Template Metaprogramming an Object Interface to
Relational Tables

Giuseppe Attardi, Antonio Cisternino

Dipartimento di Informatica, corso Italia 40, [-56125 Pisa, Italy
{attardi,cisterni}edi.unipi.it

Abstract. We present a general technique to support reflection in C++, exploit-
ing template metaprogramming techniques. The technique is used for building
an object interface to relational database tables. By just annotating a class defi-
nition with meta information, such as storage attributes or index properties of
fields, a programmer can define objects that can be stored, fetched or searched
in a database table. A high-performance, full text search engine has been built
with this technique.

Introductionﬂ

An object oriented interface library to a relational database table must be capable
of storing objects of any class into its rows. The library must therefore know the
structure of the objects in order to perform serialization. However table schema defi-
nition and table usage are independent operations, of which the compiler is unaware.
Hence data operations require detailed instructions for reconstructing objects fetched
form a table or supplying detailed information about their class. This can be avoided
if the library can exploit introspection [1] for determining the attributes of a class and
their types, and use intercession [1] to modify the objects. Such solution is more effi-
cient and convenient than traditional embedded database languages and relieves pro-
grammers from much burden. A full object-oriented database can be built with limited
effort on top of this interface and in fact we used it for implementing IXE, a fully
featured, high performance class library for creating customized, full-text search en-
gines.

The needed reflection facilities have been achieved in C++ by exploiting template
metaprogramming techniques, without extending the language or the compiler, as in
other proposals [3].

We provide both static reflection, where metaclass information is only used at
compile time to produce class specific code; and dynamic reflection, where metaclass
objects exist at runtime. Static reflection involves no runtime computations, while
dynamic reflection allows defining classes dynamically from a metaclass assembled
from field descriptions and other information. Dynamic reflection is necessary for
instance in an interactive SQL interpreter.

! This research has been supported in part by a grant from Ideare SpA.



The Object Interface to Relational Tables

Relational DBMS use tables for storing relations, expressed in SQL-like statements
like this:

create table Documents (

name varchar (2048) ,
body varchar (65536) ,
size INT,

PRIMARY KEY (name), FULLTEXT (body)
)

We represent such table by a C++ class, supplying meta-information, in particular
storage attributes or index properties, about each attribute as follows:

class Document {

public:
char* name;
Text<65536> body;
int size;

META (Document,
(VARKEY (name, 2048, Field::unique),
KEY (body, Field::fulltext),
FIELD (size))
)i
Vi

META, KEY, VARKEY and VARFIELD are macros that exploits template metaprogram-
ming for creating a metaclass for the class. The template class Table implements a
relational table for storing objects of a specified class. Here is how to create such
table and insert into it an object doc of class Document:

Table<DocInfo> table ("db/table") ;
table.insert (doc) ;

The table can be queried obtaining a cursor for accessing the results of the query,
similarly to GigaBase [2]. For example:

Query query("size < " + size + " and text matches ‘PDF'");
QueryCursor<DocInfo> cursor (collection, query);
while (cursor.hasNext ())

dt = cursor.get()->title;

Method get () returns a genuine object, whose methods can be invoked directly.

References

1. K. Czarnecki, U.W. Eisenacker, Generative Programming — Methods, Tools, and Applica-
tions. Addison Wesley, Reading, MA, 2000.

2. K.A. Knizhnik, The GigaBASE Object-Relational database system,
[attp://www.ispras.ru/~knizhnik]

3. S. Chiba. 4 metaobject protocol for C++. Conference Proceedings of Object-Oriented
Programming Systems, Languages and Applications, pp. 285-299, ACM Press, 1995.



http://www.ispras.ru/~knizhnik

	Introduction
	The Object Interface to Relational Tables
	References

