Large Vocabulary Continuous Speech
Recognition Using Weighted Finite-State
Transducers

Diamantino Caseiro and Isabel Trancoso

! INESC-ID/IST, Rua Alves Redol 9, Lisbon, Portugal

{dcaseiro,Isabel.Trancoso}@l2f.inesc-id.pt

Abstract. Weighted finite-state transducers are an unifying formalism
for the implementation and integration of the various knowledge sources
and structures typical of a large vocabulary continuous speech recogni-
tion system.

In this work we show how those knowledge sources can be converted to
this formalism, and how they can be integrated in an optimized network,
using our finite-state library and tools.

Experiments performed using our system showed the importance of the
optimization of the integrated network, and allowed us to obtain very
significant improvements in the speed of the recognizer.

1 Introduction

A finite-state transducer (FST) is a computational model similar to a finite-
state automaton, but with an extra label associated with each edge. That output
label, allows the FST to model relations and mappings between languages, while
retaining some of the excellent computational properties of finite-state automata.
FSTs have been widely used in natural language processing, but their use in
automatic speech recognition (ASR) is still not widespread, although there has
been a growing interess in the community, specially following the pioneering work
on the use of weighted finite-state transducers (WFSTs) developed at AT&T
Labs.

In the WFST approach, the recognition problem is reduced to building an
integrated network using WFST composition of all the components in the system,
and then searching for the best path in the network.

Different systems use different components, but a typical system can include
SoAoCoPoLo@G, where S represents the acoustic speech signal, A the acoustic
models, C' the context-dependency transducer, P represents phonological rules,
L the lexicon and G the language model.

In [1], the compositions included the levels from the acoustic model to the
language model, resulting in a phone_id-to-word WFST (C o L o G). A phone
recognizer, constrained with the network, was used to decode the utterance.
Later, in [2], the composition was extended to the level of the distribution (A o
C o Lo@). As the resulting network N was very large and contained many long



linear paths?, it was factorized into two transducers N = HoF, where H replaces
each linear path with a unique identification code, and F is similar to N but with
each linear path replaced with an edge labeled with the linear path code. The
recognition was performed using the previous recognizer and the F' network. The
linear paths were directly supported as “phones” in the phone recognizer. During
the composition of the various components, the operations of determinization
and minimization were used to reduce the size of the intermediate transducers.
The size of the resulting transducer was not much larger than the language
model (in [2] it was respectively 2.1 and 2.5 times bigger for bigram and trigram
language models) and allowed the efficient use of cross word acoustic models (the
use of cross word triphones only increased the size of the transducer in 2.5%).

The Spoken Language Systems Group of the Massachusetts Institute of Tech-
nology (MIT) has been also developing a similar approach, in their Jupiter con-
versational system. One of the main characteristics of their work [3] is the use
of phonological rules (represented by a WFST P) in the recognition cascade
CoPoLog.

In the next section we describe how to model the components of a state-
of-the-art large vocabulary continuous speech recognizer (LVCSR) as weighted
finite-state transducers. In section 3, we present our finite-state speech recogni-
tion system, and in section 4, some recognition experiments. Finally, in section
5, we summarize the main conclusions.

2 Representation of Speech Recognition Components as
WEFSTs

2.1 Acoustic Models

Acoustic models implemented as hidden Markov models (HMMSs) can be com-
piled to WFSTs with a similar topology. The input label of each edge is a symbol
representing the distribution of the destination state of the HMM. Its weight is
the transition probability and the output label is epsilon, except for the edges
leaving the initial state that output a symbol representing the model. Every path
that traverses the transducer must output one, and only one, symbol. The trans-
ducer A containing all the models can be built using the concatenative closure
of the union of the individual models 4; A = (4; U Ay U...UA,)*.

2.2 Context Dependency

In a context independent system, each acoustic model described in the previous
section can represent a specific phone. But most state-of-the-art recognition
systems are context dependent. That is, the acoustic model used to represent a
phone is selected depending on the particular context of the phone (for example,
in triphone systems each phone has different models for each combination of

2 A linear path is a path where its states, other than the first and the last, have at
most one incoming and one outgoing transition.



previous and next phones). Context dependent systems thus allow much more
detailed modeling.

