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Abstract. Making a decision, an agent must consider how his outcome
can be influenced by possible actions of other agents. A ’best defense
model’ for games involving uncertainty assumes usually that the oppo-
nents know everything about the actual situation and the player’s plans
for certain. In this paper it’s argued that the assumption results in algo-
rithms that are too cautious to be good in many game settings. Instead,
a ’reasonably good defense’ model is proposed: the player should look for
a best strategy against all the potential actions of the opponents, still
assuming that any opponent plays his best according to his actual knowl-
edge. The defense model is formalized for the case of two-player zero-sum
(adversary) games. Also, algorithms for decision-making against ’reason-
ably good defense’ are proposed.
The argument and the ideas are supported by the results of experiments
with random zero-sum two-player games on binary trees.

1 Introduction

Under uncertainty, an agent must consider all the possible situations, called often
the possible worlds. Although he might not be able to distinguish between many
of them, the actual ’state of affairs’ severely influences the future course of action
and the final income the agent is going to gain.

A two-player poker game may be a good example. The set of possible worlds
Ω simply consists of all the possible card distributions. Suppose that MAX1 has
♥AKJ8 ♣7 in the actual game. Then MAX can restrict his reasoning to the
situations that seem plausible to him – namely, all the distributions where MAX
has ♥AKJ8 ♣7 (see figure 1). In most situations MAX can’t identify MIN’s
actual beliefs, because he doesn’t know which cards MIN actually possess. Note
however, that if MAX knew the actual world precisely, he would try to figure
out the set of situations that seem plausible to MIN, as well as MIN’s future
line of action. The set would consist of all the distributions where MIN has a
1 The agent of concern is often called the MAX player (since he should maximize his
output) in the theory of zero-sum games. His opponent is labeled MIN then – he
maximizes his output, which means that he tries to minimize the resulting score of
MAX.
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Fig. 1. The set of possible worlds Ω. In the actual game MAX has ♥AKJ8 ♣7, so he
can restrict the set to ΩMAX .

particular hand of five cards (in the example on figure 2: ♠97 ♥9 ♦10 ♣J). Note
that such a hand must contain no cards possessed by MAX because MAX knows
that MIN can’t have them.
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Fig. 2. The set of plausible worlds according to MIN – if w1 is the actual distribution.

This is the idea underlying the decision-making algorithms gvm and find-
optimal, proposed in this paper. The player can consider every world from Ω
separately – identifying the possible distributions of resources as well as possible
beliefs of the opponents. Then he can choose the action that gives him the highest
expected outcome over all the worlds.

2 Best Defense

In Game Theory, a player is assumed to play against optimal defense, since a ’ra-
tional opponent’ makes always the best decision. For zero-sum games this implies
that the opponent chooses the worst move from the player’s perspective. A best
defense model for imperfect information games was proposed in (Frank 1996),
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(Frank & Basin 1998a) and (Frank & Basin 1998b). It contains the following
assumptions:

1. MIN has perfect information about the situation,
2. MIN knows MAX’s actual strategy,
3. MAX’s knowledge is limited to just knowing the set of all possible situations

(worlds) Ω,
4. the strategy adopted by MAX must be a pure strategy.

MAX maximizes his expected payoff value (over Ω). The opponent (MIN) is
assumed to be omniscient; thus, he can maximize his payoff directly.

Since the problem of finding optimal strategy (even in such a simplified set-
ting) is NP-complete, there is a strong need for suboptimal but less complex
algorithms. A number of minimaxing algorithms – including vector minimax-
ing (vm) and payoff-reduction minimaxing (prm) – were proposed in (Frank,
Basin & Matsubara 1998) and (Frank & Basin 1998b). The algorithms were
then compared to the algorithm of Monte Carlo sampling (MC),2 based on clas-
sical minimaxing. In the competition an algorithm was claimed better if it was
finding strategies close to optimal more frequently than its competitor – within
the notion of ’optimality’ defined above. In a series of experiments on random
tree games, Monte Carlo sampling algorithm was definitely outperformed by prm
(and it turned out to be slightly worse than vm, too). However, it’s not clear
why an algorithm that plays very well against an omniscient opponent should
also win in a more realistic competition.

