evaluation of the resulting interpolant at M locations requires O(MN)
floating-point operations.

Several attempts aiming at the reduction of the computational complexity of
both the calculation and the evaluation tasks have produced a number of novel
algorithms. For example, rapid evaluation of radial basis function interpolants
has been achieved using a variety of methods including subtabulation on a regu-
lar grid, treecodes, moment based methods and the fast multipole method. In [9]
a method based on the Fast Gauss Transform and suitable quadrature rules has
been developed. This method exploits fundamental smoothness and localisation
properties of the radial basis function method to achieve high performance.

In this paper, we explore the performance of the method developed in [9]
in the context of a cluster of workstations. Indeed, we discover that due to the
regularity of its computational structure the method performs very well even in
low bandwidth environments and small problem sizes.

2 Fast Evaluation of Radial Basis Function Interpolants

Radial Basis Function interpolation has the form

s(y) =
N∑

i=1

λiϕ(‖y − xi‖), (1)

where λi are real coefficients, xi points in IRd called centres, ‖·‖ the Euclidean
norm and ϕ the basis function. The function ϕ : IR+ → IR is unary and radially
symmetric with respect to the norm, in the sense that it has the symmetries
of the unit ball in IRd. The coefficients λi are chosen so that the interpolation
conditions are satisfied, that is

s(xi) = f(xi) = fi, i = 1, 2, . . . , N, (2)

where fi is the value of the interpolated function f at location xi ∈ IRd.
Examples of useful choices of ϕ include the Gauss kernel, the Euclidean

distance, the biharmonic Hardy Multiquadric

ϕ(r) =
√

r2 + c2, (3)

and the Inverse Multiquadric which is exactly the inverse of (3).
Solving the interpolation problem (2) is equivalent to solving the system of

linear equations Aλ = f , where A is the interpolation matrix Aij = ϕ(‖xi −
xj‖), λ is the vector of coefficients (λ1 λ2 . . . λN)T and f is the vector of
function values (f1 f2 . . . fN)T . It is clear that the solution of the interpolation
equations directly requires O(N3) floating point operations, while the form of
the interpolant (1) implies that evaluating s at M points y1, y2, . . . , yM , directly
requires O(MN) operations.

Beatson and Newsam [2] first noted the intimate relation between the many
body problem and the evaluation of the radial basis function interpolant. Fur-
thermore, they exploited this observation to develop the mathematical frame-
work required for the introduction of fast evaluation methods for a particular
radial basis function in two dimensions. Indeed, in [2] the Laurent and Taylor
expansions required by the Fast Multipole Method (fmm) in two dimensions
were constructed. These results were used by Powell [8] to introduce a fast algo-
rithm for the evaluation of radial basis function interpolants which is a higher
order treecode. This method uses a decomposition of the set of interpolation
centers similar to Appel [1] which results in observed computational complexity
of O(N log N) for fairly uniform distributions of centers. More recently, Beatson
has implemented a full fmm based on the results of [2] with reported perfor-
mance similar to that discussed in [4]. A variant of this method, whereby the
coefficients of the multipole expansion are not calculated directly but approxi-
mated is discussed by Suter [10].

In particular, the relation between the Hardy Multiquadric and many body
computations has received a physical justification. Indeed, Hardy [6] relates the

solution of an interpolation problem to simulation of the Earth’s geomagnetic
field by a biharmonic potential. The biharmonic approach has the advantage
over the use of a harmonic potential that the Earth is considered as a solid,
rather than a hollow body.

Finally, it is worth pointing out that the force calculation step of the many
body computation with the Plummer potential is exactly the evaluation of an
Inverse Multiquadric interpolant, where yi = xi are the locations of the point
masses λi.

3 Algorithm Description

One of the features that makes radial basis function interpolation a useful tech-
nique is the fact that a unique interpolant is guaranteed under weak conditions
on the location of the centres. Micchelli [7] specified these conditions by relat-
ing the interpolation matrix of several of the radial basis functions with almost
positive (or negative) definite functions. A by-product of this proof is a way to
represent certain radial basis functions as an integral of a Gaussian by a suit-
able measure. For example, we can prove that the Hardy Multiquadric can be
rewritten in terms of Gaussian kernel sums in the following way

s(y) = c

N∑

i=1

λi +
1√
2π

∫ ∞

0

e−sc2

√
s

· c
∑N

i=1 λi −
∑N

i=1 λie
−s‖y−xi‖2

s
ds, (4)

