
ar
X

iv
:c

s/
01

08
01

9v
1

 [
cs

.D
C

]
 2

7
A

ug
 2

00
1

Scalable Unix Commands for Parallel

Processors: A High-Performance

Implementation⋆

Emil Ong, Ewing Lusk, and William Gropp

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, Illinois 60439 USA

Abstract. We describe a family of MPI applications we call the Parallel
Unix Commands. These commands are natural parallel versions of com-
mon Unix user commands such as ls, ps, and find, together with a few
similar commands particular to the parallel environment.We describe the
design and implementation of these programs and present some perfor-
mance results on a 256-node Linux cluster. The Parallel Unix Commands
are open source and freely available.

1 Introduction

The oldest Unix commands (ls, ps, find, grep, etc.) are built into the fingers
of experienced Unix users. Their usefulness has endured in the age of the GUI
not only because of their simple, straightforward design but also because of the
way they work together. Nearly all of them do I/O through stdin and stdout,
which can be redirected from/to files or through pipes to other commands. Input
and output are lines of text, facilitating interaction among the commands in a
way that would be impossible if these commands were GUI based.

In this paper we describe an extension of this set of tools into the parallel
environment. Many parallel environments, such as Beowulf clusters and networks
of workstations, consist of a collection of individual machines, with at least
partially distinct file systems, on which these commands are supported. A user
may, however, want to consider the collection of machines as a single parallel
computer, and yet still use these commands. Unfortunately, many common tasks,
such as listing files in a directory or processes running on each machine, can take
unacceptably long times in the parallel environment if performed sequentially,
and can produce an inconveniently large amount of output.

A preliminary version of the specification of our Parallel Unix Commands
appeared in [4]. New in this paper are a refinement of the specification based
on experience, a high-performance implementation based on MPI for improved
scalability, and measurements of performance on a 256-node Unix cluster.
⋆ This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research,
U.S. Department of Energy, under Contract W-31-109-Eng-38.

http://arxiv.org/abs/cs/0108019v1

The tools described here might be useful in the construction of a cluster-
management system, but this collection of user commands does not itself purport
to be a cluster-management system, which needs more specialized commands
and a more extensive degree of fault tolerance. Although nothing prevents these
commands from being run by root or being integrated into cluster-management
scripts, their primary anticipated use is the same as that of the classic Unix
commands: interactive use by ordinary users to carry out their ordinary tasks.

2 Design

In this section we describe the general principles behind this design and then
the specification of the tools in detail.

2.1 Goals

The goals for this set of tools are threefold:

– They should be familiar to Unix users. They should have easy-to-remember
names (we chose pt<unix-command-name>) and take the same arguments as
their traditional counterparts to the extent consistent with the other goals.

– They should interact well with other Unix tools by producing output that
can be piped to other commands for further processing, facilitating the con-
struction of specialized commands on the command line in the classic Unix
tradition.

– They should run at interactive speeds, as do traditional Unix commands.
Parallel process managers now exist that can start MPI programs quickly,
offering the same experience of immediate interaction with the parallel ma-
chine, while providing information from numerous individual machines.

2.2 Specifying Hosts

All the commands use the same approach to specifying the collection of hosts
on which the given command is to run. A host list can be given either ex-
plicitly, as in the blank-separated list ’donner dasher blitzen’, or implicitly
in the form of a pattern like ccn%d@1-32,42,65-96, which represents the list
ccn1,...,ccn32,ccn42,ccn65,...,ccn96.

All of the commands described below have a hosts argument as an (optional)
first argument. If the environment variable PT MACHINE FILE is set, then the list
of hosts is read from the file named by the value of that variable. Otherwise the
first argument of a command is one of the following:

-all all of the hosts on which the user is allowed to run,
-m the following argument is the name of a file containing the host names,
-M the following argument is an explicit or pattern-based list of machines.

Thus

2

ptls -M "ccn%d-myr@129-256" -t /tmp/lusk

runs a parallel version of ls -t (see below) on the directory /tmp/lusk on nodes
with names ccn129-myr,...,ccn256-myr.

2.3 The Commands

The Parallel Unix Commands are shown in Table 1. They are of three types:
straightforward parallel versions of traditional commands with little or no out-
put; parallel versions of traditional commands with specially formatted output;
and new commands in the spirit of the traditional commands but particularly
inspired by the parallel environment.