2.1 Experiments with Random Games

The experiment idea is strongly based on the experiments done by (Frank, Basin
& Matsubara 1998). The test was conducted for games on complete binary trees
of depth D. For any of N possible worlds from Ω a payoff is assigned to every
tree leaf; the payoff may be either 0 or 1. If a game ends in leaf l and world
w appears to be the actual world, the player wins the payoff value assigned to
(l, w), and the opponent loses the same amount. A possible world is described
with a list of payoffs for all the tree leaves in this world, called a payoff vector.
Thus, to generate a random game, one must generate a random payoff vector
for each world. Note that two different worlds can have same payoff vectors.

An example of such a game is shown on figure 3.
To make this a fair competition between algorithms – the competitors must

be provided with equal chances of winning. Say the algorithms are called A and
B. Now, for a particular (randomly generated) game:

1. first A plays as MAX and B as MIN. The strategies are identified and the
expected value of payoff computed (over Ω);

2. then the same game is played again – A plays as MIN and B as MAX;
3. at the end the difference between payoffs is computed. If the difference is

positive, A wins; if it’s negative then B is the winner.
2 (Corlett & Todd 1985), (Ginsberg 1999)
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Fig. 3. A game tree of depth D = 2 with N = 4 possible worlds

1000 games with MAX as a starting player and 1000 games with MIN as
a starting player were played during every such competition. The algorithms
involved in the competition were: MC, vm, prm, and the simplest algorithm for
finding the optimal strategy against ’best defense’ – checking all the possible
player’s strategies one by one (let’s name it opt-bd, for instance). The output of
every competition is described by A’s ’triumph supremacy’ (number of rounds
won by A minus rounds lost by A) and A’s payoff supremacy (the average ex-
pected payoff value per 1000 rounds). Most experiments were conducted for
games with D = 8, N = 1000, except the competitions involving opt-bd algo-
rithm – D = 4, N = 1000 (analyzing any game of more than 4 turns is practi-
cally infeasible for opt-bd). The results of the actual experiments are shown on
figure 4.

triumph supr. payoff supr.
MC vs. vm 3.4% 0.2
MC vs. prm 39.1% 9.2
vm vs. prm 33.9% 8.0

triumph supr. payoff supr.
MC vs. opt-bd 36.3% 7.1
vm vs. opt-bd 38.4% 8.1
prm vs. opt-bd 19.1% 4.2

Fig. 4. The competition output: triumph supremacy (in [%] of total rounds played)
and payoff supremacy (per 1000 rounds). Experiment setting: N = 1000 worlds; tree
depth D = 8 (array on the left), D = 4 (array on the right).

However, the setting of the experiment above may be somewhat misleading
since we implicitly assumed that both agents have the same knowledge. In real
situations most agents can at least eliminate some of the worlds from Ω as being
impossible. For instance, in card games every agent holds some cards in his
hand. He knows the cards he has, so he can exclude all the card distributions
inconsistent with this knowledge. Since different players have access to different
pieces of the reality – the worlds actually possible for MAX (ΩMAX ⊂ Ω) and
for MIN (ΩMIN ⊂ Ω) should differ in most cases.

New experiment: MAX and MIN find their strategies with respect to separate
sets of worlds considered to be possible. ΩMAX and ΩMIN are generated on
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random for every game. The players’ knowledge is assumed to be adequate, i.e.
the output is computed as the expected value of payoff over the worlds from
ΩMAX ∩ΩMIN only. Since there is one more random factor in the setting, 20000
games per round are played instead of 2000. The results are shown on figure 5.

triumph supr. payoff supr.
MC vs. vm 2.1% 2.1
MC vs. prm 21.7% 17.7
vm vs. prm 21.7% 14.1

triumph supr. payoff supr.
MC vs. opt-bd 18.8% 12.1
vm vs. opt-bd 20.4% 13.0
prm vs. opt-bd 10.6% 7.0

Fig. 5. The competition again: players’ belief sets are generated randomly. Experiment
setting: N = 1000 worlds; tree depth D = 8 (array on the left), D = 4 (array on the
right).

The results of the experiments show that it doesn’t have to be beneficial for
a player to assume that the opponent reaches the upper bound of his theoretical
capabilities (especially in the context of his knowledge about the actual situ-
ation). The cautious algorithms: prm and opt-bd were in fact outperformed by
Monte Carlo sampling, which was considered very suboptimal. A possible reason
lies in incoherence of the adopted best defense assumptions with the situations
being encountered in the actual games.

