
Approved for public release; further dissemination unlimited

Preprint
UCRL-JC-143696

Effective Communication
and File-I/O Bandwidth
Benchmarks

R. Rabenseifner and A. E. Koniges

This article was submitted to
Euro Parallel Virtual Machine/Message Passing Interface 2001,
Santorini Island, Greece, September 23-26, 2001

May 2, 2001

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy



 DISCLAIMER
 
 This document was prepared as an account of work sponsored by an agency of the United States
Government.  Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California.  The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.
 
 This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.
 
 

 This report has been reproduced directly from the best available copy.
 

 Available electronically at     http://www.doc.gov/bridge   
 

 Available for a processing fee to U.S. Department of Energy
 And its contractors in paper from

 U.S. Department of Energy
 Office of Scientific and Technical Information

 P.O. Box 62
 Oak Ridge, TN 37831-0062
 Telephone:  (865) 576-8401
 Facsimile:  (865) 576-5728

 E-mail:    reports@adonis.osti.gov   
 

 Available for the sale to the public from
 U.S. Department of Commerce

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161

 Telephone:  (800) 553-6847
 Facsimile:  (703) 605-6900

 E-mail:    orders@ntis.fedworld.gov    
 Online ordering:     http://www.ntis.gov/ordering.htm     

 
 

 OR
 

 Lawrence Livermore National Laboratory
 Technical Information Department’s Digital Library

 http://www.llnl.gov/tid/Library.html
 

 



Effective Communication and File-1/0 
Bandwidth Benchmarks 

Rolf Rabenseifnerl and Alice E. Koniges2 

High-Performance  Computing-Center (HLRS), University of Stuttgart 
Allmandring 30, D-70550 Stuttgart,  Germany 

rabenseifnerQhlrs.de, 
wuu. hlrs . de/people/rabenseif ner/ 

konigesQllnl.gov, 
www . rzg . mpg . de/-ack 

Lawrence Livermore National Laboratory, Livermore, CA 94550 

Abstract. We describe the design and MPI implementation of two 
benchmarks created to characterize the balanced system performance of 
high-performance  clusters and  supercomputers: b-eff, the cornmunication- 
specific benchmark  examines the parallel message passing  performance 
of a system,  and  b-effio, which characterizes the effective 1/0 band- 
width.  Both benchmarks have two goals: a)   to  get  a  detailed insight 
into  the Performance strengths  and weaknesses of different parallel com- 
munication and I/O patterns,  and based  on this, b) to obtain a single 
bandwidth  number  that characterizes the average performance of the 
system namely communication and 1/0 bandwidth.  Both  benchmarks 
use a timedriven approach and loop over a variety of communication 
and access patterns  to characterize a system  in  an  automated fashion. 
Results of the two  benchmarks are given for several  systems  including 
IBM SPs, Cray T3E, NEC SX-5, and Hitachi SR 8000. After a redesign 
of b-effio, I/O bandwidth results for several compute  partition sizes are 
achieved in an  appropriate  time for rapid  benchmarking. 

1 Introduction and Design Criteria 

Characterization of a system's usable performance requires more than vendor- 
supplied tables such as peak performance or memory size. On the other  hand, 
a simple number characterizing the computational speed (as detailed by the 
TOP500 figures [8]) has much appeal in giving both  the user of a system and 
those procuring a new system a basis for quick comparison. Such application 
performance statistics  are  vital  and most often quoted in press releases, yet 
do  not  tell the whole story. Usable high-performance systems require a balance 
between this computational speed and  other  aspects in particular communication 
scalability and 1/0 performance. We focus on these latter areas. 