The transformation from context independent to context dependent can be
modeled by interposing a transducer C' between the acoustic models and the
lexicon, that will implement the context dependent to independent relation®[1].

To build the transducer C' we build its inverse by connecting the edges as
show on table 1 for each triphone* a —b+c, right biphone b+ ¢, left biphone a—b
and uniphone b°. Those edges connect states that represent particular contexts.

cabtc cbe

Va—b+te Vo_e

(eps):ath a(eps)

Vass vio O—O©

Table 1. Construction of the inverse context dependency transducer.

2.3 Pronunciation Lexicon

We may regard a pronunciation as a transducer from phone sequences into a
word. In most systems, the pronunciation of a word is modeled as a sequence of
phones.

The pronunciation can be modeled as the trivial linear transducer with one
edge for each phone in the sequence. Each edge has as input label the correspond-
ing phone (or model), and has unitary weight. One of the edges in the sequence
may have the pronunciation probability and must have the word as output; all
other edges should have epsilon output. The transducer L corresponding to the
complete lexicon is the concatenative closure of the union of the individual pro-
nunciation transducers. In LVCSR systems, the lexicon L is commonly organized
as a tree [4]. We can transform the linear transducer to a tree form by sharing
prefixes, or we can transform if to an even more general form, using the generic
weighted transducer determinization algorithm [5].

2.4 Language Models

There is a long tradition of using finite-state acceptors to model sentences in
speech recognition. They are used in limited domains and in dialog systems to
specify the acceptable sentences. In large vocabulary applications they are used

3 That is, a transduction from the models that represent context dependent units to
the lexicon that is represented in terms of context independent phones.

* @ —b+ c should be read as the version of b that has a on the left and ¢ on the right.

® We name a context independent unit uniphone when used in a system that also
contains context dependent units.



to constrain the search in latter passes of multiple pass systems. Such lattice
or finite-state language models can be trivially converted to WFSTs. However,
the main language model methodology in LVCSR. consists of local stochastic
grammars specified as word n-grams.

One simple way to convert an n-gram language model to an automaton G,
consists of creating a state for each possible context, and placing weighted edges
between contexts labeled with the word and weighted with the n-gram probabil-
ity. This exact conversion requires a number of edges proportional to the number
of all possible n-grams and not only to the number of n-grams observed in the
training text. Hence, this conversion is only possible for small vocabulary and
low order language models.

The alternative is to resort to finite-state approximations. One approximation
consists of creating a state for each context existing in the model. This state is
the origin of all the edges that model n-gram probabilities with that context
in the language model. Back-offs to lower order contexts are implemented as an
epsilon edge from the higher order context to the lower. This is an approximation,
because there may be multiple paths in the resulting automaton for the same n-
gram with different probability values. From the point of view of the recognition,
this can be a problem because, if the back-off path probability is higher than
the explicit probability, the former will be erroneously preferred. In practice,
the approximation works very well, being widely used. In figure 1 we show an
example of a finite-state approximation to a trigram back-off language model
with a vocabulary of two words a and b. Each state is labeled with the context
it represents (the empty context is shown as *, the probability weights as P and
the back-off weights as B).

(eps)/B(b)

(eps)/B(ab)

Fig. 1. Finite-state approximation to a trigram language model.

2.5 Optimization of the integrated network

One of the advantages of the WFST approach is that the integrated network
resulting from the composition of the various component WFSTs can be opti-
mized. The optimization is performed by combining 4 main operations:



Epsilon removal can be performed in some of the WFSTs. But it has to be
done with care, as its use can blow up the size of the transducer (it should
not be done on the approximated n-gram language model, for example).

Determinization is very important, as it reduces the redundancy of the inte-
grated network, allowing prefix sharing.

Pushing redistributes the weights of the network without changing its topology.
Pushing the weights towards the initial state has a very positive effect on the
search. It can be seen as implementing a generalization of language model
“look-ahead”. Pushing is performed as part of the weighted minimization
algorithm.

Minimization can be performed after determinization and returns the minimal
deterministic equivalent transducer. Its main effect is the reduction of the
memory required to use the network.

Determinization, pushing and minimization should be performed on the inte-
grated network, but these operations can also be applied at various stages during
the composition of the components WFSTs in order to reduce the size of the
intermediate results.