for centres xi, i = 1, 2, . . . , N and evaluation point y in IRd.
Formula (4) implies that two ingredients are required for the construction of

a fast evaluation algorithm: the first ingredient is a rapid summation scheme for
Gaussian kernels and the second a suitable quadrature rule for the approximation
of the integral. The first ingredient is provided by the Fast Gauss Transform of
Greengard and Strain [5] which will be discussed in following paragraphs. The
second ingredient in this case is provided by Gauss-Laguerre quadrature. Of
course, each radial basis function has a somewhat different integral represen-
tation and thus requires a suitable choice of quadrature rule (in [9] we have
identified such rules for the most commonly used functions). It is also worth
noting that the resulting algorithm works in any d-dimensional setting. This is
in contrast to the fmm where significant differences exist between the two and
the three dimensional cases. For briefness of exposition, in this paper we will con-
sider only the three-dimensional case and will not provide the error estimates
for the employed approximations.

By shifting the origin and re-scaling, we may assume that all the interpolation
centers and all the evaluation points lie within the unit cube B0 = [0, 1]× [0, 1]×
[0, 1]. This is a a convenient normalization and does not restrict the generality
of the method.

The first element of the Fast Gauss Transform is the observation that we
may express a Gaussian in IR3 as the Hermite expansion

e−s‖y−x‖2 =
∑

β≥0

1
β!

(√
s(x− C)

)β
hβ

(√
s(y − C)

)
. (5)

with hβ a Hermite function. Also, we may assume that the point y is contained
in the box B = {y ∈ [0, 1]3 : ‖y−C‖∞ < r/

√
2s} of side length r

√
2/s for some

r < 1 centered at C.
For centres x1, x2, . . . , , xN ∈ IR3 inside box B we can precompute the mo-

ments

Aβ =
1
β!

N∑

i=1

λi

(√
s(xi − C)

)β
, (6)

which we can then use to evaluate the Gaussian sum at a point y by

N∑

i=1

λi exp
(−s‖y − xi‖2

)
=

∑

β≥0

Aβhβ

(√
s(y − C)

)
. (7)

Thus, it is possible to approximate the Gaussian (7) in terms of the moments
(6). The second element of the fgt is the decomposition of the computational
space B0 into subboxes B of side length r

√
2/s parallel to the axes, for some

fixed parameter r. Each centre is assigned to the subbox B that contains it and
contributes only to the p3 moments of subbox B. At the end of the precomputa-
tion step, the p3 moments for each of the subboxes B have been computed. The
precomputation requires O(p3N) operations.

For the estimation of the fgt at a particular evaluation point y contained in
subbox D, we need to consider the influence of only some of the nearest neighbour
boxes of D. Indeed, due to the exponential decay of the Gauss kernel, its effect
on subboxes away from its centre may be insignificant within certain accuracy.
For example, taking into account only the (2l + 1)3 nearest neighbours to D,
introduces error bounded by Qe−2r2l2 . Hence, for r = 1/2 and l = 6 relative
accuracy of 10−7 is obtained. We will call the set of (2l +1)3 nearest neighbours
the interaction list of box D. Thus, in order to estimate the Gaussian sum on
the left side of (7) at point y, we have to accumulate the p3 moments for each
of the boxes B in the interaction list of D. Evaluation at a single point requires
O((2l + 1)3p3) operations. Overall, the computational complexity of the fgt is
O(p3N + p3(2l + 1)3M).

We now turn our attention to the second ingredient of our method, that is
the calculation of the integral form (4). We can approximate s using a q-term
generalised Gauss-Laguerre quadrature rule

s(y) = c

N∑

i=1

+
1√
2π

q∑

k=1

wkf(tk), (8)

where f(t) = (c
∑N

i=1 λi +
∑N

i=1 λie
−t‖y−xi‖2)/t. Thus, rather than evaluating

directly the sum of Inverse Multiquadrics at overall cost of O(MN) operations,

1: choose q, p and rto guarantee the required precision
2: compute the weights wk and nodes tk of the quadrature
3: for each quadrature node tk do
4: subdivide B0 into boxes of side at most

√
2/tk

5: end for
{start first stage: precompute moments}
6: for each centre xj do
7: for each quadrature node tk do
8: find the box C which contains xj

9: for β < p do
10: compute the contribution of xj to the moments Aβ

of box C using (6) on page 4
11: end for
12: end for
13: end for
{start second stage: evaluate moments}
14: for each evaluation point yi do
15: for each quadrature node tk do
16: find the box B that contains yj