There  are several communication test  suites that serve to characterize relative 
communication performance and 1/0 performance. The key concept that differ- 
entiates the effective bandwidth benchmarks described here from these other 
test  suites is the use of sampling techniques to automatically scan a subset of 
the parameter space and pick out key features, followed  by averaging and use 
of maxima to  combine the results into a single numerical value. But this single 

http://rabenseifnerQhlrs.de
http://konigesQllnl.gov


value is only half of our goal. The detailed insight given by the numerous re- 
sults for each measured pattern is the second salient  feature.  Additionally,  both 
benchmarks  are  optimized  in  their  execution  time; b-eff needs about 3-5 minutes 
to examine its communication  patterns,  and b-eff-io, adjusted  appropriately for 
the slower 1/0 communication, needs about 30 minutes. To get detailed  insight, 
it is important to choose a  set of patterns  that reflects  typical  application kernels. 
Effective Bandwidth Benchmark: The effective bandwidth  benchmark (b-eff) 
measures the accumulated  bandwidth of the communication  network of parallel 
and/or  distributed  computing systems. Several message sizes, communication 
patterns, and methods  are used. A fundamental difference between the classical 
ping-pong benchmarks  and  this effective bandwidth  benchmark is that all pro- 
cesses are sending messages to neighbors in parallel, i.e., at  the same  time.  The 
algorithm uses an average to take  into  account that short  and long messages are 
transferred  with different bandwidth values in  real  application  scenarios.  The 
result of this benchmark is a single number, called the efectiwe bandwidth. 
Effective 1 / 0  Bandwidth Benchmark: Most parallel 1/0 benchmarks  and 
benchmarking  studies  characterize  the  hardware  and file system performance 
limits [I, 51. Often,  they focus on determining  conditions that maximize file sys- 
tem  performance. To formulate  b-effio, we first consider the likely 1/0 requests 
of parallel  applications using the MPI-1/0 interface [7]. This interface serves both 
to express the user7s needs in  a concise fashion and to  allow for optimized imple- 
mentations based on the underlying file system  characteristics [2,9,11]. Based 
on our  benchmarking goals, note that  the effective 1/0 bandwidth  benchmark 
(b-eff-io) should measure different  access patterns,  report  the  detailed  results, 
and  calculate an average 1/0 bandwidth value that characterizes the whole sys- 
tem.  Notably, 1/0 benchmark measures the  bandwidth of data transfers between 
memory and disk. Such measurements  are (I) highly influenced by buffering 
mechanisms of the underlying 1/0 middleware and filesystem details,  and (2) 
high 1/0 bandwidth on disk requires, especially on striped filesystems, that  a 
large  amount of data must be  transferred between these buffers and disk. On 
well-balanced systems an 1 / 0  bandwidth should be  sufficient to write or read 
the  total memory in approximately 10 minutes. Based on  this  rule,  an 1/0 
benchmark should be able to examine several patterns in 30 minutes  accounting 
for  buffer effects. 

2 Multidimensional Benchmarking Space 

Often,  benchmark  calculations  sample only a  small  subspace of a  multidimen- 
sional parameter  space. One extreme example is to measure only one  point.  Our 
goal here is to sample a reasonable amount of the relevant space. 
Effective Bandwidth  Benchmark For communication  benchmarks,  the ma- 
jor  parameters  are message size, communication patterns, (how many processes 
are  communicating in parallel, how many messages are sent in parallel  and 
which communication  graph is used),  and at least the communication  method 
(MPI-Sendrecv, nonblocking  or  collective communication, e.g., MPIAlltoallv). 
For  b-eff, 21 different  message  sizes are  used, 13 fixed  sizes (1 byte to 4 kb) 



~ .~~~~ 

and 8 variable sizes (from 4 kb  to  the 1/128 of the memory of each processor). 
The communication graphs  are defined in two groups, (a) as rings of different 
sizes and  (b) by a random polygon. Details are discussed later in the definition 
of the b-eff benchmark. A first approach [15,16] was based on the bi-section 
bandwidth, but it has violated some of the benchmarking rules defined in [3,4]. 
Therefore a redesign was  necessary. 
Effective 1 / 0  Bandwidth Benchmark: For 1/0 benchmarking, a huge num- 
ber of parameters exist. We divide the parameters  into 6 general categories. At 
the end of each category in the following list,  a first hint about handling these 
aspects  in b-eff-io is noted. The detailed definition of  b-eff-io  is given  in  Sec. 4. 