Composition of the lexicon with the language model The integration of
the speech recognition components using WFST composition, although concep-
tually simple, is a difficult task because of the size of the transducers involved.
In particular, the determinization of the composition of the lexicon with the
language model requires very large amounts of memory due to the very large
size of the language model WFST.

In the AT&T approach, the lexicon transducer is linear 8 and it is disam-
biguated by adding dummy symbols to the end of the pronunciations. The lexicon
can be ambiguous due to homophone words, or due to the pronunciation of some
words being a prefix of other words. It is very important to disambiguate the
lexicon, otherwise the determinization algorithm might not terminate. Another
important aspect is that the output label should be the produced by the first
edge of the pronunciation (to avoid the generation of non-coaccessible states’
during composition). The linear lexicon is then composed with the language
model, and the resulting transducer is determinized using the general weighted
transducer determinization algorithm. This final determinization step requires
an order of magnitude more memory than the size of the resulting transducer®.

To address the problem of the memory required to build and optimize the
integrated network, we developed a specialized algorithm for the composition of
the lexicon with the language model [6]. That algorithm performs composition,
determinization and pushing in one step, allowing an “on-the-fly” implemen-
tation [7]. It is also very memory efficient, requiring approximately the same

% Meaning that no part of the pronunciations is shared.

7 Non-coaccessible states have no path to a final state.

8 The main reason is that the determinization algorithm for weighted transducers
is similar to the classic subset construction algorithm and needs to store a set of
original states for each state of the result WFST.



memory as the resulting transducer. It can approximate the minimization step,
yielding a transducer only 2-5% larger than the minimal one. The algorithm is
based on the fact that the composition of deterministic (sequential) transduc-
ers is also deterministic[8]. The usual composition algorithm cannot be used to
exploit this result, as it would generate impractical amounts of non-coaccessible
states. Our algorithm avoids the generation of those states by using look-ahead
information on the lexicon transducer.

3 Finite-State Recognition System

3.1 Finite-State Library

In order to build a speech recognition system we started by implementing an
object-oriented library to manipulate finite-state machines. The design of the
library closely followed the one presented in [9]. The library allows the represen-
tation of finite-state machines and their manipulation. Most finite-state opera-
tions are represented as sub-classes of an abstract finite-state machine, and have
“on-the-fly” or “lazy” implementations, so that very complex expressions can be
represented and used, without the need for very large intermediate results.

The library was designed from the start to be used in speech processing and
allows the efficient use of very large automata with up to tens of millions of
states. It also includes specialized modules for manipulating acoustic models,
lexicon models, language models, acoustic vectors and other data used in speech
processing. One particularity is the use of specialized classes that have the inter-
face of finite-state machines, but that are implemented using the Turing-machine
power of a computer language. For example, the context-dependency transducer
shown in section 2.2 requires a number of states that is the square of the size of
the alphabet, making it impractical for some frequent tasks with many thousands
of symbols in the alphabet®. The library includes a WFST class that implements
this transducer using very little memory.

3.2 Command Line Tools

The library was used to develop command line tools to convert automatic speech
recognition components in standard file formats to WFSTs. Other tools imple-
ment WFST operations such as: composition, determinization, label pushing,
weight pushing, our algorithm for the composition of the lexicon with the lan-
guage model, etc

3.3 Decoder

The speech recognizer or decoder is based on a time-synchronous token-passing
implementation of the Viterbi algorithm. Its main characteristic is that it has

® For example, to build segment pairs in speech corpora for use in concatenative
speech-synthesis.



very little knowledge of the structure of the search space. As it is specified
as a distributions-to-words WFST, previously build using the finite-state com-
mand line tools. The decoder can accept either Gaussian-mixture distributions or
scaled likelihoods obtained from the output of a neural network (hybrid mode).
It can be used to find the best hypothesis or it can generate a lattice or word
graph.

One version of the decoder accepts as input the acoustic A, lexicon L and
language model G WFSTs, and performs the composition and optimization of
Ao LoG dynamically “on-the-fly”, using our algorithm. The overhead of building
the network “on-the-fly” is only about 20% in the latest implementation.

4 Recognition Experiments

In this section we describe some recognition experiments performed to evaluate
the WFST approach. All the experiments were based on the BD-PUBLICO
corpus[10] (a European Portuguese corpus equivalent in size and purpose to
WSJ0). The experiments were performed using a standard 600MHz pentium III
PC, with 1GB of RAM.