17: for each of the (2l + 1)3 nearest neighbours of B do
18: accumulate the series (7) on page 4 truncated after p3

terms to obtain an approximation to the Gaussian with parameter tk

19: end for
20: accumulate the contribution of the k-th point of the quadrature rule (8)
21: end for
22: end for

Algorithm 1: Fast Summation of Hardy Multiquadrics.

we may evaluate q sums of Gaussians (one for each quadrature node tk) via
the Fast Gauss Transform in O(

q(N + M)
)

operations. Recall that the decrease
in the computational complexity of the latter task is due to the decoupling of
the precomputation of the moments of the points xi and the estimation of the
interpolant at points yj through the already computed moments.

The quadrature nodes tk are the zeros of the generalised Laguerre polynomial
L

(−1/2)
q (t) and the weights may be computed by a well-known formula. Overall,

the fast evaluation of Inverse Multiquadric interpolants may be performed by
Algorithm 1. Overall, the fast evaluation algorithm requires O(qp3N + qp3(2l +
1)3M) operations.

The Gaussian quadrature nodes and the corresponding weights may be com-
puted using one of a number of standard methods, for example using Gautschi’s
orthopol package [3]. From these, the weights and nodes for quadrature when
the Multiquadric or Inverse Multiquadric constant c is not the unit are calculated
by t∗k = tk/c2 and w∗k = wk/c.

4 Parallelism

In a clusted based environment Algorithm 1 has to compete against treecodes
and Fast Multipole Methods. Due to the regular communication/computation
patterns exhibited by Algorithm 1, we believe that it is significantly more scalable
even in relatively small problem sizes. Indeed, in this section we discuss the
observed performance of the algorithm in practise and discuss the implications
of this result.

In treecodes parallelism may be exploited in the tree building, moment accu-
mulation and moment evaluation stages. Cell-level synchronisation is required in
the tree building phase, when different processors try to simultaneously modify
the same part of the tree. For moment precomputation, a processor calculating
the moments of a specific cell needs to wait until the moments for all its children
have been computed. This requires the use of cell level mutexes to avoid depen-
dency conflicts. On the other hand, the moment evaluation stage requires only
communication between processors: the evaluation of the moments at a certain
point requires information of nearby centre locations and coefficients, along with
moment information for well separated cells. This information may be replicated
and there is no need for write backs.

Orthogonal Recursive Bisection (orb) [11] is currently the most successful
algorithm in achieving good data locality while preserving load balance. The aim
of the method is to provide data locality by explicitly partitioning the computa-
tional space and assigning the parts to the available workstations. The algorithm
subdivides recursively the computational domain in two parts with equal com-
putational cost. In this context, the computational cost of a particular region is
defined to be the total number of interactions between each point in this region
either with a centre or a cell. The assignment of domains to processors is done
using the following rule: Initially all processors are associated with the entire
domain. At each orb step, the processors are split in two groups and assigned
to one of the two subspaces. This process builds an orb tree1 which is separate
from the cell tree used in the sequential algorithm.

On the other hand, the algorithm discussed in this paper provides for a
clear approach to achieving both load balancing and data locality. Indeed, the
algorithm has two distinct stages: first the precomputation of the moments and
second the evaluation of the quadrature at a point. It is sufficient to split the set
of centres (for the first stage) and the set of evaluation points (second stage) into
subgroups of approximately equal size with arbitrarily selected members. Each
group may be stored locally to avoid communication overheads. At the end of the
first step a broadcast of each nodes moments is required and the accumulation
those computed at the other nodes. This is a relatively small amount of data,
independent of the number of centres and evaluation points.

An implementation of the above approach to exploit parallelism using a mes-
sage passing paradigm is straightforward and particularly effective given a static

1 This is only one of several data structures introduced specifically for the distributed
treecode and are not used by the sequential algorithm.

0 2 4 6 8 10 12 14 16
10

−1

10
0

10
1

workstations

lo
g(

tim
e)

 (
se

cs
)

Dec Alpha Workstation farm

−o− Ideal

−x− Actual

Fig. 1. Performance on the DEC Alpha cluster.

computational environment. On the other hand, it is often desirable to employ
unused processor cycles in idle or under-used machines to complete a large scale
computation. This algorithm offers the opportunity to do so, using its poten-
tial for adaptive parallelism. The problem decomposition approach we favour
is based on Piranha-type parallelism implemented using mpi 2.0 dynamic pro-
cesses. Our approach requires that for a given problem, client machines offering
a compute service request a part of the computation and return the result. Thus
each client consuming a part of the problem, the property which gives the name
to the method.