1. 

2. 

3. 

4. 

For 

Application parameters  are (a)  the size of contiguous chunks in the memory, 
(b)  the size of contiguous chunks on disk, which  may be different in the 
case of scatter/gather access patterns, (c) the number of such contiguous 
chunks that  are accessed with each call to a read or write routine,  (d) the 
file size, (e) the distribution scheme, e.g., segmented or long strides,  short 
strides,  random or regufar, or  separate files  for each node, and (f) whether 
or not the chunk size and alignment are wellformed,  e.g., a power of two or 
a multiple of the striping  unit. For  b-eff-io, 36 different patterns  are used to 
cover most of these aspects. 
Usage parameters are  (a) how many processes are used and  (b) how many 
parallel processors and  threads  are used for each process. To keep these 
parameters outside of the benchmark,  b-effio is defined as a maximum over 
these  parameters  and one must report the usage parameters used to achieve 
this maximum. Filesystem parameters  are also outside the scope of  b-eff-io. 
The major programming interface parameter is specification of which 1/0 
interface is used: Posix 1/0 buffered or raw, special filesystem 1/0 of the 
vendor’s filesystem, or MPI-I/O, which  is  used  in b-eff-io. 
MPI-1/0 defines the following orthogonal parameters: (a) access methods, 
Le., first writing of a file, rewriting or  reading,  (b) positioning method,  (c) 
collective or noncollective coordination, (d) synchronism, i.e.,  blocking or 
not. For b-effio  there is no overlap of 1/0 and  computation, therefore only 
blocking calls are used. Because explicit offsets are semantically identical 
to individual file pointers, only the individual and shared file pointers are 
benchmarked. All three access methods  and five different pattern  types im- 
plement a  major subset of this parameter space. 

the design of b-eff-io, it is important to choose the grid points based more 
on general application needs than on optimal  system behavior. These needs were 
a  major design goal in the standardization of MPI-2 [7].  Therefore the b-eff-io 
pattern types were  chosen according to  the key features of MPI-2. The exact 
definition of the  pattern  types  are given  in  Sec. 4 and Fig. 1. 

3 The Effective Bandwidth: Definition and Results 

The effective bandwidth is defined as (a) a logarithmic average  over the ring 
patterns  and  the random patterns, (b) using the average over all  message sizes, 



(c) and  the maximum over all the  three communication methods  (d) of the band- 
width achieved  for the given pattern, message  size and communication method. 
As formula, the  total definition can  be expressed as: 

b-eff = logavg 
( 1ogavgringpat.s  (a%L (mamthd (maxr,p(btingpat.,L,mthd,rep >>) ) 
, 1ogaVgrandompat.s  (a%L  (maxmthd (MaXr,p(brandompat.,L,mthd,rep )>) ) ) 

with bpat,l,mthd,rep = * (total  number of messages of a pattern  "pat") * 
looplength / (maximum time on each process for executing the communication 
pattern looplength times) 
Additional rules are: Each measurement is repeated 3 times (rep=1..3). The max- 
imum bandwidth of all  repetitions is used  (see max,thd in the formula above). 
Each pattern is programmed with  three methods. The maximum bandwidth of 
all methods is  used  (maxmthd). The measurement is done for different sizes of a 
message. The message length L has the following 21 values: L = IB, 2B, 4B, ... 
2kB, 4kB, 4kB*(a**l), 4kB*(a**2), ... 4kB*(a**8) with and 4kB*(a**8) = L,, 
and Lm, = (memory per processor) / 128 and looplength = 300 for the shortest 
message. The looplength is dynamically reduced to achieve an execution  time for 
each loop between 2.5 and 5 msec. The minimum looplength is 1. The average 
of the bandwidth of all messages sizes is computed (sumL (. ..) /21). A  set of ring 
patterns  and random patterns is used (see details section below). The average 
for all ring patterns  and  the average of all random  patterns is computed on the 
logarithmic scale (geometric average): 10gaV&-ingpatterns and logavg,a,dompatterns. 
Finally the effective bandwidth is the logarithmic average of these two values: 