We used a European Portuguese lexicon with 27k words and trigram back-
off language models, trained from 46 million words from the online edition of
the PUBLICO newspaper, corresponding to the years from 1995 to 1998. The
lexicon and language models were converted to WFSTs.

The acoustic model topology consisted of a sequence of states with no self-
loops to enforce the minimal duration of the model, and one final state with a
self-loop. The acoustic models were encoded into a single acoustic model WFST.

The acoustic observation distributions were modeled using a combination of
the output of various neural networks[11].

In order to analyze the effects of the various finite-state optimizations on the
integrated network, we plotted the variation of the word error rate (WER) and
recognition time when using different pruning factors.

In figure 2, we show the performance obtained when using three integrated
composition networks with various degrees of optimization. The first one was
determinized (det(A o L o G)); the second one was determinized and pushed
(push det(Ao LoQ@)); the third one used a minimal language model (push det(Ao
Lo (min push det(G)))); and finally we used a minimal integrated network (min
push det(Ao Lo@));

We see that, as expected, the network optimizations did not change the
asymptotic WER. But they led to a dramatic improvement of the speed of the
recognition system.

5 Conclusions

In this paper, we presented finite-state methods that allow the various knowl-
edge sources and structures of a large vocabulary continuous speech recognition



35

T

det(AoLoG) —+—

pushdet(AoL o G) ---x--

push det (A o L o (min push det(G)) ---*---
min push dettAo Lo G) &

30

25 -

WER

20 | S

15 - -

Fig. 2. Effect of various optimizations of the integrated network.

system to be implemented in the unifying formalism of WFSTs. In particular,
we described our finite-state library and how it was used to implement a toolbox
that allows the conversion of standard speech recognition components to WEF-
STs. Our recognition experiments verified the importance of the optimization of
the integrated network, almost reaching the asymptotic accuracy in real time.

6 Acknowledgements

The present work is part of Diamantino Caseiro’s PhD thesis, initially sponsored
by a FCT scholarship (PRAXIS XXI/BD/15836/98). This work was also par-
tially funded by IST-HLT European program project ALERT. INESC-ID Lisboa
had support from the POSI program of the 'Quadro Comunitario de Apoio IIT".

References

1. M. Mohri, M. Riley, D. Hindle, A. Ljolje, and F. Pereira. Full expansion of context-
dependent networks in large vocabulary speech recognition. In Proc. ICASSP ’98,
Seattle, USA, May 1998.

2. M. Mohri and M. Riley. Integrated context-dependent networks in very large vocab-
ulary speech recognition. In Proc. Eurospeech ’99, Budapest, Hungary, September
1999.

3. J. Glass, T. Hazen, and I. Hetherington. Real-time telephone-based speech recog-
nition in the jupiter domain. In Proc. ICASSP ’2001, Utah, USA, May 2001.

4. R. Haeb-Umbach and H. Ney. Improvements in beam search for 10000-word
continuous-speech recognition. In IEEE Transactions on Speech and Audio Pro-
cessing, April 1994.

5. M. Mohri, F. Pereira, and M. Riley. Weighted automata in text and speech pro-
cessing. In FECAI 96 Workshop, August 1996.

6. D. Caseiro and I. Trancoso. On integrating the lexicon with the language model.
In Proc. Eurospeech ’2001, September 2001.



10.

11.

. D. Caseiro and I. Trancoso. Transducer composition for ”on-the-fly” lexicon and
language model integration. In ASRU 2001 Workshop, December 2001.

M. Mohri. Finite-state transducers in language and speech processing. Computa-
tional Linguistics, 23(2):269-311, June 1997.

M. Mohri, F.Pereira, and M. Riley. A rational design for a weighted finite-state
transducer library. In Automata Implementation. Second International Workshop
on Implementing Automata, WIA °97. Springer Verlag, 1998. Lecture Notes in
Computer Science 1436.

J. Neto, C. Martins, H. Meinedo, and L. Almeida. The design of a large vocabulary
speech corpus for portuguese. In Proc. Eurospeech ’97, September 1997.

H. Meinedo and J. Neto. Combination of acoustic models in continuous speech
recognition hybrid systems. In Proc. ICSLP ’2000, Beijing, China, October 2000.