In perfect information games the opponent (given sufficient resources) plays
sub-optimally only by his own fault. He can always use the best defense strategy
since he can find it by minimaxing. The agents can always play best defense
in perfect information games (just by finding the strategies with minimax). On
the other hand, in games with incomplete information the opponent is seldom
able to fulfill the ’best defense’ assumption because his knowledge is insufficient.
Thus, the model makes the player assume a defense which is impossible to be
met in most cases.

3 Reasonably Good Defense

As the experiments showed, it is not beneficial for the player to overestimate
capacities of the opponent too much. The best defense model by Frank & Basin
refers clearly to the worst possible line of events, but this line is quite unlikely
to occur.

In a probabilistic framework a model of MIN’s beliefs is necessary. The model
should include MIN’s beliefs about the actual situation as well as beliefs about
the player’s beliefs. The beliefs may depend on the actual world and the state of
the game. MIN maximizes his expected payoff over Ω with respect to his actual
state of belief (i.e. he minimizes the payoff for MAX in zero-sum games). MAX
should maximize his expected payoff over Ω and the set of possible MIN belief
states.

Reasonably good defense model:

If nothing suggests the contrary, the opponent should be as-
sumed capabilities similar to the player. Thus, MAX’s knowledge
and skills, and his model of MIN should be symmetrical.
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In particular – if (in a given situation) no specific knowledge is available
about likelihood of some possible worlds or different opponent beliefs, equal
probabilities should be supposed a priori, also when modeling the beliefs of
other agents.

3.1 A Simple Case

The problem is often analyzed in a simplified version, when all the worlds are
equally probable by rule, but the agents can identify some of them as implausible
at some point of a game. MAX’s knowledge can be described as ΩMAX ⊂ Ω.
The player can’t know which worlds w ∈ Ω are considered to be plausible by the
opponent. However, he can restrict the set of possible MIN’s belief sets ΩMIN to
those beliefs which are consistent with his own knowledge – like in the example
presented on figures 1 and 2 back in section 1.

To evaluate a MIN node s, MAX may consider evaluations for all the possi-
ble opponent’s belief sets ΩMIN . (Gambäck et al. 1993) present an interesting
example of such an analysis, concerning Bridge bidding. The player sees his own
cards (hand) – so he can generate possible distributions from ΩMAX by assigning
the remaining cards to the other players (the authors call each of the alternative
assignments an R-deal). Every world (R-deal) w ∈ ΩMAX determines a MIN’s
belief set ΩMIN (w) – namely, ΩMIN (w) is a set of worlds which cannot be dis-
tinguished from w by the opponent (in the actual state of the game). In the
case of Bridge bidding, for instance ΩMIN (w) consists of all the distributions
w′ in which MIN has exactly the same cards as in w. Whenever MAX needs to
consider opponent’s decisions he can model the opponent’s view by generating
ΩMIN (w) for each w ∈ Ω 0

MAX (since analogous function ΩMAX(w) is needed to
model the opponent’s knowledge about the player’s possible beliefs, let’s rather
call the MAX’s actual belief Ω 0

MAX to avoid confusion).
Note that the actual shape of ΩMIN (w) depends on the game rules. For

instance, two players can’t possess the same card in a poker game. So if MIN
has ♦A1087 ♣J in a world w then ΩMIN (w) includes all the situations of MIN
having exactly ♦A1087 ♣J, and MAX having none of the cards (the rest of
the deck must contain none of these cards, too). However, this would not work
for Canasta, where two complete decks of cards are mixed and dealt – so two
different players can even possess hands of the same shape!