Only for the detailed analysis of the communication behavior, the follow- 
ing additional  patterns are measured: a worst case cycle, a best and a worst 
bi-section, the communication of a two dimensional Cartesian  partitioning  in 
the  both directions separately  and  together, the same €or a  three dimensional 
Cartesian  partitioning, a simple ping-pong between the first two MPI processes. 
On communication methods: The communication is programmed  with sev- 
eral methods. This allows the measurement of the effective bandwidth indepen- 
dent of which MPI methods  are optimized on a given platform. The maximum 
bandwidth of the following methods is used: (a) MPI-Sendrecv, (b) MPIAlltoallv, 
and (c) nonblocking with MPI-Irecv and MPI-Isend and MPI-Waitall. 
On communication patterns: To produce a balanced measurement on any 
network topology, different Communication patterns  are used: Each  node sends, 
in each measurement, a messages to its left neighbor in a ring and receives such a 
message from its right neighbor. Afterwards it sends B message back to  its right 
neighbor and receives such a message from its left neighbor. Using the method 
MPI-Sendrecv, the two messages are sent one after the other in each node, if a 
ring has more than 2 processes. In all other cases, the two messages may be sent 
in parallel by the  MPI implementation. Six ring patterns  are used based on a one 
dimensional cyclic topology on MPI-COMM-WORLD: In the first ring pattern, 
all rings have the size 2 (except the last ring which may have the size 2 or  three). 
In the 2nd and 3rd ring pattern,  the size of each ring is 4 and 8 (except last 

logavg(logavg,i.g,,tternsr logavg,a,dompatterns). 



Table 1. Effective Benchmark Results 

rings, see [13]). In  the  4th and 5th ring pattern  the  standard ring size is max(l6, 
size/4)  and  max(32,  size/2). And in the  6th ring pattern, one ring includes all 
processes. For the random  patterns, one ring with all processes is used, but  the 
processes are  sorted by random ranks. The average is computed in two steps to 
guarantee that  the ring patterns  and  random  patterns  are weighted the same. 
On maximum message size L,=: On systems with sizeof(int)<64, L,, must 
be less or equal 128 MB, Le., L,, = min(128 MB, (memory per processor)/l28); 
on all other systems L,, is equal to  the 128th of the memory per processor. 

3.1 Effective Benchmark Results 

Table 1 shows some results on distributed  and  shared memory platforms. On 
some platforms, either the  total system was not available for the measurements 
or the system was not configured to be used by one dedicated MPI application. 
But the b-eflper processor column extrapolates to  the network performance if all 
processors are communicating to a neighbor. On  shared memory platforms, the 
results generally reflect  half of the memory-to-memory copy bandwidth because 
most MPI implementations have to buffer the message  in a  shared memory 
section. To compare these results with the  traditional  asymptotic ping-pong 
bandwidth for large message  sizes,  one should remember that b-eff is  defined 
as an average over several message sizes. In the last three columns, the result 
is based only on the maximum message size L,,,. In the last column, only the 
ring patterns  are used. Comparing the last two columns, we see the negative 
effect of random neighbor locations. Comparing the last column with ping-pong 
results from the vendor we  see the impact of communicating in parallel on each 
processor. For example, on a T3E the asymptotic ping-pong bandwidth is about 
300 MByte/s for 2 processors. In contrast, b-eff per processor is 210 MByte/s. For 



I PEO P E 1  PE2 F E 3  

pattern  type 0 

PEO PE1 P E 2  PE3 

pattern  type 1 

? E O  P E l  PE2 PEB 

pattern  type 2 

PEO PE1  PEZ  PE3 I 

pattern  type 3/4 
Fig. 1. Data  transfer  patterns used in b-effio. Each diagram shows the data  transferred 
by one MPI-1/0 write call. 

ring patterns,  there is virtually no degradation for larger number of processes. 
The measurement protocols can be found in [lo]. The Hitachi results  depend  on 
the numbering of the MPI processes on the cluster of SMP nodes: round-robin 
means, that  the numbering starts with the first processor on each SMP node, 
sequential means, that first all processors of the first SMP node are used,  and 
so on. The numbering has a heavy impact on the communication bandwidth of 
the ring patterns and therefore of the b-eff result. 