The testbed for the algorithm implementation consists of two clusters of
workstations. The first is assembled from commodity components and employs
ten Intel based personal workstations running Linux 2.2, a Unix-like operating
system. The nodes are connected over a standard Ethernet network (10Mbits/sec),
organised in a one dimensional torus topology. The second cluster consists of six-
teen high end Digital Unix 4.0 workstations connected over fast Ethernet and
organised in a star topology.

We have implemented the static version of the algorithm on the Alpha work-
station farm. Synchronisation was implemented with allreduce operations in a
spmd model. Even on relatively small problems (N = M = 32, 000) the method
scales very well. In this case, the i/o is local at the filesystem of each workstation
and data are distributed and collected using standard operating system services
rather than a distributed filesystem. The actual performance of the method is
shown in Figure 1. Note that for a problem of similar size the best scalable imple-
mentation of a treecode achieves approximately 65% efficiency [12, 11]. On the
other hand, the fast evaluation method examined here achieves in excess of 94%
efficiency. A treecode has achieved similar speedup only on a shared memory
multiprocessor.

The dynamic parallelism variant of the method also offers competitive per-
formance. In test runs between one and twenty workstations participated to the

computation. For a problem of size N = M = 108 it was possible to reduce the
computation time by a factor of eight on the low bandwidth cluster.

5 Conclusions

In this paper we have discussed the scalability properties of a rapid evaluation
method for Radial Basis Function. In contrast to hierarchical methods, this al-
gorithm exhibits a regular computation and communication structure due to the
localisation and smoothness characteristics of the radial basis function method.
This regularity results in predictable patterns which can be exploited to provide
for a scalable implementation even on low bandwidth clusters of workstations. In
particular, due to the intimate relation between the many body problem using
the Plummer potential and the evaluation of the Inverse Multiquadric, we antic-
ipate that a hybrid method can be devised which will benefit from the scalability
properties of Algorithm 1 for the computation of far filed interactions in many
body calculations.

References

1. A.W. Appel (1985) “An Efficient Program for Many-body Simulation”, SIAM J.
Sci. Stat. Comp., Vol. 6, No. 1, pp. 85-103.

2. R.K. Beatson and G.N. Newsam (1992) “Fast Evaluation of Radial Basis Func-
tions: Part I”, Comp. Math. Applic., Vol. 24, No. 12, pp. 7-19.

3. W. Gautschi (1994) “Algorithm 726: ORTHOPOL – A Package of Routines
for Generating Orthogonal Polynomials and Gauss-type Quadrature Rules”, ACM
Trans. Math. Soft., Vol. 20, No. 1, pp. 21-62.

4. L. Greengard (1987) The Rapid Evaluation of Potential Fields in Particle Sys-
tems, The MIT Press.

5. L. Greengard and J. Strain (1991) The Fast Gauss Transform, SIAM J. Sci.
Stat. Comput, Vol. 12(1), pp 79 - 94.

6. R.L. Hardy (1997) “The Mathematical Physics of a Biharmonic Approach to Dis-
turbing Potential based on Multiquadric Summation”, IMACS Conference on Radial
Basis Functions, May 27-29, Pacific Grove, CA.

7. C.A. Micchelli (1986) “Interpolation of Scattered Data: Distance Matrices and
Conditionally Positive Functions”, Constr. Approx., Vol. 2, pp. 11-22.

8. M.J.D. Powell (1993) “Truncated Laurent Expansions for the Fast Evaluation of
Thin-plate Splines”, Num. Alg., Vol. 5, No. 2, pp. 99-120.

9. George Roussos (1999) “Computation with Radial Basis Functions”, Ph.D. The-
sis, Imperial College of Science, Technology and Medicine, London, UK.

10. D. Suter (1993) “Multipole Methods for Visual Reconstruction”, SPIE Geometric
Methods in Computer Vision II, Vol. 2031, pp. 16-26.

11. M.S. Warren and J.K. Salmon (1992) “Astrophysical N-body Simulations using
Hierarchical Tree Data Structures”, Proceedings of Supercomputing 92, ACM Press,
pp. 570-572.

12. M.S. Warren and J.K. Salmon (1993) “A Parallel Hashed Oct-tree N-body
Algorithm”, Proceedings of Supercomputing 93, ACM Press, pp. 12-21.