An algorithm for finding the decision against ’reasonably good defense’ (2
players, zero-sum game, no information about worlds’ likelihood except that
some worlds are actually impossible; the player’s belief doesn’t change when
moving to another game state – no information flow) is shown on figure 6. Gen-
eralized vector minimaxing (gvm) is a more universal version of algorithms like
Monte Carlo or vector minimaxing from (Frank et al. 1988). The algorithm has
been inspired by ideas from (Carmel & Markovitch 1996) and (Gambäck et al.
1993) – the player looks forward for his opponent’s decision in every possible
situation, and then maximizes his expected output against such defense. Gvm
allows to model the players’ knowledge on any arbitrary level, since the func-
tions ΩMIN , ΩMAX are assumed to mutually encode a player’s beliefs about his



266 W. Jamroga

gvm (Game, s, player, Worlds);
Generalized vector minimaxing. Returns the evaluation vector (eval[w1], ..., eval[wn])

for node s, together with the player’s chosen move. Parameters:

Game: game definition, including functions Succ(s) – returning the set of successors for

node s, Strat(player) – returning the set of all the possible player’s (complete) strategies,

payoff (l) – returning the MAX’s payoff vector (payoff (l)[w1], ..., payoff (l)[wn]) in leaf l,

ΩMIN (w), ΩMAX(w) – returning MIN’s and MAX’s beliefs in a particular world w;

s: game state (node);

player: the agent who makes a decision at this node (MAX or MIN);

Worlds: the agent’s actual belief (Ω 0
MAX or Ω 0

MIN in this case);

if Succ(s) = ∅ then return (nil, payoff (s));
else:

� for every s′ ∈ Succ(s) compute es′ = (es′ [w1], ..., es′ [wn]) as:

es′ [w] =
{

gvm(Game, s′,MIN, ΩMIN (w))[w] if player = MAX
gvm(Game, s′,MAX, ΩMAX(w))[w] if player = MIN

for every world w ∈ Ω;
� if player=MIN then return (s′, es′) such that

∑
w∈Worlds es′ [w] is minimal.

else return (s′, es′) such that
∑

w∈Worlds es′ [w] is maximal.

Fig. 6. Generalized vector minimaxing.

opponent’s beliefs as well as his beliefs about his opponent’s beliefs about his
beliefs etc.

Note that if

� ΩMAX(w) = Ω 0
MAX (the opponent knows the player’s state of belief)

then gvm(Game, s,MAX,Ω 0
MAX) returns the same strategy as the vector min-

imaxing algorithm proposed by Frank, Basin & Matsubara. If we also assume
that

� ΩMIN (w) = {w} (the opponent always knows the actual situation),

we obtain the instance of vector minimaxing that was actually used in (Frank
et al 1998).

On the other hand, if the game definition includes the following assumptions:

� ΩMIN (w) = {w},
� ΩMAX(w) = {w};

then gvm becomes equivalent to classical Monte Carlo minimaxing.
The main disadvantage of gvm is that it’s not always able to find the optimal

strategy – due to non-locality, a phenomenon observed originally in (Frank 1996),
and formalized in (Frank & Basin 1998a). The game tree on figure 3 demonstrates
the phenomenon well. Consider MAX’s decision at node b. If the analysis was to
be ’local’, MAX would have to prefer the left-hand branch, since his expected
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payoff equals 0.75 then (against 0.5 when following the right-hand branch). But
making decision at node b means that MIN has made his decision to move to b,
not to c, at node a. If we assume that MIN is rational, then his decision must
make sense – and it makes sense only when he believes that worlds w1, w2, w3
are irrelevant. In other words, w4 is obviously the only world considered possible
by MIN at this moment. If we assume that his beliefs are adequate (they can be
incomplete, but never false), then MAX has to restrict his computation to w4
alone, and therefore to pick up the right branch.

The implication of non-locality is that any ’compositional’ algorithm that
looks only forward, not backward, is bound to be suboptimal. Thus, the player
should evaluate his decisions against whole strategies of the opponent, not their
parts only. On the other hand, it’s not possible to simulate the opponent’s min-
imaxing over the whole game tree, because this would lead to an infinite loop.

Figure 7 presents an algorithm for finding the optimal strategy against rea-
sonably good defense. The algorithm is based on the equilibrium definition for
zero-sum games. It computes the minmax and the maxmin over the sets of play-
ers’ strategies, and if they lead to the same result then the optimum has been
found. Unfortunately, there is often no such an optimum. In this case findoptimal
returns the minmax strategy, which describes the lower bound of the outcome
the player can expect (since the assumption that the opponent always knows the
player’s strategy beforehand defines the upper bound of the opponent’s knowl-
edge). Another drawback of the algorithm is its computational complexity.