4 The 1 / 0  Benchmark: Definition  and Results 

The effective 1/0 bandwidth benchmark measures the following aspects: 
a set of partitions: a  partition is defined by the number of nodes used for the 
b-eff-io benchmark and - if a node is a multiprocessor node - by the number 
of MPI processes on each node, 

0 the access methods initial  write,  rewrite, and read, 
the pattern types (see Fig. 1): (0) strided collective access, scattering large 
chunks in memory with size L each with one MPI-1/0 call to/from disk chunks 
with size I ;  (1) strided collective access, but one read or write call per disk 
chunk; (2) noncollective access to one file per MPI process, i.e., on  separated 
files; (3) is the same as (2), but  the individual files are assembled to  one 
segmented file; (4) is the same as (3), but  the access to  the segmented file is 
done with collective routines. For each pattern type, an individual file is used. 
the contiguous chunk size is chosen wellfonned, Le., as a power of 2, and non- 
wellformed by adding 8 bytes to  the wellformed size, 
different chunk sizes, mainly 1 kB, 32 kB, 1 MB, and the maximum of 2 MB 
and 1/ 128 of the memory  size of a  node executing one MPI process. 

The  total list of patterns is  shown in Table 2. A pattern is a pattern  type 
combined with a fixed chunk size and alignment of the first byte1. The column 
“1” defines the contiguous chunks that  are written from memory to disk and 
vice versa. The value M ~ A R T  is defined as max(2MB, memory of one node / 
128). The column “L” defines the contiguous chunk in the memory. In case of 
pattern  type (0), non-contiguous fileviews are used. If E is less than L,, then in 
each MPI-1/0 read/write call, the L bytes in memory are  scattered/gathered 

The alignment is implicitly defined by the  data  written by a11 previous patterns in 
the  same  pattern  type 



Pattern 

0 1 MB 1 M B  0: I 0 
Type ]No. 

L U  1 

scatter, 
collect. 

shared, 
collect. 

Pattern L U  1 
T y p e  I No. 

lnon-coU. I I I 
4: same as patterns 25-33 34f 
segmented, 
collective 

Z W  = 64 

Table 2. The pattern  details used in b-effio 

to/fiom  the portions of I bytes at  the different locations on disk, see the left- 
most scenario in Fig. 1. In all other cases, the contiguous chunk handled by each 
call to MPI-Write or MPIRead is equivalent in memory and  on disk. This is 
denoted by “:=P in the L column. U is a  time unit. 

Each pattern is benchmarked by repeating the  pattern for a given amount of 
time. For write access, this loop is finished with a call to MPITile-sync.  This time 
is  given by the allowed time for a whole partition, e-g., T = 15 minutes, multiplied 
by U / C U / 3 ,  as given  in the table.  This time-driven approach allows one to limit 
the  total execution time. For the  pattern types (3) and (4) a fixed segment 
size must be computed before starting  the  pattern of these types. Therefore, the 
time-driven approach is substituted by a size-driven approach,  and the repeating 
factors are initialized based on the measurements for types (0) to (2). 

The b-eff-io value of one pattern type is defined as  the  total number of 
transferred bytes divided by the  total amount of time from opening till closing 
the file. The b-effio value of one access method is  defined as the average 
of all pattern types with double weighting of the scattering  type. The b-eff-io 
value of one partition is defined as  the average of the access methods with the 
weights 25 % for initial  write, 25 % for rewrite, and 50 % for read. The b-effio 
of a system is defined as  the maximum over any b-eff-io  of a single partition of 
the system, measured with a scheduled execution time T of at least 15 minutes. 
This definition permits the user of the benchmark to freely  choose the usage 
aspects and enlarge the  total filesize as desired. The minimum filesize is given 
by the bandwidth for an initial write multiplied by 300 sec (= 15 minutes / 3 
access methods). For using this benchmark to compare systems as in the TOP 
500 list, more restrictive rules are under development. 