Table 1. Parallel UNIX Commands

Command Description

ptchgrp Parallel chgrp
ptchmod Parallel chmod
ptchown Parallel chown
ptcp Parallel cp
ptkillall Parallel killall

(Linux semantics)
ptln Parallel ln
ptmv Parallel mv
ptmkdir Parallel mkdir
ptrm Parallel rm
ptrmdir Parallel rmdir
pttest[ao] Parallel test

Command Description

ptcat Parallel cat
ptfind Parallel find
ptls Parallel ls

ptfps Parallel process
space find

ptdistrib Distribute files
to parallel jobs

ptexec Execute jobs in
parallel

ptpred Parallel predicate

Parallel Versions of Traditional Commands The first part of Table 1 lists
the commands that are simply common Unix commands that are to be run on
each host. The semantics for many of these is very natural – the corresponding
uniprocessor version of any command is run on every node specified. For example,
the command

ptrm -M "node%d@1-5" -rf old_files/

is equivalent to running

rm -rf old_files/

on node1, node2, node3, node4, and node5. The command line arguments to most
of the commands have the same meaning as their uniprocessor counterparts.

The exceptions ptcp and ptmv deserve special mention; the semantics of
parallel copy and move are not necessarily obvious. The commands presented
here perform one-to-many copies by using MPI and compression; ptmv deletes
the local files that were copied if the copy was successful. The command line
arguments for ptcp and ptmv are identical to their uniprocessor counterparts

3

with the exception of an option flag, -o. This flag allows the user to specify
whether compression is used in the transfer of data. In the future the flags may
be expanded to allow for other customizations. Handling of directories as either
source or destination is handled as in the normal version of cp or mv.

Parallel test also deserves explanation. There are two versions of parallel
test; both run test on all specified nodes, but pttesta logically ANDs the
results of the tests, while pttesto logically ORs the results of the tests. By
default, pttest is an alias for pttesto. This link allows the natural semantics
of pttest to detect failure on any node.

Parallel Versions of Common UNIX Commands with Formatted Out-

put The second set of commands in Table 1 may produce a significant amount
of output. In order to facilitate handling of this output, if the first argument to
ptfind, ptls, or ptcat is -h (for “headers”), then the output from each host
will be preceded by a line identifying the host. This is useful for piping into other
commands such as ptdisp (see below). In the example

$ ptls -M "node%d@1-3" -h

[node1.domain.tld]

myfile1

[node2.domain.tld]

[node3.domain.tld]

myfile1

myfile2

the user has file myfile1 on node1, no files in the current directory on node2,
and the files myfile1 and myfile2 on node3. All other command line arguments
to these commands have the same meaning as their uniprocessor counterparts.

To facilitate processing later in a pipeline by filters such as grep, we provide
a filter that spreads the hostname across the lines of output, that is,

$ ptls -M "node%d@1-3" -h | ptspread

node1.domain.tld: myfile1

node3.domain.tld: myfile1

node3.domain.tld: myfile2

New parallel commands The third part of Table 1 lists commands that are
in the spirit of the other commands but have no non-parallel counterpart.

Many of the uses of ps are similar to the uses of ls, such as determining
the age of a process (respectively, a file) or owner of a process (respectively, a
file). Since a Unix file system typically contains a large number of files, the Unix
command find, with its famously awkward syntax, provides a way to search the
file system for files with certain combinations of properties. On a single system,
there are typically not so many processes running that they cannot be perused
with ps piped to grep, but on a parallel system with even a moderate number
of hosts, a ptps could produce thousands of lines of output. Therefore, we have

4

proposed and implemented a counterpart to find, called ptfps, that searches
the process space instead of the file space. In the Unix tradition we retain the
syntax of find. Thus

ptfps -all -user lusk

will list all the processes belonging to user lusk on all the machines in a format
similar to the output of ps, and

ptfps -all -user gropp -time 3600 -cmd ^mpd

will list all processes owned by gropp, executing a command beginning with mpd,
that have been running for more than an hour. Many more filtering specifications
and output formats are available; see the (long) man page for ptfps for details.

The command ptdistrib is effectively a scheduler for running a command
on a set of files over specified nodes. For example, to compile all of the C files in
the current directory over all nodes currently available, then fetch back all the
resulting files, the user might use the following command:

ptdistrib -all -f ’cc -c {}’ *.c

Here, the {} is replaced by the names of the files given, one by one. See the man
page for more information.