Note also that if the game definition includes the following assumptions:

1. ΩMIN (w) = {w},
2. ΩMAX(w) = Ω 0

MAX ;

then findoptimal(Game,MAX,Ω 0
MAX) computes the optimal strategy with

respect to the ’best defense model’ by Frank and Basin. In this sense their
’best defense’ is a special case of ’reasonably good defense’. Yet the opponent’s
omniscience is not assumed (in practice) to be an inherent property of games,
but has to be stated explicitly via ΩMIN , ΩMAX functions definition. Moreover,
the algorithm indicates whether it’s necessary to make any stronger claims about
the opponent’s knowledge to obtain a solution.

Finally, it is worth noting that – while gvm, as a minimaxing algorithm, has
to be suboptimal for games with incomplete information – it can probably be
improved in terms of accuracy. It demands for some reduction of the impact of
non-locality on the decision-making process. Frank, Basin and Matsubara has
already done it for traditional minimaxing within their ’best defense model’ –
prm algorithm is one of the results.

3.2 Computational Complexity

Not surprisingly, opt-bd is highly inefficient since it checks every possible player’s
strategy – its complexity is doubly exponential on the tree depth and linear on
the number of worlds (namely, o(N ∗ bbD

) – where b stands for the branching
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findoptimal (Game, player, Worlds);
The function returns the player’s chosen strategy. It indicates also whether the strategy

is optimal, or if it refers to the lower bound of the player’s actual output (when the optimum

doesn’t exist). The algorithm presented below defines the function for player = MAX. If

player = MIN , the algorithm is quite analogous.

[Function output computes the payoff value given a complete strategy pair and a par-

ticular world from Ω.]

For every str ∈ Strat(MAX):

� for every w ∈ Ω: let strvect[w] = str;
� for every w ∈ Worlds: min[w] = maximize(MIN, strvect,ΩMIN (w));
� let eval[str] =

∑
w∈Worlds output(str,min[w], w);

Let str1 be that str for which eval[str] is maximal;

For every strvect ∈ {Ω → Strat(MIN)} such that ∀w,v (v ∈ ΩMIN (w) ⇒
strvect(v) = strvect(w)):

� for every v ∈ Worlds: max[v] = maximize(MAX, strvect,ΩMAX(v));
� let eval[strvect] =

∑
w∈Worlds

∑
v∈ΩMIN (w) output(max[v], strvect[v], v);

Let strvect2 be that strvect for which eval[strvect] is minimal;

if eval[str1] = maxstr{∑
w∈Worlds output(str, strvect2[w], w)}

� then return (str1, optimum);
� else return (str1, bound);

maximize (Game, player, strvect, Worlds);
The function searches the set of all player’s strategies, trying to maximize the expected

payoff value over the given set of possible worlds against given opponent’s strategy vector.

Of course, MIN player wants to maximize his own payoff, i.e. to minimize the score defined

by the payoff function.

Argument strvect is a function of type Ω → Strat(MIN) for player = MAX, and

Ω → Strat(MAX) for player = MIN

if player =MAX then:

� return the strategy str ∈ Strat(MAX) for which∑
w∈Worlds output(str, strvect[w], w) is maximal;

� else: return the strategy str ∈ Strat(MIN) for which∑
w∈Worlds output(strvect[w], str, w) is minimal;

Fig. 7. Algorithm for finding the optimal play against reasonably good defense.
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factor of the game tree).3 That’s why suboptimal algorithms are useful: MC and
vm as well as prm have the time complexity of o(N ∗ bD) (exponential on the
tree depth, linear on the number of worlds).

When the opponent’s beliefs are taken into account, the complexity increases.
The complexity of findoptimal algorithm is o(N2(b

bD

2 )N+1), so in practical ap-
plications a suboptimal (but faster) algorithm is necessary. The complexity of
gvm is exponential on the tree depth and polynomial on the number of worlds:
o(ND ∗bD). The practical complexity of the algorithm may be slightly reduced if
we assume that players’ beliefs must be adequate: w ∈ ΩMIN (w), w ∈ ΩMAX(w)
for every w. Then the construction of evaluation vectors can be restricted to
w ∈ Worlds only (instead of all w ∈ Ω).