4.1 Comparing Systems Using b-effio 

First, we test b-eff-io on two systems, the Cray T3E900-512 at HLRS/RUS in 
Stuttgart  and  an RS 6000/SP system at LLNL called “blue Pacific.” Figure 2 



4w 

350 

330 

250 

200 

150 

. . . .  
blue FIS 6woIsP  

T 

...p . . 

1 -  J 
2 4 8 16 32 64 128256512 - 2  4 8 16 32 64 128 256512 * l6 32 ’’‘ 512 

nmberd MPI processes number of MPt pmcesses number ol MPI pmesses 

Fig. 2. Comparison of b-effio for different  numbers of processes at HLRS and LLNL, 
measured partially  without pattern type 3. Here T is in seconds, b-effio releases 0,x 
(left pictures  and NEC on right picture) and release 1.x (right picture). 

shows the b-eff-io values €or different partition sizes and different values of T ,  the 
time scheduled for benchmarking one partition. All measurements were taken in 
a non-dedicated mode. 

Besides the different absolute values that correlate to  the amount of memory 
in each system, one can see  very  different behavior. For the T3E, the maximum 
is reached at 32 application processes, with  little  variation from 8 to 128 pro- 
cessors, i.e., the 1/0 bandwidth is a global resource. In contrast, on the IBM 
SP the 1/0 bandwidth  tracks  the number of compute nodes until  it  saturates. 
In general, an application only makes 1/0 requests for a small fraction of the 
compute  time. On large systems, such as those at the High-Performance Com- 
puting  Center at  Stuttgart and the Computing  Center at  Lawrence Livermore 
National Laboratory, several applications are  sharing the 1/0 nodes, especially 
during  prime  time usage. In this  situation, 1/0 capabilities would not be re- 
quested by a significant proportion of the CPU’s at the same time. “Hero” runs, 
where one application ties up the entire machine for a single calculation are rarer 
and generally run during non-prime time. Such hero runs can require the full 
1/0 performance by all processors at  the same time. The middle diagram shows 
that  the RS SOOO/SP fits more to this  latter usage model. 

The b-eff-io benchmark gives also a detailed insight into  the 1/0 bandwidth 
for several chunk sizes and  patterns.  The bandwidth is reported in a table that 
can be  plotted as in the pictures shown in each column in Fig. 3. The two dia- 
grams in each column show the bandwidth achieved  for writing and reading with 
different patterns  and chunk sizes. The  rewritingdiagrams  are  omited because 
they show similar values as the writingdiagrams on these platforms. On each 
diagram, the bandwidth is plotted on a logarithmic scale, separately for each pat- 
tern  type  and  as a function of the chunk size. The chunk size on disk is shown 
on a pseudo-logarithmic scale. The points labeled “+8” are  the non-wellformed 
counterparts of the power of two values. The maximum chunk size is different 
on the systems because the maximum chunk size  was  chosen proportional to  the 
usable memory size  per  node to reflect the scaling up of applications on larger 
systems. Further topics on b-eKio results  are discussed  in [6]. 



un6715 hwwtk 2.05% unicwmk CRAY T3E 

Ik +B 32k+8 IM +8 8M 
Fonlrguous chunks on d i d  [bytes] 

I 
I 

Ik +8 32k+8 1M +8 8M 
contiguous  chunks un disk [bytu] 

lk 4 32k+8 IM +8 2M 
wnliguouachunkson dish [byla] 

snS7 15 hwwl3e 2.0.5.Y unicosmk CRAY T3E 
lwoo0 r 

SUPERUX hwax5 10.t Rev1 SX-5 

1 

l k  4 3 2 k 4  1M c8 2M 
mntigucw chunks M disk pvtss] 

Fig. 3. Comparison of the results for optimal  numbers of processes on 
- 1BM RS 6000/SP blue Pacific at LLNL, 128 nodes used, bz f f io  = 63 MB/s, 
- Cray T3E900/512  at HLRS, 32 PES used, b-effio = 57 MB/s [12], 
- NEX SX5-5Be/32M2 at HLRS, 4 CPUs used, b-effio = 60 MB/s. 