The command ptexec simply executes a command on all nodes. To deter-
mine, for example, which hosts were available for running jobs, the user might
run the following command:

ptexec -all hostname

No special formatting of output or return code checking is done.
The command ptpred runs a test on each specified node and outputs a 0

or 1 based on the result of the test. For example, to test for the existence of the
file myfile on nodes node1, node2, and node3, the user might have the following
session:

$ ptpred -M "node1 node2 node3" ’-f myfile’

node1.domain.tld: 1

node2.domain.tld: 0

node3.domain.tld: 1

In this case, node1 and node3 have the file, but node2 does not. Note that ptpred
prints the logical result of test, not the verbatim return value.

The output of ptpred can be customized:

$ ptpred -M "node1 node2 node3" ’-f myfile’ \

’color black green’ ’color black red’

node1.domain.tld: color black green

node2.domain.tld: color black red

node3.domain.tld: color black green

5

This particular customization is useful as input to ptdisp, which is a general
display tool for displaying information about large groups of machines. As an
example, Figure 1 shows some screenshots produced by ptdisp.

The command ptdisp accepts special input from standard input of the form

<hostname>: <command> [arguments]

where command is one of color, percentage, text, or a number. The output
corresponding to each host is assigned to one member of an array of button
boxes.

As an example, one might produce the screenshot on the left in Figure 1 with
the following command:

ptpred -all ’-f myfile’ ’color black white’ \

’color white black’ \

| ptdisp -c -t "Where myfile exists"

to find on which nodes a particular file is present. The command ptdisp can

Fig. 1. Screenshots from ptdisp

confer scalability on the output of other commands not part of this tool set by
serving as the last step in any pipeline that prepares lines of input in the form it
accepts. Since it reads perpetually, it can even serve as a crude graphical system
monitor, showing active machines, as on the right side of Figure 1. The command
to produce this display is given in Section 3. The number of button boxes in the
display adapts to the input. When the cursor is placed over a box, the node
name automatically appears, and clicking on a button box automatically starts
an xterm with an ssh to that host if possible, for remote examination.

3 Examples

Here we demonstrate the flexibility of the command set by presenting a few
examples of their use.

– To look for nonstandard configuration files:

6

ptcp -all mpd.cfg /tmp/stdconfig; \

ptexec -all -h diff /etc/mpd.cfg /tmp/stdconfig \

| ptspread

This shows differences between a standard file and the version on each node.
– To look at the load average on the parallel machine:

ptexec -all ’echo -n ‘hostname‘ ; uptime’ | awk ’{ print $1 \

": percentage " $(NF-1)*25 }’ | sed -e ’s/,//g’ | ptdisp

The percentage command to ptdisp shows color-coded load averages in a
compact form.

– To continuously monitor the state of the machine (nodes up or down)

(echo "$LEGEND$: Active black green Inactive black red"; \

while true; do (enumnodes -M ’ccn%d@1-256’ \

| awk ’{print $1 ": 0"}’) ; sh ptping.sh ’ccn%d@1-256’; \

sleep 5; done) | ptdisp -t "Active machines" -c

We assume here that ptping pings all the nodes. This is admittedly ugly, but
it illustrates the power of the Unix command line and the interoperability of
Unix commands. The output of this command is what appears on the right
side of Figure 1.

– To kill a runaway job

ptfps -all -user ong -time 10000 -kill SIGTERM

4 Implementation

The availability of parallel process managers, such as MPD [2], that provide
pre-emption of existing long-running jobs and fast startup of MPI jobs, has
made it possible to write these commands as MPI application programs. Each
command parses its hostlist arguments and then starts an MPI program (with
mpirun or mpiexec) on the appropriate set of hosts. It is assumed that the pro-
cess manager and MPI implementation can manage stdout from the individual
processes in the same way that MPD does, by routing them to the stdout of
the mpirun process. The graphical output of ptdisp is provided by GTK+ (See
http://www.gtk.org).

Using MPI lets us take advantage of the MPI collective operations for scala-
bility in delivering input arguments and/or data and collecting results. Some of
the specific uses of MPI collective operations are as follows.