There is a number of methods that can be used to reduce the search time
at the expense of its accuracy. Sampling is often used to make the search feasi-
ble when the number of possible situations is huge; Gambäck, Rayner and Pell
(Gambäck et al. 1993) propose such an approach for the case of bridge bidding,
and Ginsberg’s successful GIB program (Ginsberg 1999) uses Monte Carlo sam-
pling in the complex domain of bridge card play. Evaluation approximator may
help to keep the search depth at a reasonable level – Gambäck et al. used a
trained neural network to implement such an approximation function, and they
reported good results. Also, pruning techniques and heuristic search can be used
for most domains of application.

3.3 More Experiments...

To test the new ideas against existing minimaxing algorithms, random binary
tree games can be used again. To provide a natural interpretation to the belief
functions ΩMIN , ΩMAX every game is treated as an ’imaginary card game’.
Every world from Ω is defined by two hands of c ’cards’ – one hand for each
player. The deck consists of n ’cards’. A player can play only either the lowest
or the highest card he possesses at the moment (when it’s his turn to move,
of course), so at any node (except the leaves) there are exactly two alternative
decisions that can be made, regardless of the actual hand the player possesses.
The payoffs for every leaf and each possible world are generated at random.

triumph supr. payoff supr.
gvm vs. MC 99.8% 94.9
gvm vs. prm 98.1% 76.0
gvm vs. vm 99.8% 90.5
gvm vs. opt-bd 98.9% 83.8

triumph supr. payoff supr.
MC vs. vm 2.7% 1.1
MC vs. prm 13.6% 5.2
vm vs. prm 34.8% 12.9
MC vs. opt-bd 77.2% 38.3
vm vs. opt-bd 85.9% 46.6
prm vs. opt-bd 80.8% 30.6

Fig. 8. Example results for n = 7, c = 3 cards (tree depth D = 4, N = 140 possible
worlds).
3 in the case of the experiments here: b = 2.
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Now, ΩMIN (w) is the set of worlds that cannot be excluded by MIN player
in world w. Namely, it consists of these worlds that assume MIN having the
hand he actually has. MIN’s beliefs about MAX’s beliefs, ΩMAX(w) are defined
in the same way. It is assumed that the players lead their cards secretly, i.e. the
opponent doesn’t know what card was played exactly – he knows only whether it
was the highest or the lowest one (the actual world is recognized by both players
no sooner than at the end of the game). Game parameters are: the tree depth
D = 2(c− 1), and the number of possible worlds N =

(
n
c

) · (
n−c

c

)
.

The gvm algorithm is played against other algorithms in a way similar to the
experiments before. For a particular game, the game is played for every world
(card distribution), and then the average value of payoff is computed. 1000 games
are played for every competition: 500 with MAX as the leading player, and 500
with MIN starting the game (only for n = 8, c = 3, 200 games has been played
due to complexity reasons). The results (triumph supremacy in [%] of total
rounds played; payoff supremacy – average/estimated payoff per 1000 rounds)
are shown on figures 8 and 9. Figure 8 shows also some example results of a
competition between the traditional algorithms to make the comparison more
thorough.
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Fig. 9. Triumph supremacy in [%] of total rounds played (left), and Payoff supremacy
per 1000 rounds (right).

In every competition gvm appeared to be at least 37.5% better than any
of the other algorithms (in terms of the triumph supremacy). Moreover, as the
game complexity increases, gvm starts to win practically 100% rounds.

The results reveal that algorithms like prm or opt-bd loose less than MC
or vm when played against gvm. However, when played against each other, the
previous pattern still holds: MC wins with vm, prm and opt-bd, vm wins with prm
and opt-bd etc. The reason lies probably in the fact that prm and opt-bd were
designed to play against a considerably more potent opponent. Thus, playing
against gvm they can benefit from their cautiousness. On the other hand, MC
and vm are apparently better off in games against an enemy of the same or
similar level of skill and knowledge.
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Another observation may be more surprising. When the tree depth increases,
the gap between the results of gvm grows rapidly – in terms of the payoff
supremacy as well as the frequency of winning. However, for a fixed D, gvm
seems to earn less average payoff if the number of possible worlds increases,
while still winning more and more rounds. This means that gvm succeeds to find
a superior strategy for more initial ’hands of cards’, but its expected payoffs for
every particular hand decrease. The reason is perhaps that when N grows, more
worlds are possible for any particular hand. Even a good algorithm can’t play
for all the worlds at the same time, so it is bound to fail in quite a number of
them. Thus, an average difference in payoffs decrease, although gvm is still able
to find a strategy better than the others. Moreover, when the tree depth is small,
there is a very limited amount of different payoff vectors available. Now, when
the number of worlds being considered at every node increase, it becomes more
likely that the actual Worlds set may be similar to some of ΩMIN (w) and/or
ΩMAX(w) sets. Which means that gvm minimaxes over similar payoff vectors as
its competitors in many games.