In general, our. results show that  the b-eff-io benchmark is a very fast method 
to analyze the parallel 1/0 capabilities available for applications using the  stan- 
dardized MPI-1/0 programming interface. The resulting b-ef€io value summa- 
rizes 1/0 capabilities of a system in one significant 1/0 bandwidth value. 

5 The Time-Driven Approach 

Figure 2 shows interesting results. There is a difference between the maximum 
1/0 bandwidth  and the sampled bandwidth for several partition sizes. In the 
redesign from release 0.x to  1.x we have incorporated that  the averaging for 
each pattern type  can not be done by using the average of the bandwidth values 
for all chunk sizes. The  bandwidth of one pattern must be computed its the  total 
amount of transfered data divided by the  total amount of time used  for all chunk 
sizes. With  this approach, it is possible to reduce caching effects and  to allow a 
total scheduled time of 30 minutes for measuring all five patterns with the three 
access directions (write, rewrite,  read) for one compute partition size. 

Both benchmarks are proposed for the Top Clusters list [17]. For this,  the 1/0 
benchmark can be done automatically in 30 minutes for three compute  partition 
sizes. This is implemented by reorganizing the sequence of the experiments: First, 
all files are  written with the  three different compute partition sizes,  followed  by 
rewriting, and  then by all reading. Additionally, the rewriting experiments only 



use pattern  type 0. Of course, if one wants to achieve  very  specific results, one 
can  run  this  b-effio release 2.0 benchmark for the longer time  period  and  with 
all rewriting patterns included. 

6 Summary and Future Work 
In this paper we have described  in detail two  benchmarks, the effective band- 
width  and its 1/0 counterpart. We use these two benchmarks to characterize 
the performance of common computing platforms. We have shown how these 
benchmarks  can  provide both detailed insight into  the performance of high- 
performance  platforms and how they  can  reduce these data to a single number 
averaging  important  information  about that system’s  performance. We give sug- 
gestions for interpreting and improving the benchmarks, and for testing  the 
benchmarks  on one’s  own system. 

We plan to use this  benchmark to compare several additional  systems.  Both 
benchmarks will also be  enhanced to write an  additional  output  that can  be used 
in the  SKaMPI comparison page [14]. 

Acknowledgments 
The  authors would like to  acknowledge their colleagues and all the people that sup- 
ported  these  projects  with suggestions and helpful discussions. They would especially 
like to  thank  Karl Solchenbach and Rolf Hempel for productive discussions for the re- 
design of  b-ef€. We also gratefully acknowiedge discussions with  Jean-Pierre Prost and 
Richard Treumann of IBM. Work at LLNL was performed under  the auspices of the 
US. Department of Energy by University of California Lawrence Livermore  National 
Laboratory  under  contract No. W-7405-Eng-48. 

References 
1. Ulrich Detert, High-Performance I /O on Cray T3E; Peter W. Haas, Scalability  and 

Performance of Distributed I /O  on  Massively Parallel  Processors, Kent Koeninger, 
Performance  Tips for GigaRing  Disk I / O  40th Cray User Group Conf., June 1998. 

2. Philip M. Dickens, A Performance Study of Two-Phase I /U,  in D. Pritchard, 
J. Reeve (eds.), Proceedings of the  4th  Internatinal  Euro-Par Conference, Euro- 
Par’98, Parallel  Processing, LNCS-1470, pages 959-965, Southampton, UK, 1998. 

3. William Gropp  and Ewing Lusk, Reproducible Measurement of MPI Perfor- 
mance  Characteristics, in J. Dongarra et al, (eds.), proceedings of the  6th 
European PVM/MPI Users’ Group Meeting, EuroPVM/MPI’99, BarceIona, 
Spain,  Sept. 26-29, 1999, LNCS 1697, pp  11-18. (Summary on the web: 
uw.mcs.anl.gov/rnpi/mpptest/hownot .html). 