– MPI Bcast uses ptcp to move data to the target nodes.
– MPI Reduce, with MPI MIN as the reduction operation, is used in many com-

mands for error checking.
– MPI Reduce, with MPI LOR or MPI LAND as the reduction operation, is used

in pttest.

7

http://www.gtk.org

– MPI Gather is used in ptdistrib to collect data enabling dynamic reconfig-
uration of the list of nodes work is distributed to.

– Dynamically-created MPI communicators other than MPI COMM WORLD are
used when the task is different on different nodes. An example of this situa-
tion occurs when the target specified in the ptcp command turns out to be
a file on some nodes and a directory on others.

The implementation of ptcp is roughly that described in [5]. Parallelism is
achieved at three levels: writing the file to the local file systems on each host
is done in parallel; a scalable implementation of MPI Bcast provides parallelism
in the sending of data; and the files are sent in blocks, providing pipeline par-
allelism. We also use compression to reduce the amount of data that must be
transferred over the network. Directory hierarchies are tarred as they are being
sent.

A user may have different user ids on different machines. Whether these
scalable Unix commands allow for this situation depends on the MPI implemen-
tation with which they are linked. In the case of MPICH [3], for example, it is
possible for a user to run a single MPI job on a set of machines where the user
has different user ids.

5 Performance

To justify the claims of scalability, we have carried out a small set of experiments
on Argonne’s 256-node Chiba City cluster [1]. Execution times for simple com-
mands are dominated by parallel process startup time. Commands that require
substantial data movement are dominated by the bandwidth of the communica-
tion links among the hosts and the algorithms used to move data. Timings for a
trivial parallel task and one involving data movement are shown in Table 2. Our
copy test copies a 10MB file that is randomly generated and does not compress
well. With text data the effective bandwidth would be even higher. In Figure 2

Table 2. Performance of some commands

Number of Machines 1 11 50 100 150 241

Time in seconds of a parallel 5.6 8.1 10.5 12.2 13.8 14.3
copy of 10MB over Fast Ethernet

Time in seconds of a parallel 0.8 0.9 1.2 1.5 1.8 1.9
execution of hostname

we compare ptpc with two other mechanisms for copying a file to the local file
systems on other nodes. The simplest way to do this is to call rcp or scp in
a loop. Figure 2 shows how quickly this method becomes inferior to more scal-
able approaches. The “chi file” curve is for a sophisticated system specifically

8

developed for the Chiba City cluster [1]. This system, written in Perl, takes ad-
vantage of the specific topology of the Chiba City network and the way certain
file systems are cross-mounted. The general, portable, MPI-based approach used
by ptcp performs better.

0

5

10

15

20

0 50 100 150 200 250

Secs

Machines

’chi file’

✸

✸

✸
✸

✸

✸
✸

✸

’ptcp’

+

+

+

+

+ +

+
’rcp’

✷

✷

✷

Fig. 2. Comparative Performance of ptcp

6 Conclusion

We have presented a design for an extension of the classical Unix tools to the
parallel domain, together with a scalable implementation using MPI. The tools
are available at http://www.mcs.anl.gov/mpi. The distribution contains all the
necessary programs, complete source code, and man pages for all commands with
much more detail than has been possible to present here. An MPI implementa-
tion is required; while any implementation should suffice, these commands have
been most extensively tested with MPICH [3] and the MPD process manager [2].
The tools are portable and can be installed on parallel machines running Linux,
FreeBSD, Solaris, IRIX, or AIX.

References

1. Chiba City home page. http://www.mcs.anl.gov/chiba.
2. R. Butler, W. Gropp, and E. Lusk. A scalable process-management environment

for parallel programs. In Jack Dongarra, Peter Kacsuk, and Norbert Podhorszki,
editors, Recent Advances in Parallel Virutal Machine and Message Passing Inter-

face, number 1908 in Springer Lecture Notes in Computer Science, pages 168–175,
September 2000.

9

http://www.mcs.anl.gov/mpi

3. William Gropp and Ewing Lusk. MPICH. World Wide Web.
ftp://info.mcs.anl.gov/pub/mpi.

4. William Gropp and Ewing Lusk. Scalable Unix tools on parallel processors. In
Proceedings of the Scalable High-Performance Computing Conference, pages 56–62.
IEEE Computer Society Press, 1994.

5. William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Features

of the Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

10