3.4 Generalizations

The games analyzed so far were constrained by several important simplifications.
More realistic setting should include the following issues:

– for a game node (state) s: not every move (arc) can be taken in a particular
situation w ∈ Ω. Example: a player can lead A♠ only when he has A♠;

– most moves introduce new information. Example: the opponent led A♠.
Now, all the worlds in which he hadn’t A♠ can be regarded as impossible;

– payoff values for a leaf l are defined only in these worlds in which we can
access the leaf. In fact, the players know the situation (more or less) after
the last move in many games. Thus – for a particular leaf – payoffs in most
worlds make no sense.

To incorporate this perspective, the following assumptions can be made:

– payoff vector is a partial function – payoff (l) : Ω ⇀ R (values for some
l, w can be undefined: payoff (l)[w] = undef). It’s good to assume that:
a+ undef = a · undef = max(a, undef) = min(a, undef) = a;

– legal moves are determined by a function Acc. Acc(s) denotes the set of
worlds in which node s is accessible. Acc can be implemented as follows:
1. if s is a leaf then Acc(s) = {w ∈ Ω : payoff (s)[w] 
= undef},
2. otherwise Acc(s) =

⋃
s′∈Succ(s)Acc(s

′).
– every move can reveal some new information, so the beliefs may change as
the state changes – ΩMAX , ΩMIN : State×Ω → P(Ω).
The resulting structure resembles in a way the semantics underpinning

LORA, a complex modal logic for BDI agents proposed in (Wooldridge 2000) –
with the game tree defining the branching of time, and ΩMAX , ΩMIN standing
for the belief accessibility relations – although LORA proceeds with qualitative,
not probabilistic approach to beliefs.

Next generalization:
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gvm (Game, s, player, belief);
Generalized vector minimaxing. Returns the evaluation vector (eval[w1], ..., eval[wn])

for node s, together with the player’s chosen move. Parameters:

Game: game definition, including functions Succ : State → P(State) – returning the

set of successors for each node, payoff : State × Ω → R – returning MAX’s payoffs,

BelMIN ,BelMAX : State × Ω → ((Ω → [0, 1]) → [0, 1]) – beliefs about the likelihood of

particular opponent’s beliefs in a particular situation;

s : State – the game state being considered;

player : {MAX, MIN} – the agent who makes the decision at the state;

belief : Ω → [0, 1] – the agent’s actual belief (a probability function);

if Succ(s) = ∅ then return (nil, payoff (s));
else:

� for every s′ ∈ Succ(s), w ∈ Ω, and for every possible opponent’s belief
oblf simulate the opponent’s minimaxing:

opps′ [oblf , w] =
{

gvm(Game, s′,MIN, oblf )[w] if player = MAX
gvm(Game, s′,MAX, oblf )[w] if player = MIN

� compute the expected payoff for every s′ ∈ Succ(s), w ∈ Ω:

es′ [w] =
{∑

oblf BelMIN (s, w, oblf ) · opps′ [oblf , w] if player = MAX∑
oblf BelMAX(s, w, oblf ) · opps′ [oblf , w] if player = MIN

� if player=MAX then return (s′, es′) such that
∑

w∈Ω belief (w) · es′ [w] is
maximal.
else return (s′, es′) such that

∑
w∈Ω belief (w) · es′ [w] is minimal.

Fig. 10. Generalized vector minimaxing revisited.