4. Rolf Hempel, Basic Message  Passing Benchmarks, Methodology and 
Pitfalls, SPEC Workshop on Benchmarking  Parallel and High- 
Performance Computing Systems, Wuppertal, Germany, Sept. 13, 1999, 
www.hlrs.de/mpi/b-effhempel-wuppertal.ppt. 

5. Terry Jones, Alice Koniges, R. Kim Yates, Performance of the JBM General  Par- 
allel File  System, to be published in Proceedings of the  International Parallel and 
Distributed Processing Symposium, May 2000. Also available as UCRL JC135828. 

6. Alice E. Koniges, Rolf Rabenseifner, Karl Solchenbach, Benchmark  Design for 
Characterization of Balanced  High-Performance  Architectures, in proceedings, 15th 
International Parallel and  Distributed Processing Symposium (IPDPS’OI), Work- 
shop on Massively Parallel  Processing, April 23-27, 2001, San Francisco, USA. 



7. Message  Passing  Interface Forum. MPI-2: Extensions to  the  Message-Passing In- 
terface, July  1997, wvu . mpi-f orum. org. 

8. Hans  Meuer,  Erich  Strohmaier,  Jack  Dongarra,  Horst  D.  Simon, TOP500 Super- 
computer  Sites, www . top500. org. 

9. J.P. Prost, R. Treumann, R. Blackmore, C. Harman,  R.  Hedges, B. Jia, A. Koniges, 
A. White, Towards a  High-Perfomance and  Robust  Implementation of MPI-IO on 
top of GPFS, EuroPar2000,  Munich,  August 2000,in A. Bode et al. (Eds.): Euro- 
Par 2000, LNCS 1900, pp. 1253-1262, 2000. (Springer-Verlag:  BerIin). 

10. Rolf Rabenseifner, Eflectiue  Bandwidth (b-eff) and 1/0 Bandwidth  (b-eff-io) 
Benchmark, www . hlrs . de/mpi/b-ef f / and www . hlrs . de/mpi/b-ef f -io/. 

11. Rajeev  Thakur,  William  Gropp,  and Ewing Lusk, On  Implementing MPI-IO 
Portably  and  with  High  Performance, in  Proc. of the Sixth  Workshop on 1/0 in 
ParalIel  and  Distributed  Systems,  pp 23-32, May  1999. www .mcs . an1 . gov/romio/. 

12. Rolf  Rabenseifner, Striped MPI-I/O, www. hlrs . de/mpi/mpi-t3e .html#StripedIO. 
13. Rolf  Rabenseifner, Ring Pattern List, Nov.  1999. 

www.hlrs.de/mpi/b_eff/ring_pattern~list&~.hlrs.de/mpi/b~eff/ringnutnbers.c 
14. Ralf  Reussner,  Peter  Sanders,  Lutz  Prechelt  and  Matthias  Muller, SKaMPI: A 

detailed,  accurate MPI benchmark, in  proceedings, 5th European  PVM/MPI  Users’ 
Group  Meeting, LNCS 1497,  pages  52-59,  1998. wwipd. ira .&a. de/-skampi/ 

15. Karl  Solchenbach, Benchmarking  the  Balance of Parallel Computers, SPEC Work- 
shop on Benchmarking  Parallel  and  High-Performance  Computing  Systems, Wup- 
pertal, Germany,  Sept. 13, 1999. 

16. Karl  Solchenbach,  Hans-Joachim  Plum and Gero  Ritzenhoefer, Pallas EJQective 
Bandwidth  Benchmark - source code and  sample  results, 
ftp://ftp.pallas.de/pub/PALLAS/PMB/EFF_B.gz. 

17. TFCC - IEEE www . ieeetf cc . org, and  Top  Clusters www . TopClusters . org. 

ftp://ftp.pallas.de/pub/PALLAS/PMB/EFF_B.gz