– players may be able to determine some probabilities for the possible worlds
– not only to tell which worlds are plausible and which implausible now.
Thus, an actual belief may be a probability function [0, 1] → Ω instead of
being just a subset of Ω;

– in a given state of a game (and a world), more than 1 belief may be possible
within the opponent’s model. This would mean that the player doesn’t know
the opponent’s reasoning scheme precisely and is bound to guess which belief
states can result from the opponent’s information analysis. He may also
consider some of the possible opponent’s beliefs more likely than the others.

A new version of gvm that takes the new possibilities into account is shown
on figure 10; findoptimal algorithm can be generalized in a similar way.

The set of all the possible beliefs is in general infinite, so it demands for some
reduction of the problem. A clever sampling of the set may be a good solution.

3.5 Dealing with More Capable Opponents

In the actual experiments, functions like ΩMIN were designed to describe what
a rational opponent must know in a given situation. On the other hand, the
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opponent may know (or believe he knows) much more. He can even happen to
know the whole situation – he may have guessed it from his own card, the MAX
player’s first move, or even kibitzers’ facial expressions. Frank’s best defense
assumptions refer clearly to what the opponent can know in the worst possible
case.

To deal with such ’possibly more capable’ opponent, the player should con-
sider every possible opponent’s belief from between what he must and what he
can know. For the experiment setting (no difference in probability of plausi-
ble worlds) this would mean maximizing the expected value over all the belief
sets B such that {w} ⊆ B(s, w) ⊆ ΩMIN (s, w). Thus, to model this situation
accurately, it is sufficient to assume

BelMIN =




1
k if ∃B {w} ⊆ B(s, w) ⊆ ΩMIN (s, w) ∧ p(w) =

{ 1
|B| if w ∈ B

0 else
0 otherwise

within the input for the generalized version of gvm or findoptimal. 4

In the general case (analyzed in the previous section) we can have beliefs
about opponent’s beliefs defined explicitly with probability functions BelMIN ,
BelMAX . Simply, when we suspect the opponent of being more capable than
just looking at his card and/or the board, it’s good to design the functions so
that if any opponent’s belief is assumed possible then all the more precise beliefs
are also assumed possible.

4 Conclusions

This paper advocates a thesis that assuming a complete omniscience of the
opponent may be not quite reasonable in games with incomplete information.
Instead, the player should optimize his strategy against the expected perfor-
mance of the other agent (in the mathematical sense). If the player can identify
the opponent’s belief for various possible situations, he can do some reasoning
in the way Gambäck, Rayner and Pell showed for the specific case of Bridge
bidding. Algorithms: gvm and findoptimal implement the idea, and the results
of the experiments suggest that the ’reasonably good defense model’, proposed
in this paper, may make sense after all. Of course, the algorithms – especially
findoptimal – are too inefficient to be used in practice, but they can provide a
good benchmark for evaluation of suboptimal, faster ones.

The defense model proposed here – in contrast to the model by Frank and
Basin – emphasizes the importance of a good information-processing subsystem,
necessary to acquire and maintain an adequate knowledge about the opponent.
The actual opponent model may be derived from the game rules or learned by
the playing agent during the play. The point is that if the player has any (even
uncertain) information about the agent he plays against available, he should use
it instead of ignoring it. And if the player has really no information about the
other agent, he may be better off assuming average capabilities of the opponent,
rather than capabilities the opponent is unlikely to possess.
4 k must represent the number of possible B sets in the equation to keep the probability
function normalized.
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11. Kofler E. (1963) Wstȩp do teorii gier. Zarys popularny [An Introduction to
Game Theory. Popular Approach]. PZWS, Warszawa.

12. Sen S., Weiss G. (1999), Learning in Multiagent Systems. In: Weiss G. (ed.),
Multiagent Systems. A Modern Approach to Distributed Artificial Intelligence,
pp. 259-298, MIT Press, Cambridge, Mass.

13. Weiss G., ed. (1999), Multiagent Systems. A Modern Approach to Distributed
Artificial Intelligence, MIT Press, Cambridge, Mass.

14. Wooldridge M. (2000), Reasoning about Rational Agents, MIT Press, Cam-
bridge, Mass.


	Introduction
	Best Defense
	Experiments with Random Games

	Reasonably Good Defense
	A Simple Case
	Computational Complexity
	More Experiments...
	Generalizations
	Dealing with More Capable Opponents

	Conclusions

